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1 Abstract

2 Elemicin, an alkenylbenzene constituent of natural oils of several plant species, is 

3 widely distributed in food, dietary supplements, and medicinal plants. 

4 1'-Hydroxylation is known to cause metabolic activation of alkenylbenzenes leading 

5 to their potential toxicity. The aim of this study was to explore the relationship 

6 between elemicin metabolism and its toxicity through comparing the metabolic maps 

7 between elemicin and 1'-hydroxyelemicin. Elemicin was transformed into a reactive 

8 metabolite of 1'-hydroxyelemicin, which was subsequently conjugated with cysteine 

9 (Cys) and N-acetylcysteine (NAC). Administration of NAC could significantly 

10 ameliorate the elemicin- and 1'-hydroxyelemicin-induced cytotoxicity of HepG2 cells, 

11 while depletion of Cys with diethyl maleate (DEM) increased cytotoxicity. 

12 Recombinant human CYP screening and CYP inhibition experiments revealed that 

13 multiple CYPs, notably CYP1A1, CYP1A2 and CYP3A4, were responsible for the 

14 metabolic activation of elemicin. This study revealed that metabolic activation plays a 

15 critical role in elemicin cytotoxicity. 

16

17 Keywords: elemicin; 1'-hydroxyelemicin; metabolic activation; cytotoxicity

18

19

20
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23  Introduction

24 Elemicin (3,4,5-trimethoxyallylbenzene) is a natural alkenylbenzene found in 

25 vegetables, flavoring foods, functional foods and dietary supplements, including 

26 banana puree1, nutmeg (Myristica fragrans)2, and Syzygium aromaticum, Daucus 

27 carota3. Elemicin is also an active natural product found in many medicinal plants, 

28 including Asarum sieboldii, Petroselinum sativum, Canarium commune4, 

29 Cymbopogon khasianus5, Anemopsis californica6, Peucedanum pastinacifolium7, 

30 Ferula heuffelii7, Petroselinum crispum, Sassafras albidum8. Moreover, elemicin 

31 shows extensive pharmacological effects, including antimicrobial3, 9, antioxidant10 

32 anti-acetylcholinesterase11-12 and antiviral activities7. Recently, elemicin has attracted 

33 attention due to its potential for eliciting toxicity and hallucinatory side-effects13. 

34 However, the mechanism by which elemicin causes toxicity is not clear. 

35 The use of nutmeg (soft drugs) is increasing, and its main potentially toxic 

36 components include elemicin, myristicin and safrole14. A previous study revealed that 

37 the major metabolic reactions of elemicin are the cinnamoyl pathway and the 

38 epoxidediol pathway, leading to 3-(3, 4, 5-trimethoxyphenyl) propionic acid, and its 

39 glycine conjugate, found in urine15. Earlier studies reported that elemicin could react 

40 with DNA, and exhibited activity in genotoxicity assays in adult rat hepatocytes16 and 

41 mice17. Investigation of elemicin metabolism and toxicity would be of value to 

42 elucidate the potential health risk related to the intake of elemicin from dietary 

43 sources.

44 Drugs or xenobiotics can be transformed into chemically reactive metabolites by 

45 a process known as metabolic activation, which is frequently related to drug 
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46 toxicity18. It is well known that some herbal components can be converted to toxic, or 

47 even mutagenetic and carcinogenic metabolites, by CYPs. Bioactivation of multiple 

48 alkenylbenzenes, including estragole, methyleugenol, safrole, apiole and myristicin, 

49 can yield reactive metabolites, such as 1'-hydroxyestragole, 

50 1'-hydroxymethyleugenol19, 1'-hydroxysafrole20 and 1'-hydroxymyristicin21, 

51 respectively, through 1'-hydroxylation at the allyl side chains. These reactive 

52 metabolites are likely the initial events in cascades leading to toxicities, because they 

53 can bind to nucleophilic endogenous metabolites, including glutathione22, taurine, 

54 cysteine23, DNA, RNA and protein. It was reported that species differences may occur 

55 in the metabolic activation of elemicin using PBK modeling8. Herein, it was proposed 

56 that metabolic activation of 1'-hydroxylation might play an important role in 

57 elemicin-triggered cellular toxicity. 

58 Mass spectrometry-based metabolomics has been applied to study the 

59 mechanisms of drug and other xenobiotic toxicities that are associated with their 

60 metabolism18, 24-27. In the present study, ultra-performance liquid chromatography 

61 combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS) was 

62 applied to analyze the biological samples from elemicin and 1'-hydroxyelemicin 

63 treatment. Comparative metabolomics approach was employed to screen the reactive 

64 metabolites by comparing metabolic maps of elemicin and 1'-hydroxyelemicin. 

65 Metabolic activation phenomenon was initially observed in vivo. Subsequently, the 

66 formation mechanism of metabolic activation was verified by trapping experiments in 

67 vitro. The cytotoxicity of both elemicin and 1'-hydroxyelemicin was evaluated, 
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68 revealing the role of elemicin’s metabolic activation in its cellular toxicity. The role of 

69 NAC involved in both elemicin- and 1'-hydroxyelemicin-induced cytotoxicity was 

70 investigated.

71 Materials and methods

72 Reagents

73 Elemicin (PubChem CID:10248) was provided by MAYA chemical reagent company 

74 (Jiaxing, China). Reduced nicotinamide adenine dinucleotide phosphate (NADPH), 

75 chlorpropamide and formic acid were obtained from Sigma-Aldrich (St. Louis, 

76 U.S.A). Methoxsalen, ticlopidine, ketonazole, Cys and NAC were purchased from 

77 Meilun chemical reagent company (Dalian, China). α-Naphthoflavone, trimethoprim, 

78 uinidine and diethyl maleate were obtained from Shanghai Macklin reagent company 

79 (Shanghai, China). Sulfaphenazol was from MCE (Med Chem Express LLC, USA). 

80 Both Mouse liver microsomes (MLMs) and Human liver microsomes (HLMs) were 

81 purchased from Bioreclamationivt Inc. (Hicksville, NY). Recombinant human P450s 

82 isoforms were provided by Xenotech, LLC (Kansas City, KS). Micro-anticoagulant 

83 tubes (EDTA dipotassium salt as anticoagulant) were obtained from Jiangsu Xinkang 

84 Medical Instrument company (Taizhou, China). All used reagents and organic 

85 solvents (acetonitrile, ACN) were of either analytical or HPLC grade. 

86 Chemical syntheses and structural characterization of 1'-hydroxyelemicin

87 1'-Hydroxyelemicin (PubChem CID: 3031087) was synthesized by nucleophilic 

88 addition of 3,4,5-trimethoxybenzaldenyde. To a solution of 

89 3,4,5-trimethoxybenzaldenyde (110 mg, 0.56 mmol) in dry tetrahydrofuran (2 mL) 
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90 under N2 was added vinylmagnesium bromide (0.56 mL, 1 mol/L, 0.56 mmol) 

91 dropwise at 0 °C. After stirring for 1h at 20 °C, the mixture was quenched with 

92 saturated aqueous NH4Cl and further extracted with ethyl acetate three times. The 

93 combined organic layer was washed sequentially with saturated aqueous sodium 

94 carbonate solution, water, and brine, and dried over Na2SO4. The crude product was 

95 filtered and concentrated, which was purified by silica gel column chromatography 

96 using EtOAc/petroleum ether (1:10) yielding an alcohol product (103 mg) as a 

97 colorless oil. The yield of 1'-hydroxyelemicin was 82% from 

98 3,4,5-trimethoxybenzaldenyde. The purity of 1'-hydroxyelemicin was > 98% 

99 determined by UPLC equipped with a diode array detector. Nuclear magnetic 

100 resonance (NMR) spectra were recorded on 600 MHz for 1H-NMR spectrum and 150 

101 MHz for 13C-NMR spectrum. Deuterochloroform (CDCl3) was used as solvents for 

102 NMR detection. The structural identification of 1'-hydroxyelemicin was characterized 

103 by 1H- and 13C-NMR (Figure S1). 1H-NMR (CDCl3, 600 MHz): δ 3.86 (3H, s, 

104 OCH3), 3.82(6H, s, 2OCH3), 6.60 (2H, s, 2H/4H), 5.12 (1H, d, H1') , 6.03 (1H, d, 

105 H2') , 5.36/5.20 (2H, d, H3') (Figure S1A).13C-NMR (CDCl3, 150MHz): δ 

106 138.33(C-1), 103.13 (C-2/C-6), 153.32 (C-3/C-5), 137.2 (C-4), 75.39 (C-1'), 140.01 

107 (C-2'), 115.24 (C-3'), 56.07 (3/5-OCH3), 60.81 (4-OCH3) (Figure S1B). HR-ESI-MS: 

108 [M+H]+ at m/z 225.1116 (calculated for C12H17O4 225.1121).

109 Animals and treatment

110 Male, 6~7 weeks-old C57BL/6J mice (20-22g) were purchased from the Kunming 

111 Institute of Zoology, Chinese Academy of Sciences (Kunming, China). Mice had 
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112 received free diet daily, which were kept in a temperature-controlled (22- 24 °C) 

113 facility with a 12 h dark/light cycle and 50-60% humidity for at least 7 days after 

114 receipt and before treatment. All animal studies in accordance with study procedures 

115 approved by the Ethics Review Committee for Animal Experimentation of the 

116 Kunming Institute of Botany, Chinese Academy of Sciences. Fifteen mice were 

117 randomly divided into three groups (n = 5). The mice were kept in standard cages (n = 

118 5) with Aspen bedding. The control group was treated orally by gavage with 0.5% 

119 sodium carboxymethyl cellulose (CMC-Na) suspension, and the other two groups 

120 were orally administered elemicin (100 mg/kg, 0.2 mL/20g, suspended in 0.5% 

121 CMC-Na) and 1'-hydroxyelemicin (100 mg/kg, 0.2 mL/20g, suspended in 0.5% 

122 CMC-Na), respectively. The dosage of elemicin was selected according to a previous 

123 study, and further optimized.

124 Collection and preparation of mice samples

125 All tested mice were kept in metabolic cages individually for 24 h after 

126 administration. The whole blood was collected from suborbital venous plexus of mice 

127 at 1 h and 24 h after administration, and centrifuged at 2000 × g for 5 min at 4 °C to 

128 acquire plasma.Urine and feces samples were collected from 0 to 24 h post-procedure 

129 in the metabolic cages. The preparation method of plasma, urine and feces samples 

130 used was as described in previous report with minor modifications29. Finally, 150 µL 

131 of urine, plasma and feces extract supernatants were transferred into automatic 

132 sampling bottle and 5 μL supernatants were injected into the UPLC-MS/MS for 

133 analyses. 
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134 In vitro metabolism of elemicin and 1'-hydroxyelemicin

135 Co-incubations experiments of elemicin (dissolved in ACN, final concentration was 

136 25 μM) or 1'-hydroxyelemicin (dissolved in ACN, final concentration was 25 μM) 

137 individually with pooled MLMs and HLMs in vitro were carried out in potassium 

138 phosphate buffer (1× PBS, pH =7.4). The incubation mixtures were prepared in a final 

139 volume of 200 μL, containing 0.5 mg/mL MLMs or HLMs protein or CYPs (2 

140 pmol/mL). The incubation of microsomes with elemicin or 1'-hydroxyelemicin were 

141 operated, in consistent with previous report 29. The biotransformations of elemicin by 

142 recombinant human P450s were also performed according to previous report 29. A 5 

143 μL aliquot of the supernatant was injected into UPLC-QTOF-MS for analysis.

144 Evaluation of bioactivation of elemicin 

145 A trapping experiment was conducted to determine the potential for 25 μM elemicin 

146 to form electrophilic metabolites in the presence of nucleophiles, including Cys or 

147 NAC (final concentration of 1 mM, respectively dissolved in PBS). The samples were 

148 prepared as detailed above. To further ascertain the chemically reactive activity of 

149 1'-hydroxyelemicin, incubation of 25 μM 1'-hydroxyelemicin with Cys or NAC in the 

150 absence of MLMs or HLMs. The structures of activated metabolites -conjugates were 

151 characterized by MS/MS.

152 To evaluate the contribution of CYPs responsible for bioactivation of elemicin, 

153 microsomal mixtures containing 0.5 mg protein/mL pooled HLMs, 10 mM NADPH, 

154 1 mM Cys or NAC, were incubated with specific CYP inhibitors, individually. Next, 

155 inhibition assays were performed with a panel of chemical inhibitors of CYP1A2, 
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156 CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 separately to 

157 determine the effect of CYPs on the formation of Cys or NAC conjugates. 

158 Pre-incubation of CYP chemical inhibitors individually with pooled human liver 

159 microsomes (0.5 mg protein/mL) for 1 min was carried out. The CYP chemical 

160 inhibitors were as follows: α-naphthoflavone (1.0 μM for CYP1A1/2), sulfaphenazole 

161 (100 μM for CYP2C9), trimethoprim (2.5 μM for CYP2C8), ticlopidine (100 μM for 

162 CYP2B6 and CYP2C19), quinidine (5.0 μM for CYP2D6), methoxsalen (20 μM for 

163 CYP2A13 and CYP2A6), and ketoconazole (100 μM for CYP3A4). Working 

164 solutions of each inhibitor were prepared in dimethyl sulfoxide (DMSO). Control 

165 incubations were carried out with vehicle (DMSO, the final concentration below 1%) 

166 in the absence of inhibitors. The reaction mixtures were submitted to UPLC-MS/MS 

167 to determine the formation of the elemicin-derived Cys/NAC conjugates. 

168 UPLC-MS/MS analysis

169 All samples were analyzed on an Agilent 1290 infinity UPLC system (Agilent 

170 Technologies, Santa Clara, CA) equipped with an Agilent 6530 QTOF mass 

171 spectrometric detector. The chromatographic and mass spectrometric conditions were 

172 in accordance with previous report 29. The MS spectral data were processed by the 

173 Agilent Mass Hunter Workstation data acquisition software (Agilent, Santa Clara, 

174 CA). The structural characterization of elemicin/1'-hydroxyelemicin metabolites were 

175 estimated based on their accurate masses and MS/MS fragmentation patterns by 

176 comparing with parent compounds.

177 Multivariate data analysis (MDA)
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178 The raw MS spectrum data were acquired and analyzed with the Agilent Mass Hunter 

179 Workstation data acquisition software. The raw data preprocessing by Mass Hunter 

180 was in strict conformity with previous report29. Subsequently, the acquired data 

181 matrix was submitted to SIMCA-P+13.0 software (Umetrics, Kinnelon, NJ) for 

182 unsupervised principal component analysis (PCA). The option of “Autofit” selected. 

183 Elemicin, 1'-hydroxyelemicin and their metabolites in microsomal incubations and 

184 mice were distinguished by screening the differential ions, which contributed to the 

185 separation from the control group in the S-plot acquired from PCA. Other necessary 

186 criteria for the metabolites could be observed only in the treatment group.

187 Evaluation of elemicin and 1'-hydroxyelemicin cytotoxicity 

188 HepG2 cells, a human hepatocellular carcinoma cell line, were purchased from 

189 Culture Collection of the Chinese Academy of Sciences (Shanghai, China). Tested 

190 Cells were maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented 

191 with 10% fetal bovine serum and 1% penicillin-streptomycin solution, and placed in a 

192 humidified atmosphere of 5% CO2 at 37 °C. 1 × 104 cells/well (in 200 μL of DMEM 

193 medium) was planted to a 96-well plate. Confluent monolayers cells were allowed to 

194 attach for 24 h and exposed to different concentrations of elemicin or 

195 1'-hydroxyelemicin. MTT assay was used to measure cell viability after treatment 

196 with elemicin or 1'-hydroxyelemicin.

197 NAC (Cys supplement) or DEM (thiol depletion) were added to the incubation 

198 mixtures to determine the role of Cys and NAC in elemicin toxicity. Cells were 

199 pre-exposed DEM for 1 h or co-exposed NAC with elemicin or 1'-hydroxyelemicin, 
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200 following by incubation for 24 h. Cell viability was tested according to the MTT 

201 assay protocol described above. After a series of pre-experiments tests, the final 

202 concentration of both elemicin and 1'-hydroxyelemicin were tested at IC50 

203 concentration, and 500 and 400 μM were used as the final concentration of NAC and 

204 DEM, respectively. All stock solutions of test compounds (elemicin, 

205 1'-hydroxyelemicin and NAC and DEM) were prepared in DMSO (< 0.25%).

206 Statistic analysis

207 Experimental data are presented as mean ± SEM. Statistical analysis was performed 

208 by unpaired Student’s t-tests for two groups in Graph Pad Prism software 6.0. 

209 Differences were considered to be significant when P-value was lower 0.05.

210 Results and discussion

211 Elemicin is not only the flavor component of multiple aromatic plants consumed 

212 in the diet, but also an active ingredient of various medicinal plants. However, in 

213 2008, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in the 

214 United States warned that for alkenylbenzenes (including elemicin), “further research 

215 is needed to assess the potential risk to human health from low-level dietary exposure 

216 to alkoxysubstituted allylbenzenes present in foods and essential oils, and used as 

217 flavoring agents”. Most alkenylbenzenes including safrole and methyleugenol, can 

218 usually form DNA adducts and exhibit obvious carcinogenicity after metabolic 

219 activation, when they are used in large dosage or exposure is long-term16. In the 

220 present study, the metabolic activation of elemicin generated 1'-hydroxyelemicin was 

221 determined in mice. Subsequently, the formation mechanism of metabolic activation 
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222 was verified by electrophile trapping experiments in liver microsomes. Finally, the 

223 cytotoxicity of elemicin and 1'-hydroxyelemicin was evaluated.

224 Comparative metabolism of elemicin and 1'-hydroxyelemicin in mice by 

225 metabolomics

226 Since multivariate data analysis in metabolomics can simultaneously perform 

227 metabolites screening and metabolic pathway analysis, a LC-MS-based metabolomic 

228 approach has become a powerful tool to determine drug or xenobiotic metabolism28-29. 

229 Therefore, LC-MS-based metabolomics may gain extensive applications in structural 

230 characterization of drug metabolites and provide clues about the mechanisms of 

231 bioactivation. Comparative metabolomics was demonstrated as an efficient tool to 

232 observe the similarities and differences of metabolic behavior of two drugs18, 25. 

233 Herein, UPLC-QTOFMS-based metabolomics was used to screen the metabolites of 

234 both elemicin and 1'-hydroxyelemicin in vitro and in vivo. An unbiased principal 

235 component analysis (PCA) model was initially used to screen metabolites excreted in 

236 urine of elemicin-, 1'-hydroxyelemicin- and the vehicle-treated groups (Fig. 1A), the 

237 distribution of ions is shown by S-plot (Figure 1B). Trend plots of mutual metabolites 

238 of both elemicin and 1'-hydroxyelemicin are presented in Figure 1C and Figure 1D. 

239 Trend plots of unique metabolites in elemicin and 1'-hydroxyelemicin metabolism are 

240 shown in Figure 1E and Figure 1F, respectively. Of the total 33 metabolites identified 

241 for elemicin and 1'-hydroxyelemicin metabolism in ESI+ mode, one sulfonated 

242 metabolite M22 was detected in the ESI- mode. Among these metabolites, 18 were 

243 observed in the present study (Table 1 and Table S1). The relative percentage of all 
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244 elemicin and 1'-hydroxyelemicin metabolites in ESI+ mode excreted in urine are 

245 displayed in Supporting Information Figure S2A and S2B. 

246 A total of 22 metabolites were identified for elemicin in mouse urine (Figure 

247 S2A), feces, plasma and the microsomal incubation system (Figure S3). The 

248 metabolic map of elemicin is summarized in Figure 5. Elemicin and most of its 

249 metabolites were mainly excreted in urine. These results indicated that allyl and 

250 methoxyl moieties were the major metabolites of elemicin. In addition, the phase I 

251 metabolic reactions of elemicin included demethylation, hydroxylation, hydration, 

252 allyl rearrangement, reduction, hydroformylation, and carboxylation. The phase II 

253 metabolism of elemicin included its conjugation with Cys, NAC, glucuronic acid, 

254 glycine, taurine, glutamine and SO3. Comparing with elemicin metabolism, a total 10 

255 of 1'-hydroxyelemicin metabolites were determined in vivo and in vitro (Figure S2B 

256 and Figure 4). The metabolic map of 1'-hydroxyelemicin is shown in Figure S7. 

257 Similar to the excretion pathway of elemicin, 1'-hydroxyelemicin and most its 

258 metabolites were majorly excreted in urine. The phase I metabolic reactions of 

259 1'-hydroxyelemicin contained hydroxylation, demethylation, dehydrogenation and 

260 dehydration, while its phase II metabolic reaction majorly included the conjugation 

261 with Cys, NAC, glycine, and glutamine. No glucuronic acid and taurine conjugates 

262 with 1'-hydroxyelemicin were detected in mice. 

263 Structural characterization of Cys and NAC adducts of elemicin 

264 Among the identified metabolites of elemicin, two Cys or NAC conjugates (M15 

265 and M16) were detected in urine following elemicin exposure (Figure 1C, 1D, and 
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266 Figure 2B). Similarly, 1'-hydroxyelemicin plus Cys or NAC adducts (H8 or H9) were 

267 found in urine after 1'-hydroxyelemicin administration (Figure 1C, 1D, and Figure 

268 2C). Through comparing the chromatographic behavior, accurate mass and tandem 

269 MS fragmentography, H8 found in the 1'-hydroxyelemicin urine sample was the same 

270 as M15 from the elemicin urine sample, while H9 was the same as M16. This 

271 suggested that 1'-hydroxyelemicin was a reactive metabolite of elemicin in vivo 

272 through metabolic activation, which may subsequently form Cys and NAC adducts. 

273 The common Cys and NAC conjugates (M15/H8 and M16/H9) showed the 

274 characteristic neutral losses of 119 Da (Cys moiety) and 161 Da (NAC moiety) 

275 derived from the Cys and NAC groups in the MS/MS spectrum, respectively. 

276 Additionally, the characteristic product ion at m/z 225+ could be assigned as the 

277 1'-hydroxyelemicin moiety (Figure 2D and 2E). 

278 In order to further demonstrate the formation of Cys and NAC adducts from 

279 elemicin in vivo metabolism, Cys and NAC trapping experiments for reactive 

280 metabolites were separately performed with elemicin in HLMs, respectively. Elemicin 

281 was converted to reactive 1'-hydroxyelemicin, which was further transformed to two 

282 Cys or NAC conjugates (M15 and M16) in the NADPH-regenerating system (Figure 

283 3B), whereas the conjugates could be not detected in the HLMs incubation without 

284 NADPH (Figure 3A). Moreover, 1'-hydroxyelemicin could spontaneously covalent 

285 bind Cys or NAC, leading to the formation of Cys or NAC conjugates (H8 or H9) 

286 without any catalysis. (Figure 3C). These above data indicated that the production of 

287 Cys or NAC conjugates was in NADPH-dependent manner, and 1'-hydroxyelemicin 
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288 was a reactive metabolite of elemicin, which can spontaneously react with Cys or 

289 NAC.

290 Metabolic activation resulting in the formation of chemically reactive 

291 metabolites is a potential risk factors for drug toxicity. Identification of electrophilic 

292 intermediates in the in vitro and in vivo metabolism of xenobiotics through 

293 appropriate trapping experiments have become important for appraising their potential 

294 toxicity. Currently, UPLC-MS/MS plays a beneficial role in the detecting, 

295 identificating and quantificating of reactive metabolites of xenobiotics29-31. 

296 Chemically reactive metabolites can be detected by performing in vitro nucleophilic 

297 reagent trapping studies, such as GSH, Cys and NAC, previous report indicated that 

298 reactive 1'-hydroxymyristicin can capture with Cys 32.

299 Roles of NAC and Cys in elemicin-induced toxicity 

300 Metabolic activation of alkenylbenzenes in herbal medicines is an important 

301 factor associated with increasing toxicity33-34. On the basis of the above studies, 

302 1'-hydroxyelemicin was characterized as reactive metabolites of elemicin. The 

303 cytotoxicity of elemicin or 1'-hydroxyelemicin (62.5, 125, 250, 500, and 1000 μM) 

304 was compared in HepG2 cells. Moreover, the IC50 value of elemicin was 910 ± 26.8 

305 μM, and that of 1'-hydroxyelemicin was 638 ± 26.7 μM (Figure 4A and 4B), 

306 suggesting that HepG2 cells were more sensitive to 1'-hydroxyelemicin than elemicin. 

307 This provided evidence that metabolic activation may mediate the cytotoxicity 

308 induced by elemicin.

309 It is known that Cys and NAC are the synthetic precursors of glutathione (GSH) 
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310 in organism, which act as the important endogenous antioxidants and protect against 

311 cell damage35. The toxicities of many drugs were usually accompanied by the 

312 existence of Cys and NAC conjugates36-38. To order to investigate the role of Cys and 

313 NAC in elemicin-induced toxicity, NAC and Cys were tested in HepG2 cells treated 

314 with elemicin. NAC could significantly attenuate the cytotoxicity induced both 

315 elemicin and 1'-hydroxyelemicin (Figure 4C), while depletion of Cys by DEM 

316 increased both elemicin and 1'-hydroxyelemicin triggered cytotoxicity (Figure 4D). 

317 DEM can decrease cellular levels of glutathione and Cys, resulting in significant 

318 cytotoxicity through thiol-exhaustion and oxidative stress39.  These above data 

319 demonstrated that the formation of Cys and NAC adduct may lead to a consumption 

320 of Cys and NAC, further resulting in toxicity.

321 CYPs involved in the bioactivation and metabolism of elemicin

322 Drug metabolizing enzymes catalyzing the formation of reactive metabolites 

323 include some CYPs and Phase II conjugating enzymes40. CYP-mediated metabolic 

324 activation was an initial event in the formation and development of idiosyncratic 

325 adverse drug reactions, such as genotoxicity, hepatotoxicity and immune-mediated 

326 adverse drug reactions41. In order to examine the role of CYPs on metabolic activation 

327 of elemicin and formation of Cys/NAC adducts, elemicin was incubated with 13 

328 human recombinant CYPs. Several human recombinant CYPs contributed to the 

329 formation of 1'-hydroxyelemicin, notably CYP1A1 and CYP1A2 that showed more 

330 potent catalytic capacity than the other CYPs (Figure S8B). Additionally, a series of 

331 selective CYP inhibitors were incubated with elemicin in HLMs, to determine which 
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332 CYPs preferentially catalyzed 1'-hydroxylation of elemicin in the more complex and 

333 physiologically-relevant liver extracts. Formation of the Cys/NAC adducts was 

334 decreased significantly by α-naphthoflavone, methoxsalen, trimethoprim, 

335 sulfaphenazole, 4-methylpyrazole, and ketoconazole, suggesting that various CYPs 

336 are involved in metabolic activation (Figure 3D). Among these inhibitors, the CYP3A 

337 inhibitor of ketoconazole and CYP1A inhibitor of α-naphthoflavone showed strongest 

338 inhibition of the formation of these two conjugates than others, suggesting that 

339 CYP1A1, CYP1A2 and CYP3A4 were mainly responsible for metabolic activation of 

340 elemicin. Consistently, CYP1A1, CYP1A2 and CYP3A4 were the major CYPs 

341 responsible for bioactivation of elemicin to yield 1'-hydroxyelemicin (M3/H0), that 

342 was converted to the Cys and NAC conjugates. 

343 Additionally, in order to further determine the CYPs responsible for systematic 

344 elemicin metabolism, a series of human recombinant CYPs was individually screened 

345 for the formation of elemicin metabolites. Among all CYPs tested, CYP1B1 

346 predominantly catalyzed demethylation of elemicin to yield M1 (Figure S8A). 

347 CYP1A1 primarily catalyzed the 1'-hydroxylation to form M3 (Figure S8B). In 

348 addition, only CYP3A4 and CYP3A5 were involved in hydroxylation at the 3'-carbon 

349 to produce M4 (Figure S8C). CYP1A2 and CYP2B6 were the primary CYPs 

350 responsible for formation of M5 (Figure S8D), and CYP1A1 and CYP1A2 were 

351 involved in M6 formation (Figure S8E). CYP1A2 predominantly catalyzed the 

352 formation of M8 (Figure S8F).

353 In summary, study elucidated the key role of metabolic activation in the elemicin 
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354 induced toxicity. These above results suggested that 1'-hydroxyelemicin resulting 

355 from the metabolic activation of elemicin, leads to Cys or NAC adducts as 

356 demonstrated in vitro and in vivo. CYP1A1/2 and CYP3A4 were the primary human 

357 CYPs involving in the formation of electrophilic metabolites that give rise to the Cys 

358 and NAC adducts. Pretreatment with NAC could ameliorate the cellular cytotoxicity 

359 induced by both elemicin and 1'-hydroxyelemicin, while depletion of Cys by DEM 

360 would potentiate their cytotoxicity on HepG2 cells. Excessive intake of dietary and 

361 herbs containing in elemicin may result in cellular toxicity.
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511 Figure legends

512 Figure 1. Comparative metabolomic analysis for screening elemicin and 

513 1'-hydroxyelemicin metabolites in urine. (A) PCA model for control (■), elemicin

514  (E, ●) and 1'-hydroxyelemicin (E', ▲) treated mice group (n = 5). (B) Loading scatter 

515 plot for screening potential metabolites in urine. (C) Trend plot of M15/H8. (D). 

516 Trend plot of M16/H9. (E) Trend plot of M14. (F) Trend plot of H10. 

517

518 Figure 2. Identification of Cys and NAC conjugates with elemicin and 

519 1'-hydroxyelemicin in vivo. Extracted ions (m/z 344.11447+ and 386.1268+) in 

520 chromatogram obtained from (A) mouse urine samples of elemicin (M15 and M16), 

521 and (B) mouse urine samples of 1'-hydroxyelemicin (H8 and H9). (C) MS/MS spectra 

522 and fragmentation patterns of M15/H8. (D) MS/MS spectra and fragmentation 

523 patterns of M16/H9. Urine samples for the MS/MS mode were prepared using the 

524 SPE approach. 

525

526 Figure 3. Formation of Cys and NAC conjugates of elemicin in HLMs. 

527 Chromatograms of ion m/z 344.1144+ and 386.1268+ extracted from HLM 

528 incubations, (A) in the absence of NADPH, or (B) in the presence of NADPH (M15 

529 and M16). (C) 1'-hydroxyelemicin captured with Cys or NAC without liver 

530 microsomes and NAPDH (H8 and H9). (D) Inhibitory effects of CYPs inhibitors on 

531 the formation of M15/H8 and M16/H9 in HLMs incubations.

532
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533 Figure 4. Evaluation of cytotoxicity of elemicin and 1'-hydroxyelemicin in 

534 HepG2 cells. (A) Effects of elemicin from 31.5 to 1000 μM on the viability of HepG2 

535 cells. (B) Effects of 1'-hydroxyelemicin from 31.5 to 1000 μM on the viability of 

536 HepG2 cells. (C) Effect of NAC on elemicin or 1'-hydroxyelemicin cytotoxicity 

537 HepG2 cells. (D) Effect of DEM on elemicin (E) or 1'-hydroxyelemicin (E') 

538 cytotoxicity HepG2 cells. ***P < 0.001 compared with vehicle control, ##P < 0.01, 

539 ###P < 0.05 compared with elemicin or1'-hydroxyelemicin group.

540

541 Figure 5. Metabolic map of elemicin. *, novel metabolites.
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Table 1 Summary of Elemicin Metabolites Produced in vivo and in vitro Metabolism

Metabolites 
(ID)

Rt (min)
Observed 
[M+H]+/ 
[M-H]-

Molecular 
formula

Mass error 
(ppm)

ClogP Major fragment ions
Reaction Source

M0 9.60 209.1152+ C12H16O3 -9.64 2.51 194,168,153 -
M1 8.32 195.1032+ C11H14O3 8.38 1.53 180,154,78,77 1 U, M, H
M2 8.44 195.1015+ C11H14O3 -0.34 2.18 180,154,78,77 1 U
M3 6.69 225.1126+ C12H16O4 2.11 0.95 210,193,181,161 2 U, P, M, H
M4 8.72 225.1119+ C12H16O4 -1.00 0.90 210,191,161 2 U, M, H
M5* 6.54 227.1283+ C12H18O4 2.31 1.02 207,182 3 M, H
M6* 7.69 223.0973+ C12H14O4 3.69 1.35 205,195,190,181,169 4+6 M, H
M7* 7.36 211.0963+ C11H14O4 -0.83 0.74 195, 169, 154,139 1+6 U
M8* 6.97 239.0898+ C12H14O5 -6.68 0.69 221,209,181,149 2+4+6 U, P, M, H
M9 6.13 227.0910+ C11H14O5 -1.74 0.77 195,193 1+7 U
M10 5.39 243.1228+ C12H18O5 0.43 -0.19 225,207,181 8 U, P, M, H
M11* 5.52 257.1024+ C12H16O6 1.73 -0.86 239, 211, 193 6+8 U, F, P
M12 6.57 241.1070+ C12H16O5 -0.19 1.20 195,193 5/7 U, F, P, M, H
M13 6.74 239.0916+ C12H14O5 0.85 1.54 193,181,149 4+7 U
M14* 5.62 298.1276+ C14H19NO6 -3.04 0.48 225 M12+Gly U, F, P
M15* 5.26 344.1149+ C15H21NSO6 -3.85 - 225,209,195,181 M3+S-Cys U
M16* 6.60 386.1260+ C17H23NSO7 -2.06 - 225,207,176 M3+NAC U
M17* 4.11 362.1244+ C15H23NSO7 -6.62 - 225,207 M10+S-Cys U
M18* 4.98 404.1359+ C17H25NSO8 -3.60 - 319,238,225 M10+NAC U
M19* 4.94 348.1108+ C14H21NSO7 -0.99 -1.23 240,225,196 M12+Tau U
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M20* 5.22 369.1670+ C17H24N2O7 3.75 -1.00 352,223,195,181 M12+Gln U
M21* 6.03 371.1338+ C17H22O9 0.39 -0.73 195,168,131 M1+Gluc U, P
M22 6.05 303.0544- C12H16O7S 1.98 0.32 239，223 M1+SO3 U

*Represent novel metabolites found in the study. 1demethylation; 2hydroxylation; 3hydration; 4allyl rearrangement; 5reduction; 6hydroformylation; 7carboxylation; 8 

dihydration; Glyglycine; S-Cys Sulfur atom linker cysteine; NACN-acetylcysteine; Tau taurine; Gln glutamine; Gluc glucuronide; Uurine; Ffeces; Pplasma; M mouse liver microsome; 
Hhuman liver microsome.
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Figure 2  
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