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PEG-assisted one-pot three-component synthesis of 1,3-
oxazino quinoline and chromeno 1,3-oxazin derivatives
under catalyst free condition
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Yeon Tae Jeong

Department of Image Science and Engineering, Pukyong National University, Busan, Republic of Korea

ABSTRACT
A straightforward and greener PEG-assisted protocol has been dis-
closed for the cascade synthesis of [1,3]Oxazino quinoline, and chro-
meno[1,3]oxazin derivatives via three component reaction of
multifarious aromatic amines with formaldehyde and 4-hydroxyqui-
noline-2(1H)-one or 4-methylumbelliferone by using very convenient
reaction conditions. This methodology represents a sustainable
approach for rapid access to a library of diversity oriented highly
pure [1,3]oxazino scaffolds with broad substrate scope.
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Introduction

In recent years, the development of synthetic chemistry has gained considerable interest
in the area of academia, industrial, and pharmaceutical research.[1–2] Synthetic chemists
have aimed to replace organic solvent as a reaction media with environmentally accept-
able alternatives such as ionic liquid, water, PEG and carried out the reaction under
solvent-free condition.[3] Catalyst-free synthetic approaches are also a remarkable tool
in scientific society because they have a minimum cost, less problematic in purity, and
pollution.[4] Polyethylene glycol (PEG) is a greener alternative in organic synthesis as it
has become more favorable over toxic organic solvents due to nontoxicity, bio-
compatibility, bio-degradability, and miscibility of aqueous or nonaqueous solvent.[5]

Furthermore, the application of PEGs as reaction media for the multicomponent
reactions (MCRs) also will be beneficial from the recent innovation in employing bio-
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based chemicals as green solvents.[6] The combination of MCRs and PEGs as a solvent
has enhanced a new research direction, which enables simultaneous growth of both
MCRs and green solvent toward ideal organic synthesis.[7–10] However, multicomponent
reactions (MCRs) are extremely ideal and eco-friendly reaction method and the targeted
compounds can be achieved in significantly fewer steps. Due to the advantages of pro-
viding sufficient structural diversity, atom economy,[11] molecule complexity,[12] and
simple operation the MCRs have been widely used in drug discovery, biology, and nat-
ural product synthesis.[13]

Quinoline alkaloids are usually isolated from plant Rutaceae,[14–19] it has been reported
that the quinoline alkaloids exhibit an active wide range of biological properties.[20] This
active wide range of biological properties has stimulated interest in the synthesis of quinoli-
none moieties.[21–25] The importance of 1,3-oxazine molecule has been increased because a
compound containing the 1,3-oxazine ring system has exhibited a wide spectrum of
pharmacological activities, such as anti-bacterial,[26,27] anti-tumor,[28] anti-malarial,[29] and
anti-oxidant activities.[30–33] Very lately, Zhou et al. have reported 1,3-oxazine molecule
under the catalytic (ZrOCl2�8H2O) condition,

[34,35] which is for the environmental perspec-
tive using of catalyst is unfriendly. Being a part of our continued interests not to make the
environment hostile, in this synthesis of heterocyclic compounds and green chemistry[36–40]

we have explored for the PEG-assisted approach and catalyst-free synthesis of [1,3]oxa-
zine[5,6-c]quinoline-5-one, and 4-methyl-9-phenylchromeno[8,7-e][1,3] oxazine-2(8H)-one
derivatives under the mild reaction condition (Scheme 1).

Result and discussion

For the introductory investigation, the reaction of 4-hydroxyquinoline-2-(1H)-one (3a),
aniline (1a), and formaldehyde (2a) in ethanol has been chosen as a simple model

Scheme 1. Synthesis of [1,3]Oxazino quinoline (4) and chromeno 1,3-oxazin (6) derivatives.
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strategy (Scheme 2). The reaction mixture was stirred at room temperature (RT) for
60min, which afforded 74% of the desired product as a white solid (Table 1, entry 10).
The structure of 4a is assigned with the help of 1H NMR and 13C NMR data. Further,
the same reaction has been studied with different solvents like methanol, acetonitrile,
dimethylformamide, toluene and tetrahydrofuran at RT, resulting in the desired product
in moderate (40–72%) yield (Table 1, Entries 11–17). Screened different catalysts for
this reaction, such as Cu(OTf)2 (20%), InCl3 (20%), L-proline (20%), Piperidine (20%),
FeCl3 (20%), p-TsOH (20%), Sc(OTf)3 (20%), GaCl3 (20%) and InBr3 (20%) (Table 1,
Entries 1–9). All screened catalysts were found to be effective for this conversion.
However, when the reaction is carried out with PEG-600, the viscosity of the reaction
mixture is increased highly at RT and the reaction gets stuck, hence the reactants do
not interact effectively. The expected product is obtained a yield of 60% in 60min
(Table 1, Entry 17). However, the reaction rate increased when the solvent was switched
from PEG-600 to PEG-600: EtOH. Therefore, the volumetric ratio of PEG and EtOH
was screened and the best results were obtained by carrying out the reaction in PEG-
600: EtOH with a ratio of 1:1(v/v) (Table 1, Entry 20).
When used PEG-600 and EtOH as an eco-friendly reaction medium, the reaction

gave an excellent result (96% yield) within 20min at the ambient temperature. It has
been found that the reaction proceeded very well with increased yields, which clearly
indicates that the PEG-600 is the most effective reaction medium and promoter for this
transformation. From the results depicted in Table 1, we have selected the PEG-600 and
ethanol as a suitable reaction medium due to highest yield, in shorter reaction time,
and environmentally favorable.
Using these optimized reaction conditions, the generality of this reaction is being

verified using different aromatic amines with various substitutes are reacted successfully
by bearing electron-donating (such as methyl, methoxy) as well as electron-withdrawing
(such as halide) substituents. The reaction proceeded more quickly with aniline contain-
ing electron-donating groups (–Me, –OMe) to give the products in excellent yields
(4d–4i) within 15–45min. The steric and electronic properties of the substituted amine
had very little impact on the efficiency of this reaction. However, when 1,4-phenylenedi-
amine with formaldehyde, and 4-hydroxyquinolin-2(1H)-one were used, gave the
desired product 3,30-(1,4-phenylene)bis(3,4-dihydro-2H-[1,3]oxazino[5,6-c]quinolin-
5(6H)-one) 4p was obtained in 78% yield. Similarly, the reaction of 4-hydroxy-1-meth-
ylquinolin-2(1H)-one with formaldehyde and aniline were used, gave the desired
product 3,4-dihydro-6-methyl-3-phenyl-2H-[1,3]Oxazino[5,6-c] quinolin-5(6H)-one 4aa
was obtained in 94% yield. Unfortunately, aromatic amine with methoxy at 3 position
or 3,5 dimethoxy substituted aromatic amine could not react with formaldehyde and 4-
hydroxyquinolin-2(1H)-one to give the desired product (4q, 4r). On the other hand,
short-chain aliphatic amine such as 3-methoxypropan-1-amine did not react under the
optimized reaction condition (4s).
The reaction of 4-methylumbelliferone (5a, 1mmol), formaldehyde (2a, 3mmol, 37%

aqueous solution), aniline (1a, 1.2mmol) was carried out in PEG-600: EtOH (1:1, v/v)
at 80 �C for 3 h. A study of the effect of temperature on the reaction time as well as on
the yield of the product reveals that the reaction is strongly influenced by the tempera-
ture. These results are presented in Table 2.
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Scheme 2. Synthesis of [1,3]Oxazino quinoline derivatives (4a–4p, 4aa)a,b.
aReaction conditions: 4-hydroxyquinoline (1mmol, 3a), formaldehyde (3mmol, 37% aqueous solution,
2a), aromatic amine (1.2mmol, 1a), and solvent 4mL at room temperatures. bIsolated yield.
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Table 1. Optimization of reaction conditionsa.

Entry Promoter (mol. %) Solvent Time (min) Yield (%)b

1 Cu(OTf)2 (20) EtOH 60 82
2 InCl3 (20) EtOH 60 77
3 L-proline (20) EtOH 60 80
4 Piperidine (20) EtOH 60 79
5 FeCl3 (20) EtOH 60 82
6 p-TsOH (20) EtOH 60 85
7 Sc(OTf)3 (20) EtOH 60 75
8 GaCl3 (20) EtOH 60 78
9 InBr3 (20) EtOH 60 77
10 Catalyst-free EtOH 60 74
11 Catalyst-free MeOH 360 45
12 Catalyst-free CH3CN 360 40
13 Catalyst-free DMF 60 72
14 Catalyst-free DMSO 360 38
15 Catalyst-free Toluene 360 42
16 Catalyst-free THF 60 72
17 Catalyst-free PEG 60 60
18 Catalyst-free PEG: EtOH(1:5) 30 81
19 Catalyst-free PEG: EtOH(1:3) 30 89
20 Catalyst-free PEG: EtOH(1:1) 30 96
aReaction conditions: 4-hydroxyquinolin-2(1H)-one (1mmol, 3a), formaldehyde (3mmol, 37% aqueous solution, 2a), anil-
ine (1.2mmol, 1a), and solvent 4mL at room temperature. bYield.

Table 2. Effect of temperaturea,b.

Entry Solvent Temperature (�C) Time (h) Yield (%)b

1 EtOH RT 12 0
2 EtOH 80 12 52
3 EtOH:PEG RT 12 0
4 EtOH:PEG 40 12 0
5 EtOH:PEG 60 12 58
6 EtOH:PEG 80 12 93
7 EtOH:PEG 80 6 94
8 EtOH:PEG 80 4 91
9 EtOH:PEG 80 3 90
10 EtOH:PEG 80 1 63
aReaction conditions: 4-methylumbelliferone (1mmol, 5a), formaldehyde (3mmol, 37% aqueous solution, 2a), aniline
(1.2mmol, 1a), and solvent 4mL stirred at different temperatures. bIsolated yield.
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When the reaction is being carried out under room temperature, the desired product
could not be observed, as the starting materials were unreactive (Table 2, Entry 1). The
results of screening temperature (Table 2) reveals that 80 �C would be the optimal tem-
perature, at which the reaction proceeds rapidly and produces the best yield 90% (Table 2,
Entry 9) in 3 h. Further verified reaction time does not cause any significant change in the
product yield. The structure of 6a is assigned with the help of 1H NMR and 13C NMR
data. We have also employed various substituted aromatic amine with electron-donating
substituents such as –Me, –OMe, and halogen (Br) which were well tolerated and provided
the corresponding products in good to excellent yields. However, p-nitro aniline did not
afford the desired product under the optimized reaction conditions (Scheme 3, 6i).
After having successfully developed a one-pot strategy for the construction of 3-phe-

nyl-3,4-dihydro-2H-[1,3]oxazino[5,6-c]quinolin-5(6H)-one, we examined the synthetic
utility of this reaction. Consequently, we performed the reaction on a gram-scale
(10mmol, 1.60 g) under the standard reaction conditions and isolated desired product
4a in 90% yield (Scheme 4).
We have proposed a plausible reaction mechanism (Fig. 1). Initially, aniline (1a)

reacts with formaldehyde (2a) to form Schiff base A by Mannich type condensation, 4-
hydroxyquinolin-2(1H)-one (3a) undergoes nucleophilic addition with A to form inter-
mediate B. Next, the intermediate B reacts with second molecule of formaldehyde (2a)
to afford the intermediate C. Then intermediate C undergoes intramolecular cyclization
followed by water elimination to afford the desire product [1,3] Oxazino[5,6-c] quin-
oline-5-one (4a). The results from all the above studies clearly indicate, that the present
non-catalytic protocol is compatible for a wide range of substrates to construct a diver-
sity-oriented library of 1,3-Oxazino quinoline and chromeno 1,3-oxazin derivatives.

Conclusion

In summary, we have developed a convergent and robust greener protocol for the
synthesis of 1,3-Oxazino quinoline and chromeno 1,3-oxazin derivatives by the three-
component reaction of various aromatic amines with formaldehyde and 4-hydroxyqui-
noline-2(1H)-one or 4-methylumbelliferone by using PEG-600: EtOH as an effective
reaction medium under catalyst free-conditions. The simple straightforward, rapid,
atom-economic, high yielding, as well as inexpensive and eco-friendly nature, are the
key benefits of this method, which constitutes an attractive tool addressing the access to
1,3-oxazine molecules for bioactive applications.

Experimental

Materials

Chemical were purchased from Sigma Aldrich and Alfa Aesar chemical companies and
used without further purification. NMR spectra were recorded in parts per million
(ppm) in DMSO-d6 and Chloroform-d on a Jeol JNM ECP 400 NMR instrument using
TMS as internal standard abbreviation were used to denoted signals multiplicities
(s¼ singlet, d¼ doublet, t¼ triplet, q¼ quartet, m¼multiplate). HRMS were obtained
by EI on a double-focusing mass analyzer, ESI (positive ion mode) on TOF mass
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analyzer. All melting points were determined using open capillaries on an Electro ther-
mal-9100(Japan) instrument and are uncorrected.

General procedure

General procedure for synthesis of [1,3]oxazino quinoline derivatives (4a)
A mixture of 4-hydroxyquinoline-2(1H)-one (3a, 1mmol), aniline (1a, 1.2mmol) and for-
maldehyde (2a, 3mmol 37% aqueous solution) in 4mL of PEG-600 and EtOH (V/V, 1:1)

Scheme 3. Synthesis of chromeno 1,3-oxazin derivatives (6a–6i)a,b
aReaction conditions: 4-methylumbelliferone (1mmol, 5a), formaldehyde (3mmol, 37% aqueous solu-
tion, 2a), aromatic amine (1.2mmol, 1a), and solvent 4mL stirred at 80 �C for 3 h. bIsolated yield.
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was magnetically stirred at room temperature for 15–45min. Reaction was monitored by
thin-layer chromatography (eluent: 60% ethyl acetate/hexane, Rf¼ 0.60). After completion
of the reaction, solid products was filtered under vacuum, air dried, to obtain the analytically
pure products. The compounds 4a–4p and 4aa were also synthesized by adopting
this procedure.
It was obtained as white solid; Yield: 96%; MP:198–200 �C; 1H NMR (400MHz,

DMSO-d6) d 11.53 (s, 1H), 7.68 (d, J¼ 8.1Hz, 1H), 7.48 (t, J¼ 8.4Hz, 1H), 7.26 (dd,
J¼ 13.9, 7.4Hz, 3H), 7.15 (dd, J¼ 8.4, 1.3Hz, 3H), 6.90 (t, J¼ 7.3Hz, 1H), 5.66 (s, 2H),
4.38 (s, 2H); 13C NMR (100MHz, DMSO-d6) d 161.89, 157.85, 148.24, 137.94, 136.05,
130.98, 129.77, 122.84, 121.06, 118.29, 115.83, 114.30, 106.04, 80.69, 45.73; HRMS (ESI,
m/z): calcd. for C17H14N2O2 (MþHþ) 278.1055, found: 279.1057.

Scheme 4. Gram scale reaction.

Figure 1. A plausible mechanism for the [1,3]Oxazino [5,6-c]quinoline-5-one.
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General procedure for gram scale reaction (4a)
A mixture of 4-hydroxyquinoline-2(1H)-one (3a, 10mmol), aniline (1a, 12mmol) and
formaldehyde (2a, 30mmol 37% aqueous solution) in 12mL of PEG-600 and EtOH (V/
V, 1:1) was magnetically stirred at room temperature for 30min. Reaction was moni-
tored by thin-layer chromatography. After completion of the reaction, solid product was
filtered under vacuum, air dried, to obtain the analytically pure products.

General procedure for synthesis 4-methyl-9-phenylchromeno [8,7-e][1,3]oxazin-2(8H)-
one (6a)
A mixture of 4-Methylumbelliferone (5a, 1mmol), aniline (1a, 1.2mmol) and formalde-
hyde (2a, 3mmol 37% aqueous solution) in 4mL of PEG-600 and EtOH (V/V, 1:1) was
magnetically stirred at 80 �C for 3 h. Reaction was monitored by thin layer chromatog-
raphy (eluent: 5% methanol/dichloromethane, Rf¼ 0.40). As the reaction mixture
cooled, the raw product precipitate in to white-yellow crystals. Finally, recrystallization
from toluene yielded white needle like crystals. The compounds 6a–6h were also synthe-
sized by adopting this procedure.
It was obtained as white solid; Yield: 90%; MP:148–150 �C; 1H NMR (400MHz,

CDCl3) d 7.37 (d, J¼ 8.8Hz, 1H), 7.28 (dd, J¼ 9.6, 6.4Hz, 2H), 7.15 (d, J¼ 7.7Hz, 2H),
6.96 (t, J¼ 7.3Hz, 1H), 6.78 (d, J¼ 8.8Hz, 1H), 6.13 (s, 1H), 5.44 (s, 2H), 4.83 (s, 2H),
2.36 (s, 3H); 13C NMR (100MHz, CDCl3) d 161.29, 157.82, 153.38, 151.44, 148.18,
129.67, 123.86, 122.30, 118.79, 113.91, 113.55, 111.98, 109.13, 80.11, 46.58, 19.02; HRMS
(ESI, m/z): calcd. for C18H15NO3 (MþHþ) 293.1052, found: 294.1052.
Experimental details, 1H and 13C NMR spectra have been provided in supporting

information.
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