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ABSTRACT: A facile copper-catalyzed aminosulfonylation of O-homoallyl benzimidates with sodium sulfinates in the presence of
tert-butyl peroxybenzoate (TBPB) and XPhos ligand has been developed. By using this protocol, a variety of potentially bioactive
1,3-oxazines were directly synthesized. This method has the merits of a cheap catalyst, easily available and stable sulfone reagents,
and simple operation.

Sulfonylated heterocycles are recognized as an important
class of organic molecules, having extensive applications

in the field of organic chemistry,1 pharmaceuticals,2 and
materials science.3 As such, considerable efforts have been
made in the construction of the sulfonylated heterocycle
framework.4 Among them, significant progress in the cascade
difunctionalization/cyclization reaction of alkenes involving
sulfonyl radical has been made, and a variety of complex
sulfonylated heterocyclics have been conveniently synthesized
in a step- and atom-economic way. Traditionally, the strategy
of this methodology is as follows: First, the sulfonyl radical
was generated under oxidation or photoredox conditions,
which attacked the carbon−carbon double bond of olefin
substrate to produce an alkyl radical intermediate I. Then, the
alkyl radical I was captured by carbon-containing unsaturated
groups (including aryl groups,5 -CC-,6 and -CN7) or
oxygen-based nucleophilic functional groups (such as
-COOH,8 -OH,9 and carbonyl groups10) of the alkene
substrate to obtain the corresponding sulfonylated cyclic
products (Scheme 1a). Although elegant studies have been
provided, research on this area has mainly been restricted to
carbosulfonylation/cyclization and oxysulfonylation/cycliza-
tion reaction. The use of nitrogen-based nucleophilic
functional groups to achieve aminosulfonylation/cyclization
reaction has been less explored and remains a challenging
task. Therefore, there is an urgent need to develop new
strategies. Recently, the Wu group reported an N-radical-
initiated aminosulfonylation/cyclization of alkenyl oxime
acetates with silyl enolate through the insertion of sulfur
dioxide in the presence of visible light, producing a range of
sulfonated pyrrole derivatives.11 Further, the Wu group,12 our
group,13 and Rao group14 realized the aminosulfonylation/

cyclization of alkenyl acids/amides by using Ru(bpy)3(PF6)2,
Cu(NO3)2·3H2O, and Cu(OAc)2 respectively to construct a
series of sulfonated lactams (Scheme 1b). With our
continuing interest in tandem sulfonylation cyclization
reactions13,15 and nitrogen-containing heterocycles synthe-
sis,16 herein, we intend to establish an efficient and general
protocol for the rapid synthesis of sulfonylated 1,3-oxazines
by direct annulation of O-homoallyl benzimidates and sodium
sulfinates via a copper-catalyzed vicinal aminosulfonylation
under mild conditions (Scheme 1c). This reaction provides a
complementary method to the aminosulfonylation/cyclization
of alkenes.
To achieve this idea, we selected the easily prepared O-

homoallyl benzimidate 1a and sodium p-toluenesulfinate 2a
as model substrates for optimizing the reaction conditions
(Table 1). The transformation was initially conducted in
DCM by using Cu(CH3CN)4PF6 (20 mol %) as the catalyst
and TBPB (2 equiv) as the oxidant at room temperature
under argon atmosphere for 12 h. To our delight, the desired
product 3aa was obtained in 55% yield (Table 1, entry 1).
Subsequently, several other solvents, such as CH3OH, THF,
MeCN, and DCE, were also tested and revealed that DCE
was the best solvent, which improves the yield of 3aa to 57%
(Table 1, entries 2−5). We next took a brief screening of
several oxidants, including Na2S2O8, m-CPBA, PhI(OAc)2,
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TBHP, and DCP, which did not afford better results (entries
6−10). The reaction failed without any oxidants (Table 1,
entry 11). We continued to evaluate the effect of ligands:
PPh3, 1,10-Phenanthroline, 2,2′-bipyridine, XantPhos, XPhos,
and tBuXPhos (Table 1, entries 12−17), and the conversion
performance was greatly improved following the use of XPhos
as the ligand, giving 3aa in 83% yield (Table 1, entry 16).
Encouraged by the results, we then investigated the influence
of some other Cu catalysts, such as Cu(OTf)2, CuBr,
Cu(OAc)2·H2O, and Cu(ClO4)2·6H2O; however, regretfully,
there were no better results (Table 1, entries 18−21). When
the loading of Cu(CH3CN)4PF6 was reduced to 10 mol %,
the yield of 3aa was decreased to 58% (Table 1, entry 22).
The control experiment showed that the Cu catalyst plays a
crucial role in the reaction (Table 1, entry 23). Changing the
temperature of the reaction could not improve the yield of
the desired product (Table 1, entries 24−25). Furthermore,
when the reaction proceeded under an air atmosphere, the
yield of 3aa was decreased to 44% (Table 1, entry 26).
With the optimized reaction conditions established (Table

1, entry 16), we examined the scope and limitations of this
reaction concerning various substituted O-homoallyl imidates
1, and the results are described in Scheme 2. First, the effect
of the substituents on the phenyl ring of O-homoallyl
benzimidates was evaluated. As expected, substrates 1b−1f
with electron-donating groups (Me and OMe) and electron-
withdrawing substituents (F, Cl, and I) at the para-position
proceeded well under the standard reaction conditions and
afforded the corresponding sulfonylated 1,3-oxazines (3ba−
3fa) in good yields. Note that the structure of 3ea was
unambiguously confirmed by X-ray analysis.17 Besides, it was

found that the benzimidates bearing meta- or disubstituted
groups on the aromatic ring were also compatible (3ga−3ka).
It is worth mentioning that introducing naphthyl substituent
into imidate could give the desired 1,3-oxazine product (3la)
in moderate yield. The thiophene-containing imidate (1m)
also proved to be an applicable substrate and gave the
product in a yield of 81% yield. In addition, the O-homoallyl
trichloroacetimidate (1n) and 1-phenylhex-5-en-1-imine (1o)
were not compatible with this aminosulfonylation/cyclization
reaction. Then, the reaction of 1-(4-methoxyphenyl)-sub-
stituted O-homoallyl benzimidate substrate (1p) was
investigated under standard conditions, and interestingly,
the sulfonylated 7-membered tetrahydro-1,3-oxazepine (4pa)
was obtained in a yield of 29%. However, when the 2-phenyl-
substituted alkene substrate (1q) was tested, it failed to
produce the desired product and the substrate was
decomposed. We also investigated pent-4-en-1-yl benzimidate
(1r), but it was not suitable for this transformation, giving
the unexpected vinyl sulfone product (5ra) in 34% yield.
Moreover, to expand the scope of this reaction, substrate 1s
was tested and afforded the desired product 3sa in 51% yield
with 7:1 dr.
Having successfully achieved the aminosulfonylation/

cyclization with O-homoallyl imidates, we shifted our
attention to explore the scope of sodium sulfinates 2. The
reactions of a collection of sodium sulfinates with 1a were
examined, and the results are shown in Scheme 3. Sodium
sulfinates bearing substituents, such as H, OMe, tBu, F, Cl,
and Br, at the para-position of the aromatic ring readily
worked well in the reaction, giving the sulfonylated 1,3-
oxazines (3ab−3ag) in medium to good yields. While sodium
p-phenylbenzenesulfinate 2h was only transformed to the
corresponding product in 27% yield. Additionally, some
representative substituted aryl sodium sulfinates with Me, F,
Br, and Cl at the meta- or ortho-position of the benzene ring
could also react with 1a to give the corresponding products
(3ai−3al) in 43−81% yields. Moreover, sodium naphthalene-
2-sulfinate was transformed into the target product 3am in
54% yield. Remarkably, sodium alkanesulfinates were also
suitable substrates for the reaction under the standard
conditions, giving the aminosulfonylation compounds 3an−
3aq in moderate to good yields with them. Furthermore, we
investigated sodium trifluoromesylate 2r and found that it
was not suitable for this cascade aminosulfonylation.
To further explore the synthetic practicability and

potentiality of this transformation, gram-scale synthesis of
sulfonylated 1,3-oxazine 3 and their follow-up derivatizations
were tested. As shown in Scheme 4, the reaction of O-
homoallyl benzimidate 1a and sodium p-toluenesulfinate 2a
on a gram scale afforded 3aa in a yield of 82% (1.074 g).
Then, considering that Cu(OAc)2·H2O is a cheaper catalyst
(Table 1, entry 20), we also conducted a gram-scale reaction
by using Cu(OAc)2·H2O (20 mol %), giving 3aa in a yield of
74% (0.979 g). Next, 3aa could be hydrolyzed to sulfonylated
γ-amido alcohol 6 (95%) by treatment with 2 M HCl in
THF at room temperature for 3 h. In addition, the iodinated
product 3af could be employed in palladium-catalyzed
Sonagashira coupling reaction to quickly achieve additional
molecular complexity, affording the corresponding 2-(4-
(phenylethynyl)phenyl)-4-(tosylmethyl)-5,6-dihydro-4H-1,3-
oxazine 7 in 97% yield.
To gain insights into the reaction mechanism, two control

experiments were conducted (Scheme 5). First, when the

Scheme 1. Aminosulfonylation/Cyclization of Alkenes
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radical scavenger 2,2,6,6-tetramethyl-1-piperidinyl-oxy
(TEMPO, 2.0 equiv) was added to the reaction system, the
aminosulfonylation was inhibited and 1a was recovered in
56% yield. Next, this transformation was also terminated in
the presence of BHT (butylated hydroxytoluene, 2.0 equiv);
substrate 1a was recovered in 71% yield, and in the presence
of BHT product 8 was obtained in 25% yield. Together,
these results indicated that a radical pathway with sulfonyl
radical intermediate is likely involved in this amino-
sulfonylation reaction.
On the basis of our preliminary mechanistic observations

and the aforementioned control experiment, a proposed
mechanism for this copper-catalyzed cascade sequence was
illustrated in Scheme 6. CuI first reduces TBPB to generate
CuII, tert-butoxyl radical and benzoic acid anion. Then,
substrate 1a was captured by CuII under benzoic acid anion/
tert-butoxide condition to afford intermediate A and benzoic
acid/ tert-butanol. The former likely undergoes an intra-
molecular aminocupration to furnish intermediate B via exo-
cyclization manner. Meanwhile, sodium sulfinate 2a was
oxidized by tert-butoxyl radical to give a sulfonyl radical D
and a tert-butoxide. Subsequently, intermediate B coupled
with sulfonyl radical D to give intermediate C, which was

followed by a reductive elimination process to get the
corresponding product 3aa and regenerate CuI. In addition,
another possible pathway cannot be ruled out (Scheme 1a):
First, CuI assists the cleavage of TBPB to generate CuII and
tert-butoxyl radical, which then reacted with sodium sulfinate
2a affording sulfonyl radical. Then the sulfonyl radical would
attack the alkene substrate 1a giving rise to alkyl radical
intermediate I, which reacted with CuII to produce the
carbocation intermediate II and regenerate CuI. The former
subsequently underwent intramolecular nucleophilic attack by
the NH of the imidate, leading to the desired sulfonylated
1,3-oxazine 3aa.
In summary, we have demonstrated a facile copper-

catalyzed aminosulfonylation method of O-homoallyl-benzi-
midates with sodium sulfinates under mild conditions for the
synthesis of sulfonylated 1,3-oxazines, which are important
frameworks in medicinal and biological chemistry. Prelimi-
nary mechanistic investigations reveal that sulfonyl radical
intermediate might be involved in this reaction. Moreover,
this strategy represents an appealing and complementary
methodology to construct sulfonylated nitrogen heterocycles.
Further studies of this aminosulfonylation/cyclization strategy
of alkenes are currently underway in our laboratory.

Table 1. Optimization of the Reaction Conditionsa

entry solventb [Cu] oxidantc ligandd t (°C) yielde(%)

1 DCM Cu(CH3CN)4PF6 TBPB - rt 55
2 CH3OH Cu(CH3CN)4PF6 TBPB - rt 36
3 THF Cu(CH3CN)4PF6 TBPB - rt 10
4 CH3CN Cu(CH3CN)4PF6 TBPB - rt 36
5 DCE Cu(CH3CN)4PF6 TBPB - rt 57
6 DCE Cu(CH3CN)4PF6 Na2S2O8 - rt 4
7 DCE Cu(CH3CN)4PF6 m-CPBA - rt 4
8 DCE Cu(CH3CN)4PF6 PhI(OAc)2 - rt trace
9 DCE Cu(CH3CN)4PF6 TBHP - rt trace
10 DCE Cu(CH3CN)4PF6 DCP - rt trace
11 DCE Cu(CH3CN)4PF6 - - rt 0
12 DCE Cu(CH3CN)4PF6 TBPB PPh3 rt 51
13 DCE Cu(CH3CN)4PF6 TBPB 1,10-Phenanthroline rt 15
14 DCE Cu(CH3CN)4PF6 TBPB 2,2′-bipyridine rt 11
15 DCE Cu(CH3CN)4PF6 TBPB XantPhos rt 51
16 DCE Cu(CH3CN)4PF6 TBPB XPhos rt 83
17 DCE Cu(CH3CN)4PF6 TBPB tBuXPhos rt 58
18 DCE Cu(OTf)2 TBPB XPhos rt 62
19 DCE CuBr TBPB XPhos rt 65
20 DCE Cu(OAc)2·H2O TBPB XPhos rt 81
21 DCE Cu(ClO4)2·6H2O TBPB XPhos rt 80
22f DCE Cu(CH3CN)4PF6 TBPB XPhos rt 58
23 DCE - TBPB XPhos rt 0
24 DCE Cu(CH3CN)4PF6 TBPB XPhos 40 75
25 DCE Cu(CH3CN)4PF6 TBPB XPhos 60 53
26g DCE Cu(CH3CN)4PF6 TBPB XPhos rt 44

aAll reactions were performed by using 1a (0.2 mmol), 2a (2.0 equiv), copper salts (20 mol %), oxidant (2.0 equiv), ligand (20 mol %), and solvent
(2 mL) under argon and stirred at room temperature for 12 h, unless noted otherwise. bDCM, dichloromethane; CH3OH, methanol; THF,
tetrahydrofuran; CH3CN, acetonitrile; DCE, dichloroethane.

cTBPB, tert-butyl peroxybenzoate; m-CPBA, 3-chloroperbenzoic acid; TBHP, tert-
butyl hydroperoxide (6 M in decane); DCP, dicumyl peroxide. dXantPhos, 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene; XPhos,
dicyclohexyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine; tBuXphos, di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine. eIso-
lated yield. f10 mol % of Cu(CH3CN)4PF6 was used.

gUnder air.
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Scheme 2. Scope of O-Homoallyl Imidatesa,b

aAll reactions were performed by using 1 (0.2 mmol), 2a (2.0 equiv),
Cu(CH3CN)4PF6 (20 mol %), XPhos (20 mol %), TBPB (2.0 equiv),
and DCE (2 mL) under argon and stirred at room temperature for 12
h. bIsolated yield.

Scheme 3. Scope of Sulfinate Sodiumsa,b

aAll reactions were performed by using 1a (0.2 mmol), 2 (2.0 equiv),
Cu(CH3CN)4PF6 (20 mol %), XPhos (20 mol %), TBPB (2.0 equiv),
and DCE (2 mL) under argon and stirred at room temperature for 12
h. bIsolated yield.

Scheme 4. Application Investigation

aThe reaction was performed by using Cu(OAc)2·H2O (20 mol %).

Scheme 5. Mechanistic Studies

Scheme 6. Proposed Mechanism
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