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Radical reactions are a powerful class of chemical transformations. However, the formation of radical species to initiate
these reactions has often required the use of stoichiometric amounts of toxic reagents, such as tributyltin hydride.
Recently, the use of visible-light-mediated photoredox catalysis to generate radical species has become popular, but the
scope of these radical precursors has been limited. Here, we describe the identification of reaction conditions under which
photocatalysts such as fac-Ir(ppy)3 can be utilized to form radicals from unactivated alkyl, alkenyl and aryl iodides. The
generated radicals undergo reduction via hydrogen atom abstraction or reductive cyclization. The reaction protocol utilizes
only inexpensive reagents, occurs under mild reaction conditions, and shows exceptional functional group tolerance.
Reaction efficiency is maintained upon scale-up and decreased catalyst loading, and the reaction time can be significantly
shortened when the reaction is performed in a flow reactor.

C
onventional methods for reducing alkyl, alkenyl and aryl
iodide bonds1 consist of metal–halogen exchange, a hydride
source or radical reductive dehalogenation. Reductions utiliz-

ing metal–halogen exchange2,3 or a hydride source4 commonly
result in undesired side reactions, and are not functional group tol-
erant. This has led to the development of alternative methods that
can be applied to the reductive dehalogenation of aryl halides and
a-halo carbonyls5. Radical reductive dehalogenation is by far the
most commonly utilized method for the reduction of carbon–
halogen bonds because the reaction conditions are typically mild
and pH-neutral; reactions times are short; and product yields are
relatively high1. These characteristics have allowed radical chemistry
to be used effectively for challenging bond constructions, such as
those performed in the syntheses of hirsutene6, amauromine7 and
(þ)-11,11′-dideoxyverticillin A (ref. 8). However, the radical
initiator or hydrogen atom donor is typically toxic (for example,
organotin)9, potentially explosive (azobisisobutyronitrile (AIBN)
and peroxides)10, unstable to air (samarium(II) iodide)11 or pyro-
phoric (trialkylboranes)12,13. In an attempt to avoid the toxicity
associated with tributyltin hydride, other hydrogen atom donors
have been used, such as 1,4-cyclohexadiene, triethylsilane, tris(tri-
methylsilyl)silane, triphenylgermane, thiols and diphenylphos-
phine, but these are less efficient, unstable and/or expensive.

Recent efforts have been made to improve the process of radical
reductive dehalogenation through replacement of the radical initiator
and the development of new hydrogen atom donors. The ground-
state neutral electron donors used by Murphy14,15 and the alkyl-
and stannyl-cobaloxime catalysts developed by Careirra16 have
successfully generated alkyl radicals from alkyl iodides. In addition,
several new hydrogen atom donors have been introduced, such as
N-heterocyclic carbene boranes17 and water in the presence of
Et3B18 or Ti(III) salts19. Ultimately, the goal is to develop a mild
and efficient radical reductive deiodination protocol with broad
functional group tolerance that utilizes an easy-to-handle catalyst
and an inexpensive and readily accessible hydrogen atom donor.
Herein, we report the use of the photocatalyst fac-tris[2-phenylpyr-
idinato-C2,N]iridium(III) ( fac-Ir(ppy)3) and tributylamine in

combination with Hantzsch ester or formic acid to perform both
reductive deiodination and intramolecular cyclization of alkyl,
alkenyl and aryl iodides.

During the last decade, several groups have demonstrated the
versatility of metal-based and organic photocatalysts20 to carry out
a variety of transformations21, with beneficial applications in total
synthesis22. A large number of these reactions involve the generation
of radical intermediates from activated carbon–halogen bonds,
including bromomalonates23–25, polyhalomethanes26–28, electron-
deficient benzyl bromides29, a-halo carbonyls30,31 and glycosyl
bromides32. A major advantage of metal-based photocatalysts,
such as [Ir{dF(CF3)ppy}2(dtbbpy)]PF6 (1)33, Ru(bpy)3Cl2 (2)34,
Ir(dtbbpy)(ppy)2PF6 (3) and fac-Ir(ppy)3 (4)35,36 is the ease of
tuning the complex to achieve desired redox potentials through
modification of the ligands or replacement of the metal centre
(Fig. 1a)37. These photocatalysts are capable of radical reductive
cleavage of carbon–halogen bonds by direct reduction from the
excited state of the catalyst (oxidative quenching) or via two
single electron transfer (SET) processes, where the excited state is
reduced by a sacrificial electron donor followed by reduction of
the carbon–halogen bond (reductive quenching).

Our work in the field of visible-light-mediated photoredox
catalysis has demonstrated the advantages in modifying metal-
based photocatalysts to achieve transformations initiated by SETs.
In previous studies, we observed the intramolecular cyclization of
bromomalonate-tethered p-systems via the reductive quenching of
2 (ref. 38). However, a-bromoester analogues did not undergo cycli-
zation using 2, although they cyclized efficiently when the catalyst
was replaced with 3. In this case, modification of the ligands
and replacement of the metal centre result in a more negative
reduction potential for 3 (21.51 V versus saturated calomel elec-
trode (SCE))35 than 2 (21.31 V versus SCE)34, which enables the
radical cyclization of a-bromoesters onto p-systems. Another
example of effective ligand substitution is seen when the 2-phenyl-
pyridyl (ppy) ligands of 3 are replaced with 2-(2,4-difluorophenyl)-
5-trifluoromethylpyridyl (dF(CF3)ppy) ligands to generate 1, a
catalyst that has a more positive reduction potential (Ir4þ� Ir3þ)
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than 2 or 3 (ref. 21). Although 1, 2 and 3 are calculated to have
similar reductive abilities in their excited states via oxidative
quenching, only 1 can efficiently produce atom transfer radical
addition of CCl4 onto olefins39. On the other hand, by replacing

the 4,4′-di-tert-butyl-2,2′-dipyridyl (dtbbpy) ligand of 3 with
another ppy ligand affording 4, the reduction potentials of the
catalyst become more negative. Specifically, the reduction potential
for the Ir3þ� Ir2þ couple changes from 21.51 V (versus SCE) for
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Figure 1 | Visible-light-active photocatalysts and representative examples of compounds capable of undergoing radical reductive cleavage. a, Visible-light-

active photocatalysts commonly used for photoredox catalysis. b, Through modification of the metal centre and ligands, transition-metal-based photocatalysts

may be tuned appropriately to obtain the desired redox potentials, allowing access to radical reductive cleavage of a variety of carbon–halogen bonds.

Although only the most activated carbon–halogen bonds can be reduced by the weakest reductant (1), with an appropriately strongly reducing catalyst, such

as 4, electron-deficient benzyl bromides and even unactivated alkyl, alkenyl and aryl iodides can undergo radical reductive cleavage.

Table 1 | Reduction of alkyl iodides and aryl iodides.
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*Hantzsch ester¼Diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate; †Allowing the reaction to run for 24 h led to partial reduction of C-Br bond.
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3 to 22.19 V (versus SCE) for 4 and, likewise, the Ir4þ� Ir3þ*
couple becomes more negative (20.93 V versus SCE for 3 to
21.73 V versus SCE for 4)35. The strong reduction potentials of 4
prompted our proposal for a novel reductive dehalogenation proto-
col for alkyl, alkenyl and aryl iodides. We realized that the reduction
of unactivated carbon–iodide bonds would be difficult to achieve
with 4 because of the highly negative reduction potentials typical
of alkyl, alkenyl and aryl iodides (for example, the reduction poten-
tial of s-butyl iodide has been measured to be between 21.61 V and
22.10 V versus SCE40,41 and the reduction potential of iodobenzene
has been measured to be between 21.59 V and 22.24 V versus
SCE)42,43. However, our investigation was encouraged by the suc-
cessful utilization of the oxidative quenching of 4 (ref. 44) by
MacMillan and co-workers to form benzyl radicals from electron-
deficient benzyl bromides (Fig. 1b)22, as well as by literature

precedent indicating that 4 may be quenched by compounds with
reduction potentials that have been measured to be more negative
than 22.00 V (versus SCE)45.

Results and discussion
We began our studies by screening conditions for the reduction
of 5-iodopentyl benzyl ether (5a), monitoring the conversion by
1H NMR. Based on our protocol for the reductive dehalogenation
of activated carbon–halogen bonds, we began optimization with
N,N-diisopropylethylamine and Hantzsch ester in N,N-dimethyl-
formamide (DMF)46. A survey of solvents revealed that acetonitrile
gave the best conversion over a 24 h reaction time, although
the starting material was not fully consumed, even after
increasing the equivalents of N,N-diisopropylethylamine and
Hantzsch ester. Replacing N,N-diisopropylethylamine with other

Table 2 | Reduction of alkenyl iodides and intramolecular reductive cyclizations utilizing Procedure C.
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reductants, including triethylamine, sodium ascorbate and
1,2-dimethoxybenzene did not improve the conversion. However,
tributylamine exhibited a significant increase in conversion, and
upon exchanging the method of degassing from freeze–pump–
thaw to argon sparging, full consumption of 5a was achieved in
24 h (Supplementary Table S1).

The tributylamine and Hantzsch ester combination (Procedure
A, Methods) was used with several primary and secondary iodides
to give reduction products in good to excellent yields (Table 1).
This reduction protocol exhibits excellent functional group toler-
ance without affecting benzyl ethers, silyl ethers, acetals, lactones
or free alcohols. In addition, the chemoselective nature of the
reaction allows for the reduction of alkyl iodides in the presence
of aryl bromides.

Subsequently, we investigated the reactivity of aryl iodides.
Reduction of N-(4-iodophenyl)-4-methylbenzenesulfonamide (7a)
was successful with Procedure A; however, the reaction requires
52 h for full consumption of 7a. We attempted to improve the reac-
tion efficiency by replacing Hantzsch ester with formic acid, which
is inexpensive and can be easily removed during work-up. To our
delight, the reduction of 7a was complete in 20 h when 5 equiv. of
tributylamine and 5 equiv. of formic acid were used. We tested
these new conditions (Procedure B, Methods) on several alkyl
iodides, but all attempts led to low yields of the desired
reduced compound. We discovered that the use of Procedure B
leads to a high level of competitive substitution and elimination
reactions with alkyl iodides that are not observed with Procedure A.
In particular, secondary iodide 5g provided substantial
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Figure 2 | The reduction protocol allows for simultaneous scale-up and lower catalyst loading, and reaction times are shortened when the reaction is run

in a flow reactor. a, Catalyst loading can be decreased to as low as 0.050 mol% without loss of efficiency for a 4.6 mmol (3 g) reaction with substrate 5h,

demonstrating the scalability of these reaction conditions. b, Reaction times are shortened when the reaction is run in a flow reactor, without suffering any

loss in yield. A conversion rate of 0.900 mmol h21 is achieved in the flow reactor, whereas the corresponding batch reaction proceeds at a conversion rate of

0.020 mmol h21.
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elimination product with Procedure B, but was cleanly reduced with
Procedure A.

Procedure B was applied successfully to a diverse set of aryl
iodides (Table 1). The buffered reaction conditions were amenable
to both acid and base labile groups, such as carbamates, acetamides
and esters. Electron-rich and electron-deficient aryl iodides were all
cleanly reduced, although electron-rich aryl iodides required longer
reaction times. It is noteworthy that these reaction conditions afford
the reduction of challenging electron-rich aryl iodides, making this
a general protocol applicable to a wide range of substrates. The reac-
tion conditions also make it possible to reduce aryl iodides in the
presence of aryl bromides, aryl chlorides and distal olefins. To
achieve the reduction of unactivated alkenyl iodides (Table 2, sub-
strates 9a–9c) in a reasonable timeframe, increasing the amounts of
tributylamine and formic acid to 10 equiv. (Procedure C, Methods)
was required. Activated alkenyl iodides such as pure Z-9c reduced
very efficiently to produce a diastereomeric mixture of 10c with
an E/Z ratio of 1:0.75 after 2.5 h (Supplementary Fig. S1). In
addition, Procedure C was found to be the most effective for intra-
molecular cyclizations of alkyl, alkenyl and aryl iodide substrates
(Table 2, substrates 9d–9j). Surprisingly, all alkyl iodide substrates
cyclized efficiently without any observable substitution or elimin-
ation products. These radical reductive cyclizations generated a
wide scope of products, including pyrrolidines, tetrahydrofurans,
indoles, indolines, dihydrobenzofurans and carbocycles in moderate
to high yields.

To demonstrate the efficacy of the reduction protocol on a pre-
parative scale, the reduction of 5h (3.0 g, 4.6 mmol) was performed
with lower catalyst loading and reduced amounts of Hantzsch ester.
Gratifyingly, simultaneous scale up of the reaction by 750% and
decrease of the catalyst loading by 2,000% did not cause any signifi-
cant loss of efficiency (Fig. 2a). Furthermore, the reaction time can
be significantly shortened when the reductions are performed
within a flow reactor47. For example, the reduction of 0.60 mmol
of 7f with 1.0 mol% of 4 in a batch reactor required 30 h of light
irradiation to afford 95% yield of 8f (Fig. 2b). However, by utilizing
a 1.33 ml flow reactor with a residence time (tR) of 40 min, the same
scale reduction, employing only 0.050 mol% of 4, only requires a 3 h
reaction time to afford 93% yield of 8f, which indicates a turnover
number (TON) of at least 1,860.

Mechanism
The successful cyclization of substrates 9d–9j, the more facile
reduction of secondary alkyl iodides in comparison to primary
alkyl iodides, and control reactions that reveal low conversions of
the reduced products in the absence of fac-Ir(ppy)3 and/or visible
light irradiation (Supplementary Table S2) strongly suggest a
radical-based mechanism. In previous work46 we demonstrated
that formic acid/trialkylamine and Hantzsch ester/trialkylamine
combinations are effective electron donor/hydrogen atom donor
systems for the reductive dehalogenation of highly activated
carbon–halogen bonds. The role of these reagents is probably
unchanged for this protocol. However, to ensure that acetonitrile
was not acting as an additional hydrogen atom source, the reaction
of compound 7a was performed in deuterated acetonitrile and no
deuterium incorporation was observed (Supplementary Fig. S2).

Experimental evidence that the reaction was occurring through
the oxidative quenching cycle of 4 was obtained when substrate
9e and 2.5 mol% of fac-Ir(ppy)3 in acetonitrile were subjected to
visible light irradiation for 24 h to produce 14% of atom transfer
product 11 together with 75% of recovered starting material
(Fig. 3a). In the absence of tributylamine and formic acid, neither
reductive quenching of Ir(ppy)3* nor the formation of 10e from 9e
are possible, and oxidative quenching of Ir(ppy)3* leads to an atom
transfer product via cyclization and iodine atom abstraction by
the vinyl radical. The low yield of 11 probably occurs because

fac-Ir(ppy)3 only acts as an initiator for this reaction—there is no
electron donor to effect catalyst turnover and the propagation
chains are short-lived. Hence, we propose that the mechanism of
the reaction involves the oxidative quenching of Ir(ppy)3* by the
alkyl, alkenyl or aryl iodide. Reductive cleavage generates a
carbon-centred radical that is capable of radical cyclization
and/or hydrogen atom abstraction from tributylamine, Hantzsch
ester or formate. The catalyst fac-Ir(ppy)3 is regenerated from
Ir(ppy)3

þ by oxidation of tributylamine, Hantzsch ester, formate
or their oxidized forms (Fig. 3b).

Conclusion
We have developed a visible light photoredox-mediated radical reduc-
tive deiodination protocol capable of reducing alkyl, alkenyl and aryl
iodides. The generated radicals can also undergo intramolecular cycli-
zations to provide a variety of cyclic scaffolds. The reaction protocol is
characterized by mild conditions, low catalyst loading, high yields and
the use of inexpensive and accessible electron and hydrogen atom
donors. Functional group tolerance towards benzyl ethers, silyl
ethers, free alcohols, acetals, lactones, esters, aryl bromides, aryl chlor-
ides, carbamates, distal olefins, sulfonamides, tosylates and aceta-
mides is clearly illustrated. Moreover, the versatility and simplicity
of the reduction protocol allows for easy scale-up, low catalyst
loading and short reaction times when the reaction is run in a flow
reactor. These advances signify the utility of photoredox catalysts in
the area of radical chemistry, which previously has been dominated
by tin, SmI2 and trialkylboranes48.

Methods
Detailed descriptions of experimental and spectroscopic methods and results, as well
as characterization data for all new individual compounds and the 1H and 13C NMR
spectra, are provided in the Supplementary Information.

Procedure A. A flame-dried 10 ml round bottom flask with a rubber septum and
magnetic stir bar was charged with the corresponding alkyl iodide (0.60 mmol,
1.0 equiv.), MeCN (6.0 ml), Hantzsch ester (1.2 mmol, 2.0 equiv.), tributylamine
(1.2 mmol, 2.0 equiv.) and fac-Ir(ppy)3 (0.0060 mmol, 0.010 equiv.). The
heterogeneous mixture was degassed by argon sparging for 30 min and placed in a
250 ml beaker with blue or white light-emitting diodes (LEDs) wrapped inside. The
reaction mixture was stirred at 25–30 8C until it was complete (as judged by thin
layer chromatography (TLC) analysis or gas chromatography-mass spectrometry
(GC-MS)). The solvent was removed from the crude mixture in vacuo and the
residue was dissolved in EtOAc. The contents were poured into a separatory funnel
containing 25 ml of EtOAc and 25 ml of 1 M HCl solution. The layers were
separated and the aqueous layer was extracted with EtOAc (2 × 25 ml). The
combined organic layers were washed with sat. NaHCO3 solution and brine, dried
(Na2SO4) and concentrated in vacuo. The residue was purified by chromatography
on silica gel to afford the desired product.

Procedure B. A flame-dried 10 ml round bottom flask with a rubber septum and
magnetic stir bar was charged with the corresponding aryl iodide (0.60 mmol,
1.0 equiv.), MeCN (6.0 ml), tributylamine (3.0 mmol, 5.0 equiv.), formic acid
(3.0 mmol, 5.0 equiv.) and fac-Ir(ppy)3 (0.0060 mmol, 0.010 equiv.). The reaction
mixture was degassed by argon sparging for 30 min and placed in a 250 ml beaker with
blue or white LEDs wrapped inside. The reaction mixture was stirred at 25–30 8C until
it was complete (as judged by TLC analysis or GC-MS). The solvent was removed from
the crude mixture in vacuo and the residue was dissolved in EtOAc. The contents were
poured into a separatory funnel containing 25 ml of EtOAc and 25 ml of 2 M HCl
solution. The layers were separated and the aqueous layer was extracted with EtOAc
(2 × 25 ml). The combined organic layers were washed with sat. NaHCO3 solution and
brine, dried (Na2SO4) and concentrated in vacuo. The residue was purified by
chromatography on silica gel to afford the desired product.

Procedure C. A flame-dried 10 ml round bottom flask with a rubber septum and
magnetic stir bar was charged with the corresponding alkenyl iodide or cyclization
substrate (0.60 mmol, 1.0 equiv.), MeCN (6.0 ml), tributylamine (6.0 mmol,
10 equiv.), formic acid (6.0 mmol, 10 equiv.) and fac-Ir(ppy)3 (0.015 mmol,
0.025 equiv.). The reaction mixture was degassed by argon sparging for 30 min and
placed in a 250 ml beaker with blue or white LEDs wrapped inside. The reaction
mixture was stirred at 25–30 8C until it was complete (as judged by TLC analysis or
GC-MS). The solvent was removed from the crude mixture in vacuo and the residue
was dissolved in EtOAc. The contents were poured into a separatory funnel
containing 25 ml of EtOAc and 25 ml of 2 M HCl solution. The layers were
separated and the aqueous layer was extracted with EtOAc (2 × 25 ml). The
combined organic layers were washed with 2 M HCl solution, sat. NaHCO3 solution
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and brine, dried (Na2SO4) and concentrated in vacuo. The residue was purified by
chromatography on silica gel to afford the desired product.
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17. Ueng, S. H., Fensterbank, L., Lacôte, E., Malacria, M. & Curran, D. P. Radical
reductions of alkyl halides bearing electron withdrawing groups with
N-heterocyclic carbene boranes. Org. Biomol. Chem. 9, 3415–3420 (2011).

18. Spiegel, D. A., Wiberg, K. B., Schacherer, L. N., Medeiros, M. R. & Wood, J. L.
Deoxygenation of alcohols employing water as the hydrogen atom source. J. Am.
Chem. Soc. 127, 12513–12515 (2005).
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