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42%-80% yields

Abstract: A novel visible-light photocatalytic difluoromethylselenolation of aryl 

amines via in situ generation of aryldiazonium salts was achieved using 

Se-(difluoromethyl) 4-methylbenzenesulfonoselenoate, which was synthesized for the 

first time. The reagent is readily accessible and shelf-stable. The metal-free reaction 

conditions and the broad substrate scope provide a green protocol for the efficient and 

rapid introduction of the difluoromethylselenylether group.

Trifluoromethyl and difluoromethylchalcogen groups have attracted widespread 

attention in academia and industry over the past decade due to their unique 

Page 1 of 30

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:lukui@tust.edu.cn
mailto:hxxyzhx@mail.tjnu.edu.cn


physicochemical properties including high lipophilicity and good cell membrane 

permeability.1 Significant progress has been made towards the development of methods 

that allow the direct incorporation of OCF3,2 OCF2H,3 SCF3
4 and SCF2H5 into organic 

molecules. The SeCF3 group has a high Hansch lipophilicity parameter value (πR = 1.29) 

which falls between that of the CF3O and CF3S groups and has recently gained significant 

interest in organofluorine chemistry and drug design.6 More recently, strategies for 

incorporation of the related SeCF2H group have attracted attention in the synthetic 

community.7 However, direct SeCF2H incorporation using a shelf-stable reagent has been 

rarely reported.8

Arylamines are inexpensive and widely available starting materials and are useful 

handles for the introduction of boryl,9 phosphoryl,10 sulfenyl,11 stannyl,12 and 

trifluoromethyl groups13  via Sandmeyer-type chemistry. In 2018, we reported a 

visible-light mediated photocatalytic trifluoromethylthiolation of aryldiazonium salts and 

arylamines using S-trifluoromethyl 4-methoxylbenzenesulfonothioate (TsSCF3)14. 

Recently, Billard and Tlili group developed a visible-light mediated 

trifluoromethylselenolation of aryldiazonium salts.15 We report herein, the preparation of 

Se-(difluoromethyl) 4-methylbenzenesulfonoselenoate (1, TsSeCF2H) for the first time 

(Scheme 1) and describe its use for the direct difluoromethylselenolation of arylamines 

under visible-light photocatalysis.
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Ph SeCF2H

R SeCN
TMSCF2H

t-BuOK
R SeCF2H

Ar NH2

TsSeCF2H
p-TsOH, t-BuONO Ar SeCF2H

(1)

(2)

(4)

(5)

Ref. 7a

Ref. 7c

Ref. 7f

(3) PhSeH Ph SeCF2H Ref. 7e
[Ph3P-CF2H] Br
NaH 365nm

SCHEME 1. Methods for SeCHF2 incorporation

We began with the synthesis of the difluoromethylselenolation reagent (1) using 

KSeCN, benzyl bromide (BnBr), CF2HSiMe3, and sodium 4-toluenesulfinate (TsNa) in 

three steps employing a protocol similar to the one used for the preparation of 

Se-(trifluoromethyl) 4-methylbenzenesulfonoselenoate (Scheme 2)16.

BnBr BnSeCN
KSeCN

THF

TBAF
TMSCF2H

THF
BnSeCF2H Ref. 16

BnSeCF2H

1) SOCl2 (1.0 eq.)
DCM, 0 oC

2) TsNa (1.1 eq.)
DCM -78 oC

TsSeCF2H 70%

1

SCHEME 2. Preparation of reagent 1

With the reagent 1 in hand, we attempted the difluromethylselenolation of ethyl 

4-aminobenzoate (2a) with 4-methylbenzenesulfonic acid (TsOH), tert-butyl nitrite (TBN) 

and 1 in the presence of Rose Bengal (RB) under white light irradiation in dimethyl 

sulfoxide (DMSO) at room temperature, based on our previously reported conditions14. 

To our delight, the desired difluoromethylselenolation product 3a was obtained in 54% 

yield (Table 1, entry 1). With the successful formation of 3a, we turned to the 

optimisation of various reaction parameters to improve the reaction yield. While the use 
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of DMF or THF as reaction solvent afforded 3a in a lower yield (Table 1, Entries 2 and 

3), MeOH, water, or CH3CN furnished 3a only in trace quantities. An increase in the 

reaction concentration of 2a from 0.20 M to 0.25 M, afforded an increase in yield from 

75% to 80%, respectively. However, a further increase in the concentration of 2a to 0.30 

M led to a diminished yield. Decreasing the photocatalyst loading to 5 mol% afforded the 

product in a reduced 41 % yield, while the absence of TsOH from the reaction condition 

furnished the product in 68% yield. The use of green light irradiation furnished 3a in a 

much lowered 25% yield. Reactions carried out in the absence of the photocatalyst, or 

light irradiation did not afford any product. Further, the extension of reaction time to 30 h 

did not improve the yield.

TABLE 1. Reaction Optimisationa

TsOH (1.2 eq)
t-BuONO (1.2 eq)

Rose Bengal (8 mol%)

White LED (5 W)
DMSO (1 mL)

R.T.

1 (1.5 eq)2a 0.2 mmol 10h 3a

+

NH2

COOEt

S
O

O
SeCF2H

SeCF2H

COOEt
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Entry Deviation from standard conditions Yield (%)

1 None 75

2 DMF instead of DMSO 62

3 THF instead of DMSO 52
4 MeOH instead of DMSO Trace

5 H2O instead of DMSO Trace

6 MeCN instead of DMSO Trace

7 2a (0.25 M) 80

8 2a (0.30 M) 72

9 Rose Bengal (5 mol%) 41

10 Without TsOH 68

11 Green LED instead of White LED 25

12 No Rose Bengal 0

13 No light 0

14 30h 72
a Reactions were performed with TsSeCF2H (0.3 mmol, 1.5 equiv.), 
2a (0.2 mmol, 1 equiv.), TsOH (0.24mmol, 1.2 equiv.), t-BuONO 
(0.24mmol, 1.2 equiv.) Rose Bengal (0.016 mmol, 8 mol% ), and 
solvent (1 mL). The reaction mixture was stirred at rt for 10 hours. 

With the optimised reaction conditions in hand, the generality of this reaction was 

examined by employing a series of arylamines (2b–2r) as substrates, and the results are 

summarised in Scheme 3. Anilines bearing both electron-donating and 

electron-withdrawing substituents, as well as ortho-, meta- and para-substituted anilines 

were compatible with the reaction conditions and afforded the corresponding 

difluoromethylselenolation products (3b-3k) in moderate to good yields. Notably, 

sterically hindered anilines 2l and 2m were smoothly transformed to the desired products 

in 79 and 46% yields, respectively. Having evaluated sterics and electronics of aniline 

substitutions, we studied the compatibility of other complex functionalities on the aniline 

framework to the reaction conditions. The urea (2n), cyclic ketone (2s and 2t), acetal (2o), 

cyclic imide (2p), lactone (2q), and α, β-unsaturated lactone (2r) functionalities, as well 
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as aromatic heterocyclic amines (2u-2w) were compatible during this transformation and 

furnished the desired products (3n-3w) in moderate to good yields.

NH2 SeCF2H
R R

TsOH (1.2 eq)
t-BuONO (1.2 eq)

Rose Bengal (8 mol%)

White LED (5 W)
DMSO (1 mL)

R.T.1 (1.5 eq)2 0.25 mmol
10h 3

+ S
O

O
SeCF2H

EtOOC

SeCF2H

HOOC

SeCF2H

O2N

SeCF2H SeCF2H

MeO

SeCF2H

HO

SeCF2H

SeCF2H

OMe

SeCF2H

Ph

Ph

SeCF2HSeCF2H

O

NH2

SeCF2H
Ph

O
SeCF2H

SeCF2H
EtEt

SeCF2H O

O

SeCF2H

HN
SeCF2H

O

O

O
SeCF2H

O

N

SeCF2H SeCF2HS

N

SeCF2H

O
EtOOC

HF2CSe
O

O

O

O

SeCF2H

SeCF2HO O

3a, 80% 3b, 67% 3c, 41% 3d, 53%

3e, 73% 3f, 70% 3g, 62% 3h, 69%

3i, 80% 3j, 76% 3k, 72% 3l, 79%

3m, 46% 3n, 57% 3o, 48% 3p, 60%

3q, 47%

3u, 60% 3v, 49% 3w, 51%

3r, 46% 3s, 59% 3t, 61%

NC

H
N

N
H

O

SCHEME 3. Substrate scope of the difluoromethylselenolation of arylamines

To further probe the relevance of the developed transformation to the preparation of 

medicinally relevant molecules, we carried out the functionalization of known 

biologically active scaffolds, and were pleased to find the successful incorporation of the 

difluoromethylselenyl group into a clofibrate derivative (3aa), pomalidomide (3ab), 

sulfamethoxazole (3ac), and L-menthol derivative (3ad) in moderate to good yields 

(Scheme 4)
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a Reaction conditions: amine (0.25 mmol), 1 (0.3 mmol), TsOH
(0.24mmol), t-BuONO (0.24mmol) Rose Bengal (0.016 mmol, 8 mol% ),
and DMSO(1 mL) under the irratdation under white light irradiation at r.t.
for 10 hours

N

O

O

HN
O

O

SeCF2H

SeCF2H

S
H
N

OO

N
O

SeCF2H

O
O

EtO

O

O

SeCF2H
3aa, 77% 3ab, 44%

3ac, 48% 3ad, 80%

SCHEME 4. Difluoromethylselenolation of bioactive molecules

To investigate the mechanism this reaction, we carried out a series of 19F NMR 

experiments to examine the difluoromethylselenolation of 2a by 1 under the optimised 

reaction condition with trifluoromethylbenzene as an internal standard (δ = -63.20 ppm). 

The NMR spectrum acquired after 15 min revealed the presence of three fluorine peaks, 

which were assigned to the desired product 3a (δ = -90.47 ppm), 1 (δ = -91.06 ppm), and 

a unknown fluorine peak (δ = -88.59 ppm). The fluorine signal corresponding to 1 almost 

dispappeared in the NMR spectrum acquired after 30 min, and the intensities of the 

fluorine peaks of 3a and the unknown compound increased. After 1 hour, the fluorine 

peak intensity of the unknown compound decreased and that of 3a increased. To explore 

the structure of the unknown compound, we irradiate 1 under white light in the absence 

of 2a, the photocatalyst, and other additives. We found only two fluorine peaks by 19F 

NMR, 1 (δ = -91.06 ppm)and the unknown compound (δ = -88.59 ppm), and it was 

identified as  1,2-bis(difluoromethyl)diselane 6 (HCF2SeSeCF2H) by GC-MS (Scheme 5, 
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Eq. a). Further, TsOH was detected by ESI-HRMS even when the reaction was carried 

out in the absence of TsOH.

  Based on related mechanisms in the literature,14, 15 we suspected that aryl radicals 

might be key intermediates in this transformation, and to probe their presence, two 

radical trapping experiments were carried out (Scheme 5, Eq. b and Eq. c) under standard 

reaction conditions. When 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO, 2 equiv) or 1,1- 

diphenylethylene (2 equiv) was added to the reaction under the standard reaction 

conditions, the yield of 3a decreased to 10% or 42% respectively. Furthermore, the 

ESI-HRMS analysis of the reaction mixture indicated the formation of the TEMPO-arene 

adduct (4a) and triarylethylene (5a), which confirmed the intermediacy of free radical 

species in this reaction. 
TsSeCF2H

White LED
(5 W), 1h1

HF2CSe SeCF2H

6
detected by GC-MS
and 19F NMR

(a)

NH2

COOEt

TsSeCF2H

1

+

standard
condition

TEMPO
(2.0 eq.)

SeCF2H

COOEt

NH2

COOEt

TsSeCF2H

1

+

SeCF2H

COOEt

Ph Ph

2a 3a, 10%

2a 3a, 42%

O

COOEt

N

COOEt

Ph

Ph

detected by
HRMS (ESI)

detected by
HRMS (ESI)

(b)

(c)

4a

5a

standard
condition

TEMPO
(2.0 eq.)

SCHEME 5. Investigations to elucidate the reaction mechanism

Based on the aforementioned results and related literature,17 a plausible mechanism for 

the difluoromethylselenolation reaction is proposed (Scheme 6). The arylamine 2 reacts 

with TsOH and TBN to form an arenediazonium salt 7. The photocatalyst Rose Bengal 
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(RB) undergoes excitation under visible light irradiation to RB*, which through a single 

electron transfer (SET) with arenediazonium salt 7 leads to the generation of RB·-and 

aryl radical 8, which reacts with 1,2-bis(difluoromethyl)diselane 6 generated by the 

homolysis of the reagent 1 under visible light to deliver the corresponding aryl 

difluoromethylselenol ether 3 and difluoromethylselenol radical 9 which can 

self-combine to form 6. Subsequently, the sulfone radical 10 undergoes a single electron 

transfer (SET) with the radical anion of the photocatalyst (RB·-) which leads to the 

formation of sulfite cation 11 along with the regeneration of the photocatalyst. The 

reaction of the sulphite cation 11 with water affords TsOH (12).

R1

NH2

2
p-TsOH
t-BuONO

R1

N2OTs

7 -N2

R1

RB

RB2-

RB2-*
hv

S
O

O

H2O
S
O

O
OH

11 12

S
O

O
SO O
SeCF2H

HF2CSe
1

10

9

HF2CSe SeCF2H

68
R1

SeCF2H

3

hv

SCHEME 6. Plausible mechanism of Rose Bengal catalysed selenodifluoromethylation

Finally, the practical applications of this transformation were investigated. 6-mmol 

scale difluoromethylselenolation reaction of 2j (Scheme 7) was carried out and the 

desired product 3j was obtained in 64% yield.
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NH2 SeCF2H
TsOH (7.2 mmol)

t-BuONO (7.2 mmol)

Rose Bengal (0.48 mmol)
White LED (5 W)
DMSO (24 mL)

R.T.
1

9 mmol
2j

6 mmol, 1.02 g
3j

1.09 g, 64%

+ S
O

O
SeCF2H

Ph Ph

SCHEME 7. Scale-up of the difluoromethylselenolation reaction

In summary, we report the synthesis of a novel shelf-stable reagent TsSeCF2H, which 

allows direct difluoromethylselen-olations of aryl amines via in situ generated 

aryldiazonium salts under visible-light catalysis for the first time. Mechanistic 

investigations performed using 19F NMR spectroscopy, and radical trapping experiments 

confirmed the intermediacy of free radicals in this reaction. The readily accessible 

reagents, metal-free reaction conditions, and the broad substrate scope provide a green 

and efficient protocol for preparation of aryl difluoromethylselenylether. Exploration of 

TsSeCF2H-mediated difluoromethylselenolation applications of other relevant organic 

molecules is currently underway in our laboratory.

EXPERIMENTAL SECTION

1) General Experimental Methods. 

All solvents were distilled prior to use. For chromatography, 200-300 mesh silica gel 

(Qingdao, China) was employed. The light-promoted reactions were done using standard 

LED lamp with five light emitting diodes (12-28 V, 5W, 465-470 nm). The distance from 

the light source to the irradiation vessel is 3 cm. 1H, 13C NMR and 19F NMR spectra were 

recorded at 400 MHz and 100 MHz with Brucker ARX 400 spectrometer. Chemical 

shifts are reported in ppm using tetramethylsilane(TMS) as internal standard. The 
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GC-MS spectra were recorded on Thermo Scientific Trace 1300. High resolution mass 

spectra were obtained on a Bruker SCION 436-GC SQ mass spectrometer or on a Bruker 

Apex IV FTMS spectrometer. Melting points are reported as uncorrected. Except 

BnSeCF2H8a, 1aa18 and 1ad19 were prepared according to the literature procedures, All 

reagents were obtained from commercial suppliers and used without further purification.

2) Preparation of 1

Under an argon atmosphere, to a flask equipped with a magnetic stir bar was added the 

benzyl (difluoromethyl)selane (10 mmol , 1.0 equiv.),  sulfuryl chloride (10 mmol , 1.0 

equiv.) and anhydrous DCM (4 mL). The mixture was stirred at 0 oC for 3 hours and then 

transferred to another flask with a solution of TsNa (11 mmol. 1.1 equiv.) in anhydrous 

DCM (16 mL) which had been cooled down to -78 oC. The mixture was stirred about 

10-15 minutes at -78 oC and then filtered over a pad of silica. The filtrate was 

concentrated to dryness and purified directly by silica gel chromatography, eluting with 

petroleum ether/DCM (20:1), to give compound 1 (yellow liquid, 2.0 g, 70% yield). 1H 

NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.0 Hz, 2H), 7.63 (t, J = 54.4 Hz, 1H), 7.37 (d, J 

= 8.0 Hz, 2H), 2.47 (s, 3H); 19F{1H} NMR (376 MHz, CDCl3) δ -90.55 (s, 2F); 13C{1H} 

NMR (100 MHz, CDCl3) δ 145.9, 145.3, 130.2, 126.7, 120.7 (t, J = 290.1 Hz), 21.9; IR 

(KBr): 2958, 2916, 2848, 1593, 1490, 1401, 1331, 1290, 1305, 1259, 1173, 1135, 1058, 

1015, 809, 700, 682 cm-1; HRMS (ESI-quadrupole) m/z:  [M+H]+ Calcd for 

C8H9F2O2SSe 286.9451; Found 286.9524.

3) General procedure for the dimethylselenolation of aryl amines

To a sealed tube was added amine (0.25 mmol, 1.0 equiv.), p-TsOH (0.30 mmol, 1.2 

equiv.) and Rose Bengale (0.02 mmol, 0.08 equiv.) and dry DMSO (1.0 mL). The 

reaction mixture was stirred for 5 minutes, then t-BuONO (0.30 mmol, 1.2 equiv.) and 

Se-(difluoromethyl) 4-methylbenzenesulfonoselenoate (1, 0.375 mmol 1.5 equiv.) was 
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added in turn, and the mixture was irradiated with white light LED (5 W) at room 

temperature for 10 h. After the irradiation, water (5 mL) was added to give an emusion 

which was extracted with ethyl acetate (3 × 5mL). The combined organic phase was 

washed with brine and dried over by anhydrous Na2SO4. The solvent was removed in 

vacuo, and the residue which was purified by silica gel chromatography, eluting with 

petroleum ether/ethyl acetate (from 60:1 to 2:1), to give compound 3.

4) Characteristic data for 3a-3w and 3aa-3ad

ethyl 4-((difluoromethyl)selanyl)benzoate (3a): Yellow oil (56 mg, 80% yield from 

general procedure), petroleum ether/ethyl acetate 30:1(v/v) as eluents for column 

chromatography, 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.0 

Hz, 2H), 7.22 (t, J = 54.8 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H); 

19F{1H} NMR (376 MHz, CDCl3) δ -89.93 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 

165.9, 135.4, 131.3, 130.4, 129.4, 116.7 (t, J = 290.0 Hz), 61.3, 14.3; IR (KBr):2982, 

1712, 1592, 1465, 1395, 1367, 1267, 1178, 1105, 1073, 1043, 1013, 850, 748, 757, 693, 

683, 664 cm-1; HRMS (EI-quadrupole) m/z: Calcd for [M]+ C10H10O2F2Se 279.9814; 

Found 279.9807.

((difluoromethyl)selanyl)benzoic acid (3b): White solid (42 mg, 67% yield from general 

procedure), petroleum ether/ethyl acetate 5:1 (v/v) as eluents for column chromatography. 

1H NMR (400 MHz, DMSO - d6) δ 8.00 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 

7.50 (t, J = 54.8 Hz, 1H); 19F{1H} NMR (376 MHz, DMSO-d6) δ -92.40 (s, 2F); 13C{1H} 

NMR (100 MHz, DMSO-d6) δ 167.6, 135.0, 131.2, 130.1, 129.7, 117.2 (t, J = 285.0 Hz). 

IR (KBr): 3472, 3090, 3047,2920, 2850, 2727, 2667, 2551, 1666, 1599, 1587, 1563, 1425, 

1397, 1370, 1313, 1289, 1277,1245, 1181, 1128, 1075, 1060, 1036, 1015, 961, 866, 785, 
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695, 670, 543 cm-1; m.p.190-191 oC; HRMS (ESI-quadrupole) m/z: Calcd for [M-H]- 

C8H5O2F2Se 250.9429; Found 250.9425.

(difluoromethyl)(4-nitrophenyl)selane (3c)7f: White solid (26 mg, 41% yield from 

general procedure), petroleum ether/ethyl acetate 20:1(v/v) as eluents for column 

chromatography, 1H NMR (400MHz, CDCl3）δ 8.19 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 8.4 

Hz, 2H), 7.27 (t, J = 54.4 Hz, 1H); 19F{1H} NMR (376MHz, CDCl3) δ -89.9 (s, 2F); 

13C{1H} NMR (100 MHz, CDCl3) δ 148.5, 136.1, 132.4, 124.3, 116.2 (t, J = 288.0 Hz). 

The spectral data are in accordance with the literature report.

((difluoromethyl)selanyl)benzonitrile (3d)7f: White solid (31 mg, 53% yield from general 

procedure), petroleum ether/ethyl acetate 20:1(v/v) as eluents for column 

chromatography, 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 

Hz, 2H), 7.23 (t, J = 55.6 Hz, 1H); 19F{1H} NMR (376 MHz, CDCl3) δ -89.87 (s, 2F). 

13C{1H} NMR (100 MHz, CDCl3) δ 136.0, 132.7, 130.0, 118.0, 116.2 (t, J = 289.0 Hz), 

113.2. The spectral data are in accordance with the literature report.

4-((difluoromethyl)selanyl)benzamide (3e): White solid (45.7 mg, 73% yield from 

general procedure), petroleum ether/ethyl acetate 20:1(v/v) as eluents for column 

chromatography, 1H NMR (400 MHz, Methanol-d4) δ 7.86 (d, J = 8.4 Hz, 2H), 7.75 (d, J 

= 8.4 Hz, 2H), 7.49 (t, J = 54.8 Hz, 1H); 19F{1H} NMR (376 MHz, Methanol-d4) δ 

-92.58 (s, 2F). 13C{1H} NMR (100 MHz, Methanol-d4) δ 170.0, 135.3, 134.4, 128.2, 

127.2, 117.2 (t, J = 289.0 Hz); IR (KBr): 3435, 2957, 2927, 2870, 1716, 1592, 1456, 
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1395, 1370, 1287, 1178, 1116, 1077, 1062, 1015, 759, 685 cm-1; m.p. 149-151oC; HRMS 

(ESI-quadrupole) m/z: Calcd for [M+Na]+ C8H7NOF2SeNa 273.9553; Found 273.9540.

(difluoromethyl)(4-methoxyphenyl)selane (3f)7f: Light yellow oil (42 mg, 70% yield 

from general procedure), petroleum ether/ethyl acetate 30:1(v/v) as eluents for column 

chromatography, 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.4 Hz, 2H), 7.09 (t, J = 55.2 

Hz, 1H), 6.89 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H); 19F{1H} NMR (376 MHz, CDCl3) δ 

-91.08 (s, 2F). 13C{1H} NMR (100 MHz, CDCl3) δ 161.0, 138.6, 117.2 (t, J = 288.0 Hz), 

115.3, 113.6, 55.5. The spectral data are in accordance with the literature report.

((difluoromethyl)selanyl)phenol (3g) 7f: Light yellow oil (41 mg, 61% yield from general 

procedure), petroleum ether/ethyl acetate 40:1 (v/v) as eluents for column 

chromatography. 1H NMR (400 MHz, CDCl3) δ 7.55 (d, J = 8.8 Hz, 2H), 7.09 (t, J =55.6 

Hz, 1H), 6.82 (d, J = 8.8 Hz, 2H), 5.04 (s, 1H); 19F{1H} NMR (376MHz, CDCl3) δ 

-91.06 (s, 2F). 13C{1H} NMR (100 MHz, CDCl3) δ 157.1, 138.8, 117.1 (t, J = 288.0 Hz), 

116.8, 113.9. The spectral data are in accordance with the literature report.

[1,1'-biphenyl]-4-yl(difluoromethyl)selane (3h) 7f: White solid (49 mg, 69.2% yield from 

general procedure), petroleum ether/ethyl acetate 60:1(v/v) as eluents for column 

chromatography, 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 4.8 Hz, 2H), 7.60-7.58 (m, 

4H), 7.47 (t, J = 7.2 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 55.6 Hz, 1H);19F{1H} 

NMR (376 MHz, CDCl3) δ -90.21 (s, 2F). 13C{1H} NMR (100 MHz, CDCl3) δ 142.6, 
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140.1, 136.9, 129.1, 128.3, 128.1, 127.3, 122.4, 117.2 (t, J = 287.0 Hz). The spectral data 

are in accordance with the literature report.

(difluoromethyl)(2-methoxyphenyl)selane (3i): Colorless oil (48 mg, 80% yield from 

general procedure), petroleum ether/ethyl acetate 20:1 (v/v) as eluents for column 

chromatography. 1H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 7.2Hz, 1H), 7.37 (td, J = 7.8 

Hz, 1.2 Hz, 1H), 7.30 (t, J = 56.0 Hz, 1H), 6.97-6.93 (m, 2H), 3.90 (s, 3H); 19F{1H} 

NMR (376 MHz, CDCl3) δ -91.41 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 158.7, 

136.1, 130.8, 121.7, 116.7 (t, J = 286.0 Hz), 113.8, 111.2, 56.0; IR (KBr): 2939, 1581, 

1477, 1434, 1273, 1247, 1181, 1164, 1125, 1055, 1032, 752, 693cm-1; HRMS 

(EI-quadrupole) m/z: Calcd for [M]+ C8H8OF2Se 237.9708; found 237.9702.

[1,1'-biphenyl]-2-yl(difluoromethyl)selane (3j): Light yellow oil (54 mg, 76% yield from 

general procedure), petroleum ether/ethyl acetate 30:1(v/v) as eluents for column 

chromatography. 1H NMR (400MHz, CDCl3）δ 7.76 (d, J = 7.6 Hz, 1H), 7.46-7.39 (m, 

5H), 7.37-7.30 (m, 3H), 7.01 (t, J = 55.2 Hz, 1H); 19F{1H} NMR (376MHz, CDCl3) δ 

-90.6 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 146.4, 141.7, 135.4, 130.8, 129.4, 

129.1, 128.5, 128.2, 127.9, 124.9, 117.5 (t, J = 287.0 Hz); IR (KBr): 3054, 1582, 1496, 

1462, 1446, 1424, 1291, 1270, 1026, 1006, 915, 871, 771, 746, 698cm-1; HRMS 

(EI-quadrupole) m/z: Calcd for [M]+ C13H10F2Se 283.9916; Found 283.9910.

(3-((difluoromethyl)selanyl)phenyl)(phenyl)methanone (3k): Colorless oil (56 mg, 72% 

yield from general procedure), petroleum ether/ethyl acetate 60:1(v/v) as eluents for 
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column chromatography. 1H NMR (400 MHz, CDCl3) δ 8.10 (s, 1H), 7.89 (d, J = 8.0Hz, 

1H), 7.86-7.84 (m, 1H), 7.81-7.79 (m, 2H), 7.64-7.60 (m, 1H), 7.53-7.48 (m, 3H), 7.22 (t, 

J = 55.2 Hz, 1H). 19F{1H} NMR (376 MHz, CDCl3) δ -90.28 (s, 2F); 13C{1H} NMR (100 

MHz, CDCl3) δ 195.6, 140.1, 138.9, 137.7, 137.1, 133.0, 131.0, 130.2, 129.5, 128.6, 

123.8, 116.6 (t, J = 289.0 Hz); IR (KBr): 3059, 1656, 1597, 1580, 1565, 1447, 1400, 

1309, 1267, 1180, 1152, 1040, 998, 945, 926, 849, 813, 782, 748, 713, 685, 664 cm-1; 

HRMS (ESI-quadrupole) m/z: Calcd for [M+H]+ C14H11OF2Se 312.9938; found 

312.9950.

(difluoromethyl)(mesityl)selane (3l): Light yellow oil (49 mg, 79% yield from general 

procedure), petroleum ether/ethyl acetate 30:1(v/v) as eluents for column 

chromatography. 1H NMR (400 MHz, CDCl3) δ 7.00 (s, 2H), 6.98 (t, J = 55.2 Hz, 1H), 

2.54 (s, 6H), 2.29 (s, 3H); 19F{1H} NMR (376 MHz, CDCl3) δ -89.34 (s, 2F). 13C{1H} 

NMR (100 MHz, CDCl3) δ 144.5, 140.3, 129.1, 122.4, 117.6 (t, J = 288.0 Hz), 25.0, 21.2; 

IR (KBr): 2924, 1598, 1457, 1377, 1280, 1269, 1059, 1005, 1020, 849, 730, 713, 713, 

687, 660cm-1; HRMS (EI-quadrupole) m/z: Calcd for [M]+ C10H12F2Se 250.0072; Found 

250.0068.

(2,6-diethylphenyl)(difluoromethyl)selane (3m): Light yellow oil (30 mg, 46% yield 

from general procedure), petroleum ether/ethyl acetate 30:1(v/v) as eluents for column 

chromatography. 1H NMR (400 MHz, CDCl3) δ 7.32 (t, J = 7.2 Hz, 1H), 7.19 (d, J = 

7.6Hz, 2H), 6.98 (t, J = 55.2 Hz, 1H), 3.00 (q, J = 7.2 Hz, 4H), 1.23 (t, J = 7.6 Hz, 6H); 
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19F{1H} NMR (376 MHz, CDCl3) δ -89.20 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 

150.5, 130.7, 126.9, 124.7, 118.0 (t, J = 288.0 Hz), 30.9, 16.0; IR (KBr): 3440, 2954, 

2918, 2849, 1630, 1462 cm-1; HRMS (EI-quadrupole) m/z: Calcd for [M]+ C11H14F2Se 

264.0229; Found 264.0222.

5-((difluoromethyl)selanyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (3n): White solid 

(38 mg, 57% yield from general procedure), petroleum dichloromethane/methanol 

20:1(v/v) as eluents for column chromatography, 1H NMR (400 MHz, Methanol-d4) δ 

7.37-7.35 (m, 2H), 7.32 (t, J = 55.2 Hz, 1H), 7.05 (d, J = 8.8 Hz, 1H); 19F{1H} NMR 

(376 MHz, Methanol-d4) δ -93.23 (s, 2F); 13C{1H} NMR(100 MHz, Methanol-d4) δ 

156.4, 130.8, 130.3, 130.0, 117.5 (t, J = 286.0 Hz), 117.1, 114.2, 109.6; IR (KBr): 3176, 

3107, 3087, 3013, 2883, 2829, 2787, 2727, 1716, 1626, 1483, 1366, 1291, 1271, 1197, 

1064, 1047, 1025, 883, 804, 783, 749, 707, 695, 675, 598cm-1; m.p. 279-281oC; HRMS 

(ESI-quadrupole) m/z: Calcd for [M +H]+ C8H7F2N2OSe 264.9686; Found 264.9691.

5-((difluoromethyl)selanyl)benzo[d][1,3]dioxole (3o)7f: Light yellow oil (30 mg, 48% 

yield from general procedure), petroleum ether/ethyl acetate 50:1 (v/v) as eluents for 

column chromatography. 1H NMR (400 MHz, CDCl3) δ 7.17 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 

7.13 (s, 1H), 7.10 (t, J = 55.6 Hz, 1H), 6.79 (d, J = 8.0 Hz 1H), 6.0 (s, 2H); 19F{1H} 

NMR (376 MHz, CDCl3) δ -91.04 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 149.4, 

148.4, 131.4, 117.1 (t, J = 287.0 Hz), 116.9, 114.4 (t, J = 3.0 Hz), 114.3, 101.7. The 

spectral data are in accordance with the literature report.
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5-((difluoromethyl)selanyl)isoindoline-1,3-dione (3p): White solid (41 mg, 59% yield 

from general procedure), petroleum ether/ethyl acetate 20:1(v/v) as eluents for column 

chromatography. 1H NMR (400 MHz, CDCl3) δ 8.36 (s, 1H), 8.15 (s, 1H), 8.05 (dd, J = 

7.6 Hz, 0.8 Hz, 1H), 7.86 (d, J = 8.0Hz, 1H), 7.29 (t, J = 54.8 Hz, 1H); 19F{1H} 

NMR(376 MHz, CDCl3) δ -89.83 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 167.4, 

167.2, 141.3, 133.5, 133.1, 131.7, 130.5, 124.5, 116.1 (t, J = 289.0 Hz); IR (KBr): 3854, 

3736, 3676, 3650, 3629, 3467, 3191, 3078, 2714, 1770, 1746, 1717, 1604, 1421, 1370, 

1353, 1293, 1190, 1111, 1054, 1040, 859, 752, 739, 692, 674, 650, 642, 587, 556, 

500cm-1; m.p. 141-142oC; HRMS (ESI-quadrupole) m/z: Calcd for [M]+ C9H5NO2F2Se  

276.9454; Found 276.9432.

6-((difluoromethyl)selanyl)isobenzofuran-1(3H)-one (3q): White solid (32 mg, 47% 

yield from general procedure), petroleum ether/ethyl acetate 20:1(v/v) as eluents for 

column chromatography, 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 7.97 (d, J = 8.0 Hz, 

1H), 7.52 (d, J = 8.0 Hz, 1H), 7.21 (t, J = 54.8 Hz, 1H), 5.35 (s, 2H); 19F{1H} NMR (376 

MHz, CDCl3) δ -90.3 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 169.9, 147.7, 141.8, 

133.8, 127.3, 124.5, 123.4, 116.2 (t, J = 288.0 Hz), 69.7; IR (KBr): 3497, 3065, 3023, 

2977, 2952, 2878, 1751, 1715, 1660, 1609, 1448, 1411, 1358, 1291, 1262, 1210, 1194, 

1125, 1106, 1051, 1034, 1025, 1005, 912, 862, 831, 770, 692, 666, 627, 509 cm-1; m.p. 

109-110oC; HRMS (ESI-quadrupole) m/z: Calcd for [M+Na]+ C9H6O2F2SeNa 286.9393; 

Found 286.9383.

7-((difluoromethyl)selanyl)-4-methyl-2H-chromen-2-one (3r): White solid (33 mg, 46% 

yield), petroleum ether/ethyl acetate 5:1(v/v) as eluents for column chromatography, 1H 
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NMR (400 MHz, CDCl3) δ .7.60 (d, J = 7.2 Hz, 1H), 7.56-7.35 (m, 2H), 7.24 (t, J = 54.8 

Hz, 1H), 6.33 (s, 1H), 2.44 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 160.0, 153.4, 

151.8, 131.2, 127.7 (t, J = 3.0 Hz), 125.3, 123.9, 120.7, 116.5 (t, J = 289.0 Hz), 116.2, 

18.7; 19F{1H} NMR (376 MHz, CDCl3) δ -89.98 (s, 2F); IR (KBr): 3427, 3085, 3060, 

2962, 2926, 1766, 1728, 1716, 1682, 1622, 1594, 1542, 1434, 1389, 1289, 1247, 1174, 

1090, 1051, 1039, 1008, 946, 904, 868, 822, 708, 675, 563cm-1; m.p. 150-152oC; HRMS 

(ESI-quadrupole) m/z: Calcd for [M+Na]+ C11H8O2F2SeNa 312.9550; Found 312.9534.

2-((difluoromethyl)selanyl)anthracene-9,10-dione (3s): Light yellow solid (56 mg, 59% 

yield from general procedure), petroleum ether/ethyl acetate 50:1(v/v) as eluents for 

column chromatography. 1H NMR (400 MHz, CDCl3) δ 8.54 (d, J = 1.2 Hz, 1H), 

8.32-8.30 (m, 2H), 8.26 (d, J = 8.4 Hz, 1H), 8.04 (dd, J = 8 Hz, 1.6 Hz, 1H), 7.84-7.81 (m, 

2H), 7.33 (t, J = 54.8 Hz, 1H); 19F{1H} NMR (376 MHz, CDCl3) δ -89.72 (s, 2F); 13C{1H} 

NMR (100 MHz, CDCl3) δ 182.9, 182.7, 140.7, 134.9, 134.8, 134.2, 133.9, 133.8, 133.7, 

133.6, 132.4, 128.6, 127.9, 127.8, 116.7 (t, J = 288.0 Hz); IR (KBr): 3455, 3070, 3031, 

2963, 2923, 2852, 1676, 1580, 1322, 1283, 1259, 1170, 1054, 1043, 953, 927, 853, 797, 

710, 675, 632cm-1; m.p. 128-130oC; HRMS (EI-quadrupole) m/z: Calcd for [M]+ 

C15H8O2F2Se 337.9658; Found 337.9651.

1-((difluoromethyl)selanyl)anthracene-9,10-dione (3t): Light yellow solid (51 mg, 61% 

yield from general procedure), petroleum ether/ethyl acetate 30:1(v/v) as eluents for 

column chromatography. 1H NMR (400 MHz, CDCl3) δ 8.31-8.24 (m, 3H), 7.94 (d, J = 
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8.0 Hz, 1H), 7.83-7.81 (m, 2H), 7.71 (t, J = 8 Hz, 1H), 7.42 (t, J = 53.6 Hz, 1H); 19F{1H} 

NMR (376 MHz, CDCl3) δ -97.99 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 184.1, 

182.5, 136.1, 135.8, 134.6, 134.5, 134.0, 133.8, 133.2, 132.7, 130.5, 127.6, 127.3, 125.9, 

117.1(t, J = 285.0 Hz); IR (KBr): 3439, 3076, 2973, 1978, 1854, 1665, 1642, 1593, 1568, 

1447, 1419, 1338, 1313, 1277, 1242, 1179, 1164, 1125, 1097, 1064, 1032, 951, 926, 881, 

805, 727, 706, 682, 642, 620cm-1; m.p. 189-190oC; HRMS (ESI-quadrupole) m/z: Calcd 

for [M+H]+ C15H9O2F2Se 338.9730; Found 338.9698.

3-((difluoromethyl)selanyl)quinoline (3u): Light yellow solid (40 mg, 60% yield from 

general procedure), petroleum ether/ethyl acetate 50:1(v/v) as eluents for column 

chromatography. 1H NMR (400 MHz, CDCl3) δ 9.07 (d, J = 1.6 Hz, 1H), 8.53 (d, J = 0.8 

Hz, 1H), 8.13 (d, J = 8.8 Hz, 1H), 7.83-7.82 (m, 2H), 7.61 (t, J = 7.2Hz, 1H), 7.23 (t, J = 

54.8Hz, 1H); 19F{1H} NMR (376 MHz, CDCl3) δ -89.98 (s, 2F); 13C{1H} NMR (100 

MHz, CDCl3) δ 155.3, 147.9, 144.5, 131.0, 129.6, 128.5, 127.9, 127.6, 117.2, 116.1 (t, J 

= 289.0Hz); IR (KBr): 3448, 3048, 2964, 1853, 1615, 1581, 1563, 1491, 1368, 1353, 

1318, 1291, 1254, 1058, 1041, 1017, 952, 910, 780, 750, 688, 629, 174cm-1; m.p. 

76-77oC; HRMS (ESI-quadrupole) m/z: Calcd for [M+H]+ C10H8NF2Se 259.9785; Found 

259.9766.

6-((difluoromethyl)selanyl)benzo[d]thiazole (3v): Colorless oil (30 mg, 49% yield from 

general procedure), petroleum ether/ethyl acetate 60:1(v/v) as eluents for column 

chromatography. 1H NMR (400 MHz, CDCl3) δ 9.06 (s, 1H), 8.31 (d, J = 1.2 Hz, 1H), 
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8.12 (d, J = 8.4 Hz, 1H), 7.81 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.21 (t, J = 55.2 Hz, 1H); 

19F{1H} NMR (376 MHz, CDCl3) δ -90.34 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 

155.7, 154.0, 135.0, 134.4, 130.3, 124.5, 120.3, 116.9 (t, J = 288.0 Hz); IR (KBr): 3059, 

1582, 1538, 1456, 1429, 1389, 1290, 1268, 1200, 1157, 1135, 1035, 877, 839, 805, 742, 

691, 670 cm-1; HRMS (ESI-quadrupole) m/z: Calcd for [M+H]+ C8H6NF2SSe 265.9349; 

Found 265.9335.

ethyl 5-((difluoromethyl)selanyl)benzofuran-2-carboxylate (3w): White solid (41 mg, 

51% yield from general procedure), petroleum ether/ethyl acetate 20:1(v/v) as eluents for 

column chromatography.  1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 1.2 Hz, 1H), 7.74 

(dd, J = 8.8 Hz, 1.6 Hz 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.52 (s, 1H), 7.18 (t, J = 55.2 Hz, 

1H). 4.46 (q, J = 7.2 Hz, 2H) 1.44 (t, J = 7.2Hz, 3H); 19F{1H} NMR (376 MHz, CDCl3) δ 

-90.74 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 159.3, 156.1, 146.9, 135.8, 131.8, 

128.5, 117.9, 116.9 (t, J = 288.0 Hz), 113.6, 113.3, 61.9, 14.4; IR (KBr): 3059, 1582, 

1538, 1456, 1429, 1389, 1290, 1268, 1200, 1157, 1135, 1035, 877, 839, 805, 742, 691, 

670cm-1; m.p. 105-106oC; HRMS (ESI-quadrupole) m/z: Calcd for [M+Na]+ 

C12H10O3F2SeNa 342.9655; Found 342.9640.

ethyl 2-(4-((difluoromethyl)selanyl)phenoxy)-2-methylpropanoate (3aa): Colorless oil 

(65 mg, 77% yield from general procedure), petroleum ether/ethyl acetate 50:1(v/v) as 

eluents for column chromatography. 1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.8 Hz, 

2H), 7.09 (t, J = 55.6 Hz, 1H), 6.79 (dd, J = 11.6 Hz, 2.8 Hz, 2H), 4.23 (q, J = 7.2 Hz, 
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2H), 1.62 (s, 6H), 1.23 (t, J = 7.2Hz, 3H); 19F{1H} NMR (376 MHz, CDCl3) δ -90.87 (s, 

2F); 13C{1H} NMR (100 MHz, CDCl3) δ 174.0, 157.1, 138.0, 129.3, 119.5, 117.0 (t, J = 

288.0 Hz), 79.4, 61.7, 25.5, 14.2; IR (KBr): 2990, 1731, 1585, 1570, 1488, 1467, 1383, 

1365, 1281, 1239, 1176, 1136, 1058, 968, 915, 827, 765, 712, 691, 670cm-1; HRMS 

(ESI-quadrupole) m/z: Calcd for [M+Na]+ C13H16O3F2SeNa 361.0125; Found 361.0113 .

4-((difluoromethyl)selanyl)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (3ab): 

White solid (42 mg, 44% yield from general procedure), petroleum ether/ethyl acetate 

1:1(v/v) as eluents for column chromatography. 1H NMR (400 MHz, CDCl3) δ 7.99 (s, 

1H), 7.91 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.2 Hz, 1H), 7.70 (t, J = 8.0 Hz, 1H), 7.48 (t, J 

= 54.4 Hz, 1H), 4.99 (dd, J = 12.0 Hz, 5.4 Hz, 2H), 2.95-2.71 (m, 3H), 2.20-2.14 (m, 1H); 

19F{1H} NMR (376 MHz, CDCl3) δ -91.82 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 

170.6, 167.7, 166.9, 166.4, 137.3, 135.1, 133.4, 130.4, 126.5, 123.1, 116.0 (t, J = 288.0 

Hz), 49.7, 31.5, 22.7; IR (KBr): 3208, 3094, 1786, 1771, 1712, 1391, 1368, 1342, 1325, 

1308, 1261, 1197, 1117, 1048, 1016, 993, 891, 813, 801, 736, 720, 663, 613, 572, 533, 

470cm-1; m.p. 236-238oC; HRMS (ESI-quadrupole) m/z: Calcd for [M+Na]+ 

C14H10N2O4F2SeNa 410.9666; Found 410.9667.

4-((difluoromethyl)selanyl)-N-(5-methylisoxazol-3-yl)benzenesulfonamide (3ac): White 

solid (44 mg, 48% yield from general procedure), petroleum ether/ethyl acetate 2:1(v/v) 

as eluents for column chromatography. 1H NMR (400 MHz, CDCl3) δ 8.56 (s, 1H), 7.81 

(d, J = 8.8 Hz, 2H), 7.75 (d, J = 8.8 Hz, 2H), 7.22 (t, J = 54.8 Hz, 1H), 6.25 (s, 1H), 2.39 
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(s, 3H); 19F{1H} NMR (376 MHz, CDCl3) δ -89.69 (s, 2F); 13C{1H} NMR (100 MHz, 

CDCl3) δ 171.5, 157.6, 140.0, 136.1, 130.1, 127.9, 116.5 (t, J = 289.0 Hz), 95.7, 12.9; IR 

(KBr): 3092, 2993, 2915, 2850, 2811, 1617, 1474, 1408, 1387, 1351, 1295, 1265, 1184, 

1173, 1072, 1058, 1043, 1011, 938, 915, 826, 802, 750, 665, 601, 563cm-1; m.p. 

161-162oC; HRMS (ESI-quadrupole) m/z: Calcd for [M+Na]+ C11H10N2O3F2SSeNa 

390.9438; Found 390.9423.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-((difluoromethyl)selanyl)benzoate (3ad): 

Colorless oil (78 mg, 80% yield from general procedure), petroleum ether/ethyl acetate 

50:1(v/v) as eluents for column chromatography. 1H NMR (400 MHz, CDCl3) δ 8.01 (d, 

J = 8.4 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.21 (t, J = 54.8 Hz, 1H), 6.79 (td, J = 11.2 Hz, 

4.0 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H). 1.62 (s, 6H) 1.23 (t, J = 7.2Hz, 3H); 19F{1H} NMR 

(376 MHz, CDCl3) δ -89.91 (s, 2F); 13C{1H} NMR (100 MHz, CDCl3) δ 165.5, 135.6, 

131.7, 130.5, 129.4 (t, J = 3.0 Hz), 116.8 (t, J = 287.0 Hz), 75.4, 47.4, 41.0, 35.4, 31.6, 

26.6, 23.7, 22.2, 20.9, 16.6; IR (KBr): 3436, 2957, 2925, 2870, 1716, 1592, 1456, 1392, 

1370, 1287, 1270, 1178, 1116, 1077, 1063, 1015, 961, 759, 685cm-1; HRMS 

(ESI-quadrupole) m/z: Calcd for [M+Na]+ C18H24O2F2SeNa 413.0802; Found 413.0809 .
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