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In this Letter, we present the Rhodamine B catalyzed direct C–H arylation of indole with aryl diazonium
salts. This method only requires green light and room temperature.
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Introduction

Indole and its derivatives are often found in functional materi-
als, pesticides, drugs, and natural products.1–4 C-arylindole shows
better medicinal value, especially in the aspect of cancer is more
outstanding. Since it was found in 1860s, scientists had been
committed to seek different synthesis methods for further func-
tionalization.5–7 The most efficient synthesis of arylindole is the
direct arylation of indole by C–H bond activation. Recently, much
focus has been devoted to transition-metal-catalyzed processes
such as direct arylation of indoles with activated arenes. The
method avoids the need for prefunctionalization of indole deriva-
tives and thus can potentially provide a promising synthetic
route.8–17 Under such conditions, aromatic halohydrocarbon is
one of the most commonly used coupling partners for the direct
arylation of indole derivatives. In addition, different aromatic
coupling partners as arylation agents have been successfully
applied18–26 (Scheme 1a).

However, the above mentioned reaction process suffers from
several drawbacks, such as the need for a large catalyst, high cost,
ligands and restriction to aqueous reaction media. More recently
reports had appeared showing the direct arylation of furans and
thiophenes using EsoinY as catalyst.27 This method avoids the
high temperature, ligands, and the use of transition-metal. Thus,
photocatalyst is likely the most promising approach for direct
C-arylation of the diazonium salt and indole.

In the past ten years, the free radical reaction has played an
important role in organic synthesis for formation of C–C bonds.
Aryl diazonium salt was selected as a good free radical source
due to its high reduction potential.4,28 Aryl diazonium salts are
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Table 1
Optimization of reaction conditionsa

H
N

N2BF4

H
N

1mol% Rhodamine B+

DMSO ,light,RT,1h

1a 2a 3a

Entry Conditions Yield (%)

1 Rhodamine B, DMF 69
2 Rhodamine B, EtOH 26
3 Rhodamine B, MeOH 23
4 Rhodamine B, CH3CN 54
5 Rhodamine B,THF 19
6 Rhodamine B, CH2Cl2 21
7 Rhodamine B, DMSO 79
b8 Rhodamine B, DMSO 81
c9 Rhodamine B, DMSO 81
10 Without light, DMSO Trace
11 Without catalyst, DMSO Trace
12 EsoinY, DMSO 66
13 Rose Bengal, DMSO 69
14 Rhodamine 6G, DMSO 73
15 Rhodamine B, DMSO/H2O (4:1) 47

a Yields were determined by column chromatography.
b 1.5 equiv of indole was used.
c 2 equiv indole was used.

Table 2
Scope of aryl diazonium salts and indolea
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well-known oxidative quenchers in photoredox chemistry. It
was first applied by Cano-Yelo and Deronzier to synthesize
phenanthrene derivatives using Ru(bpy)32+ as a photoredox cata-
lyst.29–31 In this Letter, we present the Rhodamine B catalyzed
direct C–H arylation of indole with aryl diazonium salts. This
method only requires green light and room temperature.
Results and discussion

Initially, we examined the direct arylation using indole (1a)
and aryl diazonium salts (2a) as the model. The reaction was car-
ried out under 25 W white light-emitting diode (LED) irradiation
with 1 mol % Rhodamine in N,N-dimethylformamide (DMF). The
desired product 3a was obtained in 69% yield after 1 h (Table 1,
entry1). Inspired by this result, we screened other parameters.
Firstly, the reaction of organic solvents such as THF, EtOH,CH3-
CN,MeOH, DMSO, and CH2Cl2 was investigated. Different yields
were obtained in such cases (Table 1, entries 2–7). The results
show that dimethyl sulfoxide (DMSO) is a more suitable solvent
for the photoreaction (Table 1, entry 7). Aromatic product was
obtained in better yields using a bit more indole 1a (Table 1,
entries 8 and 9). Yield of the control reactions was significantly
reduced in the absence of photocatalyst or light (Table 1, entries
10 and 11). The reaction can also be performed in the presence of
water (Table 1, entry 15).
ght,RT,1h
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Table 2 (continued)

Entry Substrate 1 Substrate 2 Product Yieldb (%)

4 1d

H
N

2d

N2BF4

3d

H
N

73

5
1e

N

2e

N2BF4

3e

N

70

6
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7
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8 1h
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Table 2 (continued)

Entry Substrate 1 Substrate 2 Product Yieldb (%)

13
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N
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1m
2m
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Br

3m
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N

Cl Br 14

14 1n

H
N

Br
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Cl

3n

H
N

Br

Cl

31

15 1o

N

2o
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N

Cl
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16 1p

H
N

H3CO
2p

N2BF4

NO2

3p

H
N

H3CO NO2 60

17

H
N

1q

N2BF4

2q

HN

3q

17

a The reaction was performed with 1 (0.5 mmol), 2a (1.5 equiv), and Rhodamine B (0.01 equiv) in 2.0 mL of DMSO.
b Isolated yields after purification on SiO2.
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In addition, other organic dyes except Rhodamine B such as
eosin Y, Rose Bengal and its sodium salt, and Rhodamine 6G were
also successful in accelerating this indole arylation process, albeit
with somewhat lower efficiencies (Table 1, entries 12–14).

Basedon the optimized conditions,weexamined the scopeandgen-
eralityof the indole (1a)withdiazoniumsalt (2a), various indolederiva-
tives anddiazoniumsalt have been successfully applied in this reaction.
The results are listed in Table 2. Electron-donor indole and diazonium
salt (Table 2, entries 2–5),were found to bemore effective in the forma-
tion of the product than electron-acceptor substituted (Table 2, entries
6–14). For N-substituted indoles, the corresponding 3-arylindole prod-
ucts were also obtained (Table 2, entries 5 and 15). Moreover, electron-
donor indole and electron-acceptor diazonium salt also gained a good
60% yield (Table 2, entry 16). Not surprisingly, for the indole with a
naphthylgroupdiazoniumsalt,3-(naphthalen-2-yl)-1H-indole(Table2,
entry 17)was formedunder identical conditions. In addition, nitro, bro-
mide and chloride were successfully introduced in the photochemical
reaction, which is useful for further synthesis elaboration.
In order to better understand the mechanism of this reaction,
two kinds of control experiments were performed, and the results
are presented in Scheme 2. Preliminary studies have verified this
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hypothesis. As expected, no desired product was obtained when 3-
methylindole was subjected to this reaction (Scheme 2a). Reaction
was conducted while a widely known radical-scavenger 2,2,6,6-
tetramethyl-1-piperidinyloxy(TEMPO) was added led to complete
inhibition of the intended reactivity, only a 10% yield of product
was obtained (Scheme 2b). Which shows that a radical intermedi-
ate involves in this reaction.

Based on the above observations and literature reports a plausi-
ble mechanism for this photoreaction is proposed (Scheme 2). Ini-
tially, aryl radical A is formed from the excited state of Rhodamine
B to aryldiazonium salt 2a. Addition of aryl radical A to indole 1a
gives radical intermediate B, which is transformed into a carboca-
tion intermediate C by a Possible route oxidation of the radical
intermediate B by the Rhodamine B radical cation to give C. Finally,
intermediate C is deprotonated, Regeneration systems of aromatic
results in the desired coupling product 3a (Scheme 3).

Conclusions

In summary, we have presented a novel, general synthesis strat-
egy for 3-arylindoles. The procedure was entirely metal free and was
carried out at room temperature. This reaction described in this Let-
ter is an efficient and environmentally benign synthesis strategy.
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