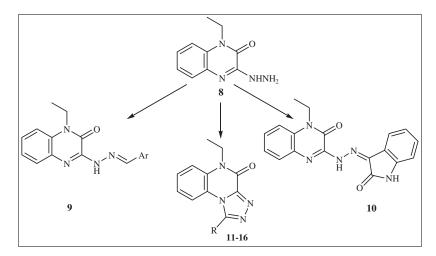
Month 2013

Synthesis and Evaluation of Some New (1,2,4) Triazolo(4,3-a) Quinoxalin-4(5H)-one Derivatives as AMPA Receptor Antagonists

Hamada Abul-Khair,^a* Salwa Elmeligie,^b Ashraf Bayoumi,^a Adel Ghiaty,^a Ahmed El-Morsy^a and Memy H. Hassan^c

^aOrganic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt 11884

^bOrganic Chemistry Department, Faculty of Pharmacy, October 6 University, Sixth of October City, Egypt 12585


^cPharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt 11884

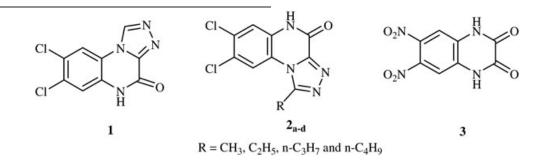
*E-mail: hamadaorganic@hotmail.com

Received May 30, 2010

DOI 10.1002/jhet.714

Published online 00 Month 2013 in Wiley Online Library (wileyonlinelibrary.com).

This study involves the synthesis and anticonvulsant evaluation of 1-ethyl-3-hydrazinylquinoxaline-2-(1H)-one (8), its chemical confirmations 9 and 10 and certain (1,2,4) triazolo(4,3-a)quinoxalin-4(5H)-one compounds 11-16. The structure of the synthesized compounds was confirmed chemically by elemental analyses and spectral data (IR, ¹H NMR, ¹³C NMR, and Mass). Docking studies were preformed to all of the synthesized compounds to predict, in a qualitative way, the anticonvulsant activity of the proposed compounds. There is a promising correlation between the results of molecular modeling and the anticonvulsant activity of the synthesized compounds. The highest fitting value was noticed for compounds 9 and 10, which showed the highest anticonvulsant activity.


J. Heterocyclic Chem., 00, 00 (2013).

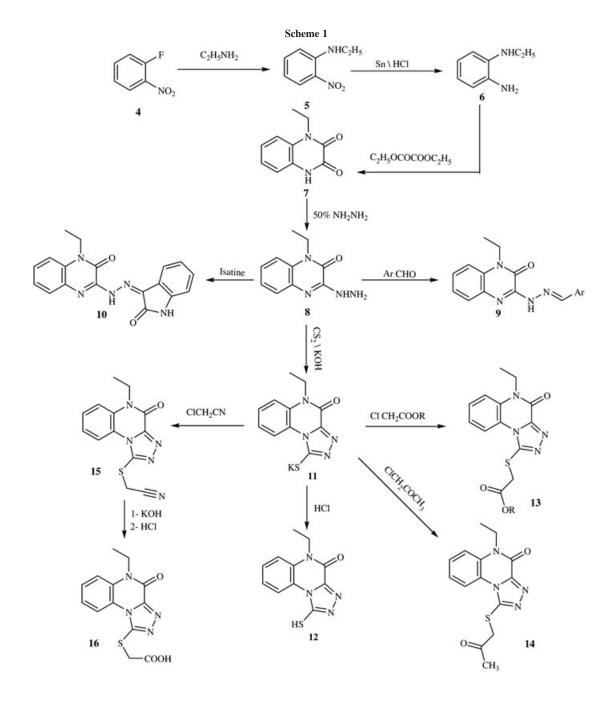
INTRODUCTION

Synthesis of quinoxaline derivatives has attracted a great deal of attention in view of their potent pharmacological activities [1]. Approximately, 1% of the world's population is affected by epilepsy [2]. Therefore, investigation of new anticonvulsant is still a challenge.

Most of the currently used anticonvulsant drugs are associated with adverse effects, such as sedation, ataxia, and weight loss or weight gain. Rare adverse effects can be life threatening such as aplastic anemia [3]. The development of safer and more effective new anticonvulsant drugs is necessary.

It was reported that the majority of anticonvulsant agents mediates its effect though their action either by activation of the γ -amino butyric acid (GABA) receptor or by inhibition of the glutamate receptor [4]. Glutamate receptors are classified into two main subtypes, *N*methyl-D-aspartate (NMDA) and α -amino-3-hydroxy-5methyl-4-isoxazolepropionic acid (AMPA) receptors [5].

© 2013 HeteroCorporation


In fact, NMDA receptor antagonists may produce schizophrenia-like symptoms, perceptual alterations, and memory impairment; AMPA receptor antagonists have no such psychoactive properties [6].

On the other hand, from the literature survey, it was found that many quinoxaline derivatives showed anticonvulsant activity [7,8].

Furthermore, compounds 1 and 2_{a-d} have shown high affinity towards AMPA receptor [8]. Similarly, compound 3 was reported as a potent AMPA receptor antagonist [9]. In this work, it was decided to synthesize many new (1,2,4) triazolo(4,3-a)Quinoxalin-4(5H)-one derivatives expected to have AMPA receptor antagonistic activity as well as many Schiff's bases **9** and the indolone derivative **10** were prepared as a confirmatory chemical reaction for the hydrazino derivative **8**. For preparation of the new derivatives, Scheme 1 was adopted.

RESULTS AND DISCUSSION

Docking study. All of the target compounds were subjected to docking study to explore their affinity and binding mode to AMPA receptor. As AMPA is a target for a remarkable variety of anticonvulsant agents [8], [10].

Month 2013 Synthesis and Evaluation of Some New (1,2,4) Triazolo(4,3-a)Quinoxalin-4(5H)-one Derivatives as AMPA Receptor Antagonists

Cpd.	Structure	$^{*}\Delta E$	Cpd.	Structure	$^{*}\Delta E$
2 _c		-185	8		-17
) _a		42	9 _b		53
)c		33	9 _d	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	22
) _e	CH ₃ CH ₃ CH ₃ CH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃	76	9 _f		68
9 _g		61	10		136
11		-131	12	CT Store	-152
13 _a	⁰ N N S OCH, S OCH,	-21	13 _b	$(-)^{\circ} (-)^{\circ} (-)^$	-17
13 _c		-11	13 _d	$(-)^{n} \overset{\sim}{\underset{\scriptstyle (n)}{\overset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\overset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\atop\scriptstyle (n)}{\atop\scriptstyle (n)}{\atop\scriptstyle (n)}{\atop\scriptstyle (n)}{\atop\scriptstyle (n)}{\underset{\scriptstyle (n)}{\atop\scriptstyle (n)}{\scriptstyle (n)}{\scriptstyle$	-5
13 _e	$(-)^{(n)}_{(n)}(-)^$	-9	13 _r	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-3
14		-5	15	C C C C C C C C C C C C C C C C C C C	-9
16		-18	_		_

Table 1

All modeling experiments were performed using virtual docker program and Discovery Studio program version 2.5. Each experiment used the biological target coordinates downloaded from the Brookhaven website (PDB: 1FTL). To qualify the docking results in terms of accuracy of the predicted binding conformations in comparison with the experimental procedure, the internal ligand (7,8-dichloro-1-propyl-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one) 2_c was used as a reference molecule. The docking study revealed that almost all of the proposed compounds showed promising activity to be antagonists for the AMPA receptor.

From the synthesized compounds, those compounds having the highest binding energy score (Kcal/mol) were subjected to *in vivo* anticonvulsant evaluation on different groups of mice. Phenobarbitone sodium was used as a reference standard. The results of the docking study of the synthesized compounds are shown in Table 1 in comparison with compound 2_c as a reference compound. Figure 1 shows compound 12 drawn in green and docked inside active site.

Anticonvulsant evaluation. Nine compounds of the newly synthesized derivatives were selected to be screened for their anticonvulsant activity on different groups of mice. Phenobarbitone sodium was used as a reference standard. The compounds to be tested or the standard phenobarbitone sodium were given by intraperitoneal injection to a group of adult mices each group containing six animals. After 45 min, pentylentetrazole (as convulsion inducing drug) was given intramuscularly in a dose of (60 mg/kg) body weight. Convulsions began with jerks of the head and body of the mouse consisting chiefly of clonic contractions. The seizures ended either by depression or by complete recovery [11, 12].

The criterion of anticonvulsant activity is complete protection against convulsions of any kind. Observations were

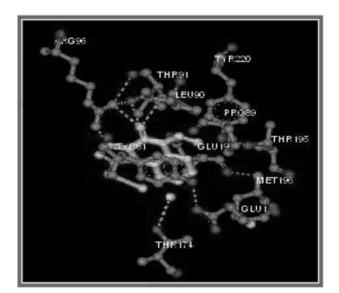


Figure 1. Compound 12 docked inside active site. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

made at least 60 min after the administration of pentylenetetrazole. Doses that gave full protection against the induced convulsions and that which exhibited 50% protection in addition to the relative potencies of the test compounds to phenobarbitone sodium were recorded in Table 2.

CONCLUSIONS

From the results of docking study and biological evaluation, it was noticed that the presence of another aromatic system attached to quinoxaline nucleus like [1,2,4]triazolo nucleus increases the binding affinity with AMP receptor due to the formation of favorable kind of interaction with the active site. This effect was clearly seen in the higher relative potencies of compounds **11** and **12**. Compound **8** showed low energy score; also it found the lowest active compound, this confirms the parallel consistency between the results of modeling and biological evaluation. The higher reactivity of the potassium salt **11** over compound **12** may be attributed to the higher solubility of compound **11**. Elongation of the aliphatic side chain in the ester derivatives **13** has a moderate effect on the activity.

EXPERIMENTAL

All melting points were taken on electrothermal (LA 9000 SERIS) digital melting point apparatus and are uncorrected. IR spectra were recorded on Pye Unicam SP 1000 IR spectrophotometer at Microanalytical Center, Cairo University. The ¹H NMR spectra were recorded in DMSO-d₆ at 300 MHz, and ¹³C NMR spectra were recorded in DMSO-d₆ at 75 MHz on a Varian Mercury VXR-300 NMR spectrometer at Research Services Unit, Faculty of Science, Cairo University. Chemical shifts were related to that of the solvent. Tetramethylsilane was used as a standard. Mass spectra were recorded on Hewlett Packard 5988 spectrometer at Regional Center for Mycology and Biotechnology, Al-Azhar University. Microanalyses were carried out at Microanalytical Center, Cairo University. Progresses of the reaction was monitored by tlc using tlc sheets precoated with UV fluorescent silica gel Merck 60 F254 plates and were visualized using UV lamp and n-hexane : ethyl acetate 9:1 as mobile phase. N-Ethyl-2nitroaniline (5), N-1-Ethyl-o-phenylendiamine (6) and 1-Ethylquinoxaline-2,3(1H,4H)-dione (7) were prepared according to the directions of Shu-Kun [13].

1-Ethyl-2-oxoquinoxalin-3-yl hydrazine (8). A mixture of 1.90 g (0.01 mole) of 1-ethylquinoxaline-2,3(1H,4H)-dione (7) and 10 mL hydrazine hydrate (50%), was refluxed for 2 h. After cooling, a crystalline product was obtained which collected by filtration, washed with water several times and dried. Recrystallization of the resulting product from ethanol afforded faint yellow crystalline needles, 1.93 g, (95%), mp 165-167°C; ir: NH₂ 3339, CO 1645 cm⁻¹; ¹H NMR: δ 1.17 (t, 3H, CH₃-CH₂, *J* = 7.20 Hz), 4.15 (q, 2H, CH₂-CH₃, *J* = 7.20 Hz), 4.52 (s, 2H, NH₂) (D₂O exchangeable), 7.17-7.44(m, 4H, aromatic), and 8.68 (s, 1H, NH), (D₂O exchangeable); ¹³C NMR: δ 12.30, (CH₃, aliphatic), 36.44, (CH₂, aliphatic), 113.93, 123.34, 123.43, 125.13, 127.80, 133.87, (benzene ring), 148.84 (amidic C O), 149.96 (piprazine-3-CN); ms: *m/z* 204 (molecular ion) (100), 189 (3.90), 175 (13.62), 145

Synthesis and Evaluation of Some New (1,2,4) Triazolo(4,3-a)Quinoxalin-4(5H)-one	е
Derivatives as AMPA Receptor Antagonists	

Cpd. ID	Dose (mg/kg)	No. of protected animal	% protection	ED ₅₀ (mg/kg)	Mol wt	ED ₅₀ mmol/kg	R.P. ^a
Standard	12.5	6	100	6.25	254	0.02	1.00
	6.25	3	50				
	3.12	1	16.67				
8	200	5	83.33	129	204	0.63	0.04
	100	2	33.33				
	50	1	16.67				
11	25	4	66.67	12.5	246	0.05	0.48
	12.5	3	50				
	6.25	1	16.67				
12	25	6	66.67	12.5	284	0.04	0.60
	12.5	3	33.33				
	6.25	1	16.67				
13 _a	200	4	66.67	150	318	0.47	0.05
	100	2	33.33				
	50	1	16.67				
13 _b	200	6	100	95	332	0.29	0.09
	100	4	66.67				
	50	1	16.67				
13 _c	200	4	66.67	100	346	0.29	0.09
	100	3	50				
	50	0	0				
13 _d	200	5	83.33	100	346	0.29	0.09
	100	3	50				
	50	0	1				
13 _e	200	4	66.67	150	360	0.42	0.06
	100	2	33.33				
	50	1	16.67				
13 _f	200	4	66.67	150	360	0.42	0.06
	100	2	33.33				
	50	1	16.67				

 Table 2

 Results of anticonvulsant evaluation for compounds 8 and 11–13

^aR.P. = Relative potency.

(5.90), 147 (28.47). Anal. Calcd. for $C_{10}H_{12}N_4O$: C, 58.81; H, 5.92; N, 27.43. Found: C, 58.63; H, 5.80; N, 27.65.

General procedure for the reaction of 1-ethyl-2oxoquinoxalin-3-yl hydrazine (8) with different aromatic aldehydes. All of these reactions were carried out in ethanol. To a solution of 1-ethyl-2-oxoquinoxalin-3-yl hydrazine (8) (2.04 g, 0.01 mole) in ethanol (10 mL), a solution of the appropriate aldehydes in ethanol (5 mL), (0.01 mole) was added. The reaction mixture was refluxed for 5 h. The reaction mixture was filtered while hot and the filtrate was allowed to stand overnight to give the crystalline products of (9)_{a-g}.

3-(2-Benzylidenehydrazinyl)-1-ethylquinoxalin-2(1H)one (**9**_a). This compound was obtained as dark yellow needles, 2.90 g, (90%), mp 234-236°C; ir: NH 3240, CO 1642 cm⁻¹; ¹H NMR: δ 1.24 [t, 3H, CH₃-CH₂, *J* = 7.20 Hz], 4.31 [q, 2H, CH₂-CH₃, *J* = 6.90 Hz], 7.28-7.73[m, 9H, aromatic], 8.60 [s, 1H, NCH] and11.99 [s, 1H, NH]; ms: *m*/*z* 292 (molecular ion) (9.62%), 263 (M+ -CH₂CH₃) (11.83%), 215 (M+ -C₆H₅) (11.98%). *Anal.* Calcd. for C₁₇H₁₆N₄O: C, 58.81; H, 5.92; N, 27.43. Found: C, 58.63; H, 5.80; N, 27.65.

3-(2-(4-Fluorobenzylidene)hydrazinyl)-1-ethylquinoxalin-2 (**1H)-one (9**_b). This compound was obtained as faint yellow needles, 1.86 g, (60%), mp 192-194°C; ir: NH 3252, CO 1648 cm⁻¹; ms: *m/z* 310 (molecular ion) (2.30%), 281 (M+ -CH₂CH₃) (14.71%), 215 (M + -FC₆H₄) (11.98%), 107 (M+ -FC₆H₄C₂H₅) (100%). *Anal.* Calcd. for C₁₇H₁₅FN₄O: C, 65.80; H, 4.87; N, 18.15. Found: C, 65.91; H, 4.90; N, 18.12.

2,4-Cl₂ 3-(2-(2,4-Dichlorobenzylidene)hydrazinyl)-1-ethylquinoxalin-2(1H)-one. (9_c). Faint yellow crystals, 2.52 g, (70%), mp 197-199°C; ir: NH 3263, CO 1647 cm⁻¹; ms: *m/z* 361 (molecular ion) (2.01%), 363 (M+2) (0.65%), 215 (M+-Cl₂C₆H₃) (17.17%), 189 (M+-Cl₂C₆H₃CHN) (100%). *Anal.* Calcd. for C₁₇H₁₄Cl₂N₄O: C, 56.52; H, 3.91; N, 15.51. Found: C, 56.61; H, 4.03; N, 15.48.

3-(2-(4-Chlorobenzylidene)hydrazinyl)-1-ethylquinoxalin-2 (**1H)-one.** (**9**_d). Faint yellow needles, 1.86 g, (60%), mp 195-197°C; ir: NH 3245, CO 1643 cm⁻¹; ms: *mlz* 326 (molecular ion) (1.31%), 328 (M+2) (0.45%), 281 (M+ $-C_2H_5$) (14.71%), 215 (M+ $-ClC_6H_4$) (28.08 %),188 (M+ $-ClC_6H_4CHN$) (100 %). *Anal.* Calcd. for C₁₇H₁₅ClN₄O: C, 62.48; H, 4.63; N, 17.05. Found: C, 62.63; H, 4.72; N, 17.08.

'3-(2-(3,4,5-Trimethoxybenzylidene)-1-ethylquinoxalin-2(1H)one. (9_e). Dark yellow colored crystals, 2.48 g, (65%), mp 160-162° C; ir: NH 3258, CO 1654 cm⁻¹; ms: *m*/*z* 382 (molecular ion) (23.81%), 353 (M+ $-C_2H_5$) (6.20%), 215 (M+ $-(OCH_3)_3C_6H_2$) (7.75%), 90 (C₇H₆ tropylium) (100%). *Anal.* Calcd. for C₁₇H₁₅ClN₄O: C, 62.82; H, 5.80; N, 14.65. Found: C, 63.09; H, 5.78; N, 14.76.

3-(2-(2,6-Dichlorobenzylidene)hydrazinyl)-1-ethylquinoxalin-2(1H)-one (9_f). Faint yellow colored crystals, 2.70 g, (75%), mp 245-247°C; ir: NH 3263, CO 1647 cm⁻¹; ms: m/z 361 (molecular ion) (21.30%), 363 (M+2) (7.08%), 215 (M+ $-Cl_2C_6H_3$) (15.12%), 189 (M+ $-Cl_2C_6H_3CHN$) (100%). Anal. Calcd. for $C_{17}H_{14}Cl_2N_4O$: C, 56.52; H, 3.91; N, 15.51. Found: C, 56.52; H, 3.98; N, 15.46.

3-(2-((Thiophen-2-yl)methylene)hydrazinyl)-1-ethylquinoxalin-2(1H)-one (9g). This compound was obtained as a yellow crystals, 1.86 g, (60%), mp 218-220°C; ir: NH 3263, CO 1647 cm⁻¹; ¹H NMR: δ 1.23 [t, 3H, CH₃-CH₂, *J* = 7.20 Hz], 4.28 [q, 2H, CH₂-CH₃, *J* = 6.90 Hz], 7.11-7.65[m, 7H, aromatic], 8.79 [s, 1H, NCH] and 11.21 [s, 1H, NH]; ms: *m/z* 298 (molecular ion) (14.95%), 269 (M+ -CH₂CH₃) (12.96%), 189 (M+ -C₄H_{3SCN}) (100%). *Anal.* Calcd. for C₁₅H₁₄N₄OS: C, 60.38; H, 4.73; N, 18.78. Found: C, 60.08; H, 4.56; N, 18.50.

3-(2-(2-Indolon-3-yl)hydrazonyl)-1-ethylquinoxalin-2(1H)one (10). A mixture of 2.04 g (0.01 mol) of 1-ethyl-2oxoquinoxalin-3-yl hydrazine (**8**) and 1.47 g (0.01 mol) isatine, was refluxed in 15 mL glacial acetic acid for 6 h. The reaction mixture was cooled to the room temperature. The orange precipitated product was filtered, washed with distilled water, dried, and crystallized from ethanol 80% to afford a faint yellow crystalline product, 3.09 g, (93%), mp 275-277°C; ir: NH 3332, CO 1653, 1708 cm⁻¹ (quinoxalinone and indolone respectively); ¹H NMR: δ 1.27 [t, 3H, CH₃-CH₂, *J* = 6.60 Hz], 4.25 [q, 2H, CH₂-CH₃, *J* = 7.20 Hz], 11.20 [s, 1H, NH], 6.94-7.73 [m, 8H, aromatic] and 13.67 [s, 1H, NH exchangeable]; ms: *m/z* 333 (molecular ion) (18.97%), 304 (M+ -C₂H₅) (100%), 276 (M+ -COC₂H₅) (8.83%). *Anal.* Calcd. for C₁₈H₁₅N₅O₂: C, 64.86; H, 4.54; N, 21.01. Found: C, 64.92; H, 4.54; N, 20.90.

Potassium salt of 5-ethyl-1-mercapto-[1,2,4]triazolo[4,3-a] quinoxalin-4(5H)-one (11). A mixture of 2.04 g (0.01 mol) of 1-ethyl-2-oxoquinoxalin-3-yl hydrazine (8), 0.76 g (0.71 mL, 0.01 mol) carbon disulphide and 0.56 g (0.01 mol) potassium hydroxide were refluxed in 20 mL ethanol for 2 h. The mixture was then allowed to reach the room temperature to afford a faint yellow precipitated product, 2.80 g, (98%), mp > 300°C; ir: CO 1656 cm⁻¹; Anal. Calcd. for C₁₁H₉KN₄OS: C, 46.46; H, 3.19; N, 19.70. Found: C, 46.58; H, 3.25; N, 19.84.

5-Ethyl-1-mercapto-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)one (12). A mixture of 2.04 g (0.01 mol) of 1-ethyl-2oxoquinoxalin-3-yl hydrazine (8), 0.76 g (0.71 mL, 0.01 mol) carbon disulphide and 0.56 g (0.01 mol) potassium hydroxide were refluxed in 20 mL ethanol for 2 h. The mixture was then allowed to reach the room temperature and poured onto 20 mL 1N HCl. The yellow precipitated product was filtered, washed with distilled water crystallized from ethanol 80% to afford 2.23g (90%) of compound 12 as a faint yellow crystalline needles, mp 285-287°C; ir: SH 2630, CO 1683 cm⁻¹; ¹H NMR: δ 1.25 [t, 3H, CH₃-CH₂, *J* = 7.20 Hz], 4.24 [q, 2H, CH₂-CH₃, *J* = 7.20 Hz], 7.32-7.63 [m, 4H, aromatic] and 14.77 [s, 1H, SH exchangeable]; ms: *m/z* 246 (molecular ion) (100%), 218 (M+ –CO) (74.81%), 204 (M+ –C₂H₅) (5.75%). *Anal.* Calcd. for C₁₈H₁₅N₅O₂: C, 53.64; H, 4.09; N, 22.75. Found: C, 53.29; H, 3.96; N, 22.52.

General procedure for preparation of Alkyl 2-(5-ethyl-4, 5-dihydro-4-oxo-[1,2,4]triazolo [4,3-a]quinoxalin-1-ylthio)acetates (13). A mixture of 2.46 g (0.01 mol) of 5-ethyl-1-mercapto-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (12), (0.012 mol) of the appropriate alkyl chloroacetate and 1 g anhydrous potassium carbonate were stirred in (20 mL) DMF for 1 h on a water bath. The mixture was then poured onto 100 mL ice cold water with continuous stirring. The white crystalline product was filtered, washed with distilled. Recrystallization from ethanol 70% afforded the corresponding Alkyl 2-(5-ethyl-4,5-dihydro-4-oxo-[1,2,4]triazolo [4,3-a]quinoxalin-1-ylthio)acetate derivatives (13_{a-f}) .

Methyl 2-(5-ethyl-4,5-dihydro-4-oxo-[1,2,4]triazolo [4,3-a] quinoxalin-1-ylthio)acetate (13_a). 2.38 g, (75%), mp 157-159° C; ir: CO 1679, 1743 cm⁻¹ (amide and ester respectively); ¹H NMR: δ 1.29 [t, 3H, NCH₂-CH₃, J = 1.50 Hz], 3.70 [s, 3H, OCH₃], 4.32 [q, 2H, NCH₂-CH₃, J = 1.50 Hz], 4.46 [s, 2H, SCH₂] and 7.50-7.75 [m, 4H, aromatic]; ms: m/z 318 (molecular ion) (32.10%), 259 (M+ –CO OCH₃) (100%), 231 (M+ –COOCH₃CO) (60.06%); *Anal.* Calcd. for C₁₄H₁₄N₄O₃S: C, 52.82; H, 4.43; N, 17.60. Found: C, 52.53; H, 4.77; N, 17.44.

Ethyl 2-(5-ethyl-4,5-dihydro-4-oxo-[1,2,4]triazolo [4,3-a] quinoxalin-1-ylthio)acetate (13_b). 3.51 g, (95%), mp 165-167° C; ir: CO 1677, 1737 cm⁻¹ (amide and ester respectively); ¹H NMR: δ 1.14 [t, 3H, NCH₂-CH₃, J = 1.50 Hz], 1.20 [t, 3H, OCH₂CH₃, J = 1.20 Hz], 4.08 [q, 2H, NCH₂-CH₃, J = 1.50Hz], 4.26 [q, 2H, OCH₂CH₃, J = 1.20 Hz], 4.40 [s, 2H, SCH₂] and 7.43-7.73 [m, 4H, aromatic]; ms: m/z 332 (molecular ion) (27.83%), 259 (M+ -COOC₂H₅) (100%), 231 (M+ -COOC₂H₅CO) (22.40%); *Anal.* Calcd. for C₁₅H₁₆N₄O₃S: C, 54.20; H, 4.85; N, 16.86. Found: C, 52.53; H, 4.60; N, 16.94.

n-Propyl 2-(5-ethyl-4,5-dihydro-4-oxo-[1,2,4]triazolo [4,3-a]quinoxalin-1-ylthio)acetate (13_c). 2.24 g, (65%), mp 190-192°C; ir: CO 1675, 1740 cm⁻¹ (amide and ester respectively); ms: *m*/z 346 (molecular ion) (13.88%), 259 (M+ -COOC₃H₇) (100%), 231 (M+ -COOC₂H₅CO) (38.27%); *Anal.* Calcd. for C₁₆H₁₈N₄O₃S: C, 55.48; H, 5.24; N, 16.17. Found: C, 55.61; H, 5.16; N, 16.35.

Isopropyl 2-(5-ethyl-4,5-dihydro-4-oxo-[1,2,4]triazolo [4,3-a]quinoxalin-1-ylthio)acetate (13_d). 2.76 g, (80%), mp 147-149°C; ir: CO 1674, 1734 cm⁻¹ (amide and ester respectively); ms: m/z 346 (molecular ion) (15.13%), 259 (M+ –COOCH (CH₃)₂) (100%), 231 (M+ –COOCH(CH₃)₂CO) (22.16%); *Anal.* Calcd. for C₁₆H₁₈N₄O₃S: C, 55.48; H, 5.24; N, 16.17. Found: C, 55.61; H, 5.43; N, 16.29.

n-Butyl 2-(5-ethyl-4,5-dihydro-4-oxo-[1,2,4]triazolo [4,3-a] quinoxalin-1-ylthio)acetate (13_e). 2.95 g, (82%), mp 182-184° C; ir: CO 1670, 1741 cm⁻¹ (amide and ester respectively); ms: m/z 360 (molecular ion) (33.77%), 287 (M+ $-OC_4H_7$) (11.94%), 259 (M+ $-COOC_4H_7$) (100%); *Anal.* Calcd. for C₁₇H₂₀N₄O₃S: C, 56.65; H, 5.59; N, 15.54. Found: C, 56.81; H, 5.60; N, 15.51.

tert-Butyl 2-(5-ethyl-4,5-dihydro-4-oxo-[1,2,4]triazolo [4,3-a]quinoxalin-1-ylthio)acetate (13_f). 2.66 g, (74%), mp 170-172°C; ir: CO 1680, 1733 cm⁻¹ (amide and ester respectively); ms: m/z 360 (molecular ion) (6.75%), 259 (M+ $-COOC_4H_7$) (100%), 231 (M+ $-COOC(CH_3)_3CO$) (25.68%); *Anal*. Calcd. for C₁₇H₂₀N₄O₃S: C, 56.65; H, 5.59; N, 15.54. Found: C, 56.71; H, 5.42; N, 15.32.

1-(2-Oxopropylthio)-5-ethyl-[1,2,4]triazolo[4,3-a]quinoxalin-4 (**5H)-one (14).** A mixture of 2.84 g (0.01 mol) of the potassium salt (**11**) and 1.00 mL (0.012 mol) chloroacetone in 20 mL DMF was heated on a water bath for 2h. After cooling to the room temperature, the reaction mixture was added to 200 mL cold water with continuous stirring. The white precipitated product was filtered, washed with water and crystallized from ethanol producing 1.87 g (62%), mp 206-208°C; ir: CO 1671, 1712 cm⁻¹ (amide and ketone respectively); ms: *m*/*z* 302 (molecular ion) (10.19%), 259 (M+ –CO CH₃) (57.32%), 43 (CH₃CO) (100%); *Anal.* Calcd. for C₁₄H₁₄N₄O₂S: C, 55.61; H, 4.67; N, 18.53. Found: C, 55.84; H, 4.74; N, 18.87.

Month 2013 Synthesis and Evaluation of Some New (1,2,4) Triazolo(4,3-a)Quinoxalin-4(5H)-one Derivatives as AMPA Receptor Antagonists

2-(5-Ethyl-4,5-dihydro-4-oxo-[1,2,4]triazolo[4,3-a]quinoxalin-1-ylthio)acetonitrile (15). A mixture of 2.84 g (0.01 mol) of the potassium salt (11) and 0.68 mL (0.01 mol) chloroacetonitrile in 20 mL DMF was heated on a water bath for 2h. After cooling to the room temperature, the reaction mixture was added to 200 mL cold water with continuous stirring. The white precipitated product was filtered, washed with water and crystallized from methyl alcohol to produce 1.85 g (85%), mp 231-233°C; ir: CO 1666 (amide), C N 2243 cm⁻¹; ¹H NMR: δ 1.27 [t, 3H, CH₃-CH₂, *J* = 6.90 Hz], 4.33 [q, 2H, CH₂-CH₃, *J* = 6.90 Hz], 4.62 [s, 2H, SCH₂] and 7.43-8.26 [m, 4H, aromatic]; ms: *m*/*z* 285 (molecular ion) (100%), 257 (M+ CO) (61.66%), 242 (M+ -C₂H₅N) (46.06%); *Anal.* Calcd. for C₁₃H₁₁N₅OS: C, 55.61; H, 4.67; N, 18.53. Found: C, 55.84; H, 4.74; N, 18.87.

2-(5-Ethyl-4,5-dihydro-4-oxo-[1,2,4]triazolo[4,3-a]quinoxalin-1-ylthio)acetic acid (16). A mixture of 2.85 g (0.01 mol) of A mixture of 1-cyanomethylthio-5-ethyl-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)one (**15**) and 0.56 mL (0.01 mol) potassium hydroxide in 20 mL water was heated under reflux for 3 h. After cooling to the room temperature, the reaction mixture was added to 200 mL cold water with continuous stirring and acidified with 20 mL HCl (1N). The obtained white precipitate was filtered, washed with water, and recrystallized from ethanol to afford 2.43 g I(80%) of compound (**16**), mp 242-244°C; ir: OH 3346 (broad), CO 1681, 1718 cm⁻¹ (amide and carboxylic respectively); ms: *m/z* 304 (molecular ion) (3.32%), 259 (M+ –COOH) (21.15%), 245 (M+ –CH₂COOH) (100%); Anal. Calcd. for $C_{13}H_{12}N_4O_3S$: C, 51.31; H, 3.97; N, 18.41. Found: C, 51.48; H, 3.90; N, 18.52.

Acknowledgment. Hamada Abul-Khair expresses profound thanks and gratitude to his favorable colleague, Abdul-Rahman S. Mayhoub, for his kind support and numerous advises.

REFERENCES AND NOTES

- [1] Kiyokazu, O.; Yukio, Y. J Neurochem 1990, 54, 699.
- [2] Walker, M. C.; Sander, J. W. Seizure 1996, 5, 165.
- [3] Bourgeois, B. F. Arch Neurol 1998, 55, 1181
- [4] Meldrum, B. S.; Rogawski, M. A. Neurotherapeutics 2007, 4, 18.
 - [5] Rogawski, M. A. Epilepsy Res 2006, 69, 273.
- [6] Rutecki, P. A.; Sayin, U.; Yang, Y.; Hadar, E. Epilepsia 2002, 43, 179.

[7] Jackson, P. F.; Davenport, T. W.; Resch, J. F.; Lehr, G. S. Bioorg Med Chem Lett 1991, 1, 751.

[8] McQuaid, L. A.; Smith, E. C.; South, K. K.; Mitch, C. H.; Schoepp, D. D.; True, R. A.; Calligaro D.; O'Malley, P. J.; Ornstein, P. L. J Med Chem 1992, 35, 3319.

- [9] Barril, X.; Soliva, J. R Soc Chem 2006, 2, 660.
- [10] Löscher, W.; Rogawski, M. A. Epilepsy 2002, 5, 91.
- [11] Vogel, G. H. Drug Discovery and Evaluation; Pharmacologi-

cal Assays, 2nd ed.; Springer-Verlag: New York, 2007, 613. [12] Löscher, W.; Hönack, D.; Fassbender, C. P.; Nolting, B. Epilepsy

[12] LOSCIET, W., HOHACK, D., Passoender, C. F., Nohing, B. Ephepsy Res 1991, 8, 171.

[13] Shu-Kun, L. Molecules 1996, 1, 37.