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Exposure of N-chloroamines to KOtBu or LDA, in the presence of PMDETA or HMPA, provides 2-azaallyl
anions capable of p4s + p2s cycloaddition reactions with a range of olefins. Good yields were achieved
with stabilised systems, however, they were more modest when accessing semi-stabilised 2-azaallyl
anions. By modifying the reaction conditions, one-pot dehydrochlorination/allylation can also be
achieved with a range of N-chloroamines.

� 2010 Published by Elsevier Ltd.
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In the seminal work of Kauffmann and Köppelmann, the
p4s + p2s cycloaddition of 2-azaallyl anions and olefins was dis-
covered.1 In these studies 2-azaallyl anions 1, bearing two or more
aryl substituents, were formed by deprotonation of the corre-
sponding imine, however, with one or no aryl groups this reaction
failed.1b Addressing this limitation Kanemasa and Tsuge developed
silicon-based transmetalation approaches,2 while Pearson
exploited imino stannanes to access semi-stabilised (one aryl)
and non-stabilised (no aryl) 2-azaallyl anions.3 While the latter ap-
proach has proved highly useful, shortcomings remain. As stated
by Pearson, methods for the generation of ‘nonstabilized 2-azaallyl
anions with a longer lifetime and preferably featuring tin-free tech-
niques are required.’3a Inspired by these challenges we commenced
studies aimed at developing new methods for the preparation of
2-azaallyl anions. Herein we report a novel tin-free approach to
stabilised and semi-stabilised 2-azaallyl anions exploiting N-chlo-
roamines, that is, 2, as starting materials. In addition, the use of
N-chloroamines in a one-pot dehydrohalogenation/allylation is re-
ported (Scheme 1).

Our strategy builds upon the observation that 2-azaallyl anions
(i.e., 1) can be formed from metalated dibenzylamides, which un-
dergo b-hydride elimination and deprotonation, when exposed to
appropriate ligands.4,5 While this sequence provides 2-azaallyl an-
ions, it requires multiple operations and as such has not been
exploited in reaction development.5a We postulated that improved
procedures for metalation should allow better access to 2-azaallyl
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anions. To this end we envisaged halogen–metal exchange of
N-haloamines as a potentially useful method.

N-Chloroamines (i.e., 2) are useful aminating agents that under-
go substitution reactions with organometallics,6,7 heteroaromat-
ics8 and enolates.9 While the halogen–metal exchange of these
reagents has not been developed, this process has been observed
as a side reaction.6,10,11a To explore the use of N-chloroamines in
2-azaallyl anion formation, N-methyl benzylamine N-chloride
(2a) was prepared and its p4s + p2s cycloaddition with styrene
investigated. Using LDA in the absence of a donor failed to deliver
pyrrolidine 4a, however, reductive dechlorination of 2a demon-
strated the viability of halogen–metal exchange (Table 1, entry
1). To favour b-hydride elimination HMPA/TMEDA was trialed as
a pseudo tridentate donor in the presence of LDA. Under these con-
ditions, isomeric cycloadducts 4a and 4a0 formed in a combined
yield of 32% and with 1.3:1 regioselectivity (Table 1, entry 2).3c

Changing the donor to N,N,N0,N0-pentamethyldiethylenetriamine
(PMDETA) failed to increase the yield, however, the reaction now
occurred with complete regioselectivity (Table 1, entry 3).
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Table 1
Selected optimisation of 2-azaallyl anion/cycloadditiona
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Entry R Base Donor Solvent Yieldb (%)

1 H LDA — THF —
2 H LDA HMPA/TMEDA THF 32 (1.3:1)c

3 H LDA PMDETA THF 26 (>95:5)c

4 H BuLi PMDETA THF —
5 H NaH PMDETA THF —
6 Ph LDA PMDETA THF 50
7 Ph KOtBu HMPA THF 82
8 Ph KOtBud HMPA THF —e

a For details of conditions, see the Supplementary data.
b Isolated yield following flash column chromatography.
c Ratio of 4a:4a0 determined from 1H NMR analysis.
d 1 equiv KOtBu.
e Imine formation.

Table 2
Scope of the cycloaddition of 2-azaallyl anions 1a–fa

Entry N-Chloride Olefin
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a See Ref. 13 and Supplementary data for conditions.
b Isolated yield following flash column chromatography.
c Conducted as in Table 1, entry 3.
d Diastereomeric ratio determined by 1H NMR analysis.
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Unfortunately, systematic modification of temperature, solvent,
donor, order-of-addition and stoichiometry failed to improve upon
this result. In each case the starting material was consumed and
broad signals in the 1H NMR corresponding to decomposition prod-
ucts were observed.

Attempts to access stabilised 2-azaallyl anions proved more
successful. With N-chloroamine 2b, pyrrolidine 4b was formed in
50% isolated yield using the previously developed conditions (Ta-
ble 1, entry 6). After screening a number of bases and ligands we
found KOtBu and HMPA improved the yield of cycloadduct 4b to
82% (Table 1, entry 7). Although metalation of the N-chloroamine
2b under these conditions is plausible,11a it is more likely that
dehydrochlorination,11b followed by deprotonation provides the
2-azaallyl anion 1b (M@K). Further support for this explanation
can be derived from the use of one equivalent of KOtBu, in this case
providing the imine as the sole product (Table 1, entry 8). If halo-
gen–metal exchange and b-hydride elimination were occurring
then one equivalent of KH would be generated in this reaction
allowing 2-azaallyl anion 1b (M@K) to form.

In effect, two distinct methods have been developed for the
assembly of 2-azaallyl anions from N-chloroamines. The first
Product Yieldb (%)
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Table 3
Allyation of imines derived from N-chloroamines 2a-ha

Entry N-Chloride Product Yieldb (%)
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a See Ref. 17 and Supplementary data for detailed conditions.
b Isolated yield following flash column chromatography.
c N-Chloroamine was reacted with KOtBu (2.5 equiv) followed by HMPA

(2.5 equiv) and allylmagnesium bromide (2 equiv).
d Following imine formation as described previously the solution was treated

with crotylmagnesium bromide (2 equiv).
e Diastereomeric ratio determined by 1H NMR analysis.
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Scheme 2.
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exploits halogen–metal exchange and constitutes a rare example of
a tin-free preparation of semi-stabilised 2-azaallyl anions;12 while
the second likely involves dehydrochlorination/deprotonation and
is suited to stabilised 2-azaallyl anion formation.

Application of the conditions described above (Table 1, entries 3
and 7) to alternative N-chloroamines allowed the scope of the two
procedures to be examined.13 Reaction of other olefins with the
stabilised 2-azaallyl anion 1b (M@K) provided the expected pyrrol-
idines in good isolated yields (Table 2, entries 1–3) and with stere-
oselectivity as previously described (Table 2, entry 2).3,14 The effect
of electronics was subsequently investigated, with N-chloroamine
2c providing a 2:1 mixture of 4c and 4c0, in a combined yield of
83% (Table 2, entry 4). Reaction with cinnamyl N-chloride 2d was
selective for isomer 4d, however, the yield was a modest 20% (Ta-
ble 2, entry 5). The related allyl system decomposed under the
reaction conditions (Table 2, entry 6). The p4s + p2s cycloaddition
of semi-stabilised 2-azaallyl anions derived from N-chloride 2f sur-
prisingly gave pyrrolidine 4b as the only isolable product. Its for-
mation either occurs via cycloaddition followed by excision of an
allylic anion or by 2-azaallyl anion formation, followed by dispro-
portionation and cycloaddition. Although the latter may be more
conceivable, attempts to demonstrate disproportionation with la-
belled substrates have failed to date.

Imine formation from N-chloroamines has been extensively
investigated from a mechanistic perspective,11 although the appli-
cation of this reaction has largely been neglected. An exception
being the recent work of Davis10,15 who found that cyclic pyrroli-
dine-derived N-chloroamines could be converted into the corre-
sponding imine using DBU, isolated, then reacted with
nucleophiles. Surprisingly, although imine formation was facile
with our acyclic substrates using KOtBu, DBU failed to deliver these
products. The conversion of amines into the corresponding imine is
a useful transformation,16 since it enables functionalisation of a-to
the nitrogen, thus we decided to examine the utility of our reaction
conditions with a range of N-chloroamines poorly suited to
2-azaallyl anion formation. For this study we surveyed one-
pot dehydrochlorination/allylation of N-chloroamines 2a–h using
allylmagnesium reagents (Table 3).17 Using N-chloroamines 2a,
2h and 2g, derived from primary and secondary amines, the allyla-
tion with allylmagnesium bromide proceeded in good to excellent
yields to provide the expected homoallylic amines (Table 3, entries
1–3). The allylation of dibenzyl amine 2b gave the expected prod-
uct in excellent yield (Table 3, entry 4). With all reactions 2.5 equiv
of KOtBu gave optimal results. The N-chloroamine 2c, derived from
PMB benzylamine and 2f from tetralone, allowed the stereoelec-
tronic requirements to be investigated. In both cases single prod-
ucts were obtained, in good yield, with addition occurring at the
carbon distal to the electron-releasing group, (Table 2, entry 5)
and at the least hindered carbon (Table 2, entry 6). Addition to
the benzylic over the cinnamic carbon was demonstrated with
N-chloroamine 2d (Table 2, entry 7), providing dienes useful for
tetrahydropyridine preparation.18

Next, the reactions of N-chloroamines 2i and 2j were investi-
gated. In both cases, allylation proceeded with selectivity for the
cinnamic carbon (Table 2, entries 8 and 9). The modest yields for
these reactions arise as a result of conjugate addition providing
aldehyde 7 (Scheme 2).

Finally, the reaction of the crotyl Grignard reagent with N-chlo-
roamines 2b and 2h was investigated, providing the branched
products in good yields (Table 3, entries 10 and 11). The reaction
proceeded with reasonable diastereoselectivity in the former case
(Table 3, entry 10) and 92:8 selectivity in the latter (Table 3, entry
11), favouring the anti-product.

Two sets of conditions for the formation of 2-azaallyl anions
from the corresponding N-chloroamines have been developed.
While this reaction proceeded with excellent yield to provide
stabilised 2-azaallyl anions, competent in cycloaddition reactions,
semi-stabilised systems were more difficult to access in high
yields. Thus, while tin-free methods have been successfully
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developed, further work is required to improve this process. In
addition to 2-azaallyl anion formation and cycloaddition, one-pot
allylation of N-chloroamines in good to excellent yields is reported.
The halogen–metal exchange of N-chloroamines is under-
developed in reaction discovery. The application of this process
in other transformations is subject to ongoing studies.
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