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Abstract 

In the present research, the synthesis of the cadmium-benzene-1,4-dioxyacetic acid (Cd-1,4-

BDOAH2) was carried out by the assistance of ultrasound waves, and then it was loaded with 

the low amount of Ag nano-particles. Subsequently, the Ag:Cd-1,4-BDOAH2 nano-

photocatalyst was applied  for photoelectro-Fenton/photocatalytic (PEF-PH) degradation of 

brilliant green (BG) in the existence of visible light in aqueous media. The synthesized 

composite was characterized by FTIR, SEM, EDX, TEM, XRD, DRS, and PL. The best 

operational conditions including time, initial BG concentration, pH, amount of photocatalyst, 

current and amount of FeCl3 on degradation efficiency (main and interactive) were as 

follows: 4 mg L
-1

 of BG at pH of 5, 0.4 g L
-1 

of Ag:Cd-1,4-BDOAH2, 250 mA of current, and 

0.3 mmol L
-1 

of FeCl3 obtained by central composite design. The PEF-PH degradation kinetic 

data of BG were successfully fitted to Langmuir–Hinshelwood (L–H) model with the values 

of 1.16 mg L
−1

 min
−1

 and 0.018 Lmg
−1 

for the rate constant (kr) and (KA), respectively.  

 

Keywords: Photoelectro-Fenton/photocatalytic, Decolorization, Ag:Cd-1,4-BDOAH2, 

Response surface methodology, Light-emitting diode irradiation.  

 

1. Introduction 

From past decades, organic pollutants such as dyes have caused a series of global 

environmental problems, while various industries have an ever-greater role in contaminating 

wastewaters [1-4]. In particular, the release of textile wastewater into the environment causes 

serious threat to human health; consequently, synthetic dyes removal from colored effluent is 

essential [5, 6]. Among all technologies for colored effluents treatment, advanced oxidation 

processes (AOPs) are reported as effective technologies to remove toxic species and improve 

water quality of industrial effluents [7-10]. The most popular Fenton’s chemistry method is 
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based on treatment by advanced oxidation processes, and accordingly, Fenton reagents (Fe
2+

 

and H2O2) have more ability to degrade organic pollutants based on the formation of 

hydroxyl radicals (
•
OH) [11]. The main properties of carbon based cathodes such as low 

toxicity, stability, and good conductivity caused them to be applied in the E-Fenton process 

[12-14] for the degradation of organic materials from aqueous solutions [15-18]. 

Photoelectro-Fenton (PEF) is based on simultaneous irradiation of solution with visible or 

ultra-violet (UV) light under PEF conditions, while accordingly light lead to acceleration in 

the photolysis of the complexes of Fe
3+

 and enhancement in the 
•
OH and Fe

2+
 ions as product 

[19, 20]. The combination of PEF and heterogeneous photocatalysts is the integrated 

approach for efficient AOPs treatment. 

            In the past few years, the most popular photocatalysts are based on inorganic 

semiconductors such as TiO2 and ZnO, which show unique advantages. Nevertheless, their 

high and wide band gaps cause low efficiency, especially in the presence of visible light. 

These kinds of photocatalysts are also expensive and consume high energy sources, 

accordingly their usage are limited [21]. Designing and synthesizing such photocatalysts have 

increased attentions in term of green heterogeneous catalysts. The combination of metal ions 

and the organic ligands leads to different ligand-to-metal charge-transfer (LMCT) transitions. 

This phenomenon plays a fundamental role in generating and manipulating band gaps that 

influences on photocatalytic degradation efficiency [22, 23]. Due to these reasons, metal 

organic photocatalysts have various functions, properties, and applications in electronics, 

optics, magnetism, sensors, catalysis, etc. [24, 25]. For instance, Cd-based metal organic 

materials are very promising candidates for photocatalytic application in terms of their 

relatively narrow band gaps, exposure of high-density active sites, large pore size, facile 

loading of highly dispersed heteroatoms, and high stability [26, 27]. 
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           The heterogeneous photocatalyst particle needs the necessary amount of light for 

activation under low operating costs and environmentally sustainable conditions, accordingly 

the light-emitting diode (LED) lamps are extremely better than UV lamps [28, 29]. As 

promising technology, photocatalysis has been widely studied for decomposition of very 

toxic contaminants; therefore, efficient visible-light photocatalysts have been synthesized via 

strategies such as doping and coupling with other semiconductors [30]. It is well known that 

Ag nano-particles have high conductivity properties, which quickly and effectively transfer 

photo-generated electron to inhibit recombination of electron hole pairs and improve the 

photocatalytic activity [31, 32]. The combination between inorganic and organic building 

blocks leads to the synthesis of metal organic materials with widely different compositions, 

morphologies, and sizes. An effective path to design and synthesis such materials is based on 

the application of metal-based ions/clusters with multidentate ligands (pre-designed or in situ 

generated) that contain N- or O-donor atoms. Usually, binding benzene multicarboxylate 

ligands with metal centers forms appropriate materials [33]. 

          In the present work, the Ag:Cd-1,4-BDOAH2 as a new nano-photpcatalyst was 

synthesized under green conditions, and its usage with blue LED irradiation for BG 

degradation was studied in details. The central composite design (CCD) was utilized for 

optimizing and estimating the main variables that are efficient and interaction effects of the 

main variables (time, BG dye concentration, photocatalyst dosage, pH, current, and FeCl3 

dosage) in a batch mode. Additionally, the PEF-PH kinetic data of BG degradation in LED 

light/Ag:Cd-1,4-BDOAH2 instrument were tested with L–H kinetic model. 

 

2. Experimental 
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2.1. Materials and instruments 

In this study, all chemicals and reagents such as hydroquinone, hydrochloric acid (37%), Iron 

(III) chloride, sodium sulfate anhydrous (99.0%), sodium hydroxide (97.0%), and BG (Table 

1) were obtained from Merck. Cadmium nitrate dehydrate (Cd (NO3)2.2H2O) was from 

Sigma-Aldrich. Dae-Jung chemicals and metals Co., LTD provided chloroacetic acid. The 

analytical grade of the reagents was used without further purification. 

UV–Vis spectrophotometer model V-530, Jasco, Japan, was utilized for determining UV 

spectrum of BG. pH/Redox/Temperature meter model AL20 pH (AQUALYTIC, Germany) 

was applied for measuring pH. For recording XRD patterns, Bruker AXS (D8, Advance) 

instrument was applied by the employment of CuK (1.54 Å) as the source of X-ray. The 

recordance of the FTIR spectra of the 1,4-BDOAH2, Cd-1,4-BDOAH2, and Ag:Cd-1,4-

BDOAH2 was carried out using a spectrometer (Perkin Elmer RX-IFTIR) over the range of 

4000-500 cm
-1

. The determination of the average sizes of the of Cd-1,4-BDOAH2 and Ag:Cd-

1,4-BDOAH2 and their morphologies were investigated by FESEM (ZEISS, model Sigma, 

Germany). Philips CM-10 TEM working at 100 kV was applied to further investigate the 

morphology and microstructure of the synthesized materials. The PL spectra of the samples 

were obtained by a Perkin Elmer. 

<Table.1> 

 

2.2. Photocatalyst synthesis 

2.2.1. Synthesis of the 1,4-BDOAH2 by ultrasound-assisted method 

A mixture was prepared by 7.1 g of chloroacetic acid and 2.75 g of hydroquinone, and then 

NaOH (48 g in 97.5 mL water) was added dropwise to the prepared mixture and heated in an 

oil bath at the temperature of 80 °C. After 1.5 h sonication of the obtained mixture at this 

temperature, its temperature was decreased to 25 
°
C, and it was kept in an ice bath for 30 min. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

6 

 

To this mixture, hydrochloric acid was added dropwise until reaching neutral pH, and 

subsequently, the temperature of the flask was naturally increased to room temperature. The 

final white precipitates were filtered, washed with deionized water several times and finally 

recrystallized. Subsequently, it was identified by 
1
HNMR and 

13
C NMR as follow: 

1
H NMR 

(D2O, 250 MHz): δ = 4.34 (s, 4H), 6.81 (s, 4H). 
13

C NMR (D2O, 62.9 MHz): δ = 67.24, 

115.42, 152.12, 147.7, 177.02.  

 

2.2.2. Cd-1,4-BDOAH2 synthesis by ultrasound-assisted method 

Under sonication condition, 0.4 mmol of 1,4-BDOAH2 was dispersed in 50 mL of distillated 

water, and then it was added to 50 mL of cadmium nitrate dehydrate solution (24 mmol). The 

mixture was sonicated at 25 °C for 30 min that led to the formation of white precipitates. The 

final product was filtered and washed with deionized water. 

 

2.2.3. Ag:Cd-1,4-BDOAH2 synthesis by ultrasound assisted method 

The cadmium salt solution was added to 1,4-phenylenedioxy diacetic acid solution while 

sonicated at 25 °C for 10 min. Afterwards, the solution was thoroughly mixed with Ag(NO3) 

(0.025 g). The sonication of the mixture was carried out for 10 min, which causes the reaction 

and mixing to be done completely. Subsequently, the suspension was transferred to an 

autoclave at 100 ºC for 24 h. After filtration of the obtained material, it was washed with 

deionized water several times and finally dried in an oven at 60 ºC. 

 

2.3. Setup of experiment 

General schematic of the experimental setup shown in Fig. 1 was used for BG degradation in 

aqueous solution. As can be seen in the schematic, it includes power supply, graphite 

cylindrical cathode (with 20 cm length and 9 mm diameter), platinum wire anode (76×1 mm 
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dimensions), LED (light strip flexible SMD 5050 RGB, 14.4 W/m
2
), sparger (diffuser), 

power source, and oxygen cylinder. The anode and cathode electrodes were plunged in the 

aqueous solution. The constant electric current between a platinum anode and graphite 

cathode is produced using a DC power supply for the electrochemical process. Around the 

outer cylindrical pipe, a flexible RGB LED light strip is wrapped. The LED lamp is located in 

a glass tube and put in the central of Pyrex (Simax, Czech) cylindrical photo reactor with the 

volume of 3 L. A box covering with aluminum foil for the avoidance of light dispersion is 

used to seal all parts of the system. In the present operation, the flexible RGB LED strip is 

used to provide a blue light, and the spectral distribution of the light with the wavelength of 

irradiation in the range of 465–470 nm. The working volume of the photo reactor is 1 L 

solution consisting photocatalyst. To supply oxygen demand and solution mixing, an oxygen 

diffuser is used. 

<Fig.1 > 

2.4. Experimental procedure 

The PEF-PH process for BG degradation was conducted in a batch reactor at the temperature 

of 25 ºC. Before each experiment run, the reactor glass and the tube glass of LED lamp were 

filled with deionized water. According to CCD, specific amounts of FeCl3 and BG were 

added to the aqueous solution containing 0.05 M Na2SO4 as the supporting electrolyte and 

well mixed for carrying out each experiment run. The solution pH in the range of 3.0-11 was 

adjusted by adding HCl and/or NaOH, and it was transferred to the photo reactor equipped 

with the lamp of LED with glass tube at its middle while the distribution of oxygen in 

aqueous media was at a certain flow rate. After putting the solution of the reactor in a dark 

condition for 20 min for the complete establishment of adsorption and desorption equilibrium 

of BG dye over the surface area of the photocatalyst, the DC power supply, oxygen 

distribution and LED irradiation were switched. At a specific time in each experiment run, 
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the sample was brought out, and then centrifugation was done at 2000 rpm for 2 min for the 

separation of the photocatalyst particles. Analyzing the sample was performed using a UV-

Vis spectrophotometer for determining the PEF-PH degradation of BG. The calculation of 

degradation efficiency (R%) was done by Eq. 1 as following [34, 35]: 

 

 0 t

BG

0

 C -C
R%  = ×100

C
                                                                                     (1) 

 

Where C0 (mg L
-1

) is the concentration of target at initial time and Ct (mg L
-1

) is the 

concentration of target at time t. The typical changes in the absorption spectra of UV–Vis 

during the degradation by PEF-PH is shown in Fig. 2. 

<Fig.2 > 

 

2.5. Response surface methodology 

For the evaluation of experimental model and recognition of the main factors that are 

effective on the process and their interactions with the least number of experimental runs, and 

also the optimization of multiple variables by a suitable model, response surface 

methodology (RSM) is extensively used [36, 37]. RSM approach usually includes three 

stages: design and experiments, response surface modeling by regression, and optimization. It 

is used to evaluate the coefficients in a second order (quadratic) mathematical model [38, 39]. 

In the present work, CCD was applied for modeling the understudy PEF-PH degradation 

process (Table 2). The effective factors including time (X1), BG concentration (X2), pH (X3), 

photocatalyst dosage (X4), current (X5) and amount of FeCl3 (X6) were designed by 

STATISTICA (version. 10.0) (Table 2). Based on the method of small CCD experiments, 33 

individual experimental runs were proposed, and a quadratic polynomial equation was 
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applied for the approximation of the mathematical relationship between the independent 

parameters as follows [40]: 

 

6 6 6
2

0

1 1 1

6

1

%  i i ij i j ii i

i i j i

R X X X X    
   

                                                                          (2) 

 

Where R% is the response predicted by the model (degradation efficiency of BG), and the Xi 

and Xj are known independent variables for each experimental run. β0 parameter is the 

constant of the model, and βi, βii, and βij are respectively the linear coefficient, quadratic 

coefficient, and the coefficient of cross-product [41]. The fitted model quality can be 

evaluated by analysis of variance (ANOVA) that is reliable. The determination of model 

significance is based on the values of P-value and F-value obtained by ANOVA, while the 

best optimum levels for each factors to attain maximum degradation efficiency are 

determined by desirability function (DF) with value between 0.0 and 1.0 (low and high 

desirability, respectively) [42].  

<Table.2> 

3. Result and discussion 

3.1. Photocatalyst characterization 

The FTIR spectrum in Fig. 3 for 1,4-BDOAH2, Cd-1,4-BDOAH2, and Ag:Cd-1,4-BDOAH2 

recorded from 4000 to 500 cm
-1 

indicates a large broad band in the range of 2000-3400 cm
-1

,
 

attributing to the acidic O-H group stretching vibrations. The band at 1604 cm
-1 

assigns to the 

groups of carboxylate (C=O), and the observed band at 1220 cm
-1 

relates to the C-O 

stretching vibrations. In addition, the bands shown at 1058 cm
-1 

is related to the symmetric 

and asymmetric stretching vibrations of O-C=O and the stretching vibration of C-O, as well. 

The bending of aromatic C-H is observed at 684 and 813 cm
-1 

[43]. A large shift in the FTIR 

spectra of the Cd-1,4-BDOAH2 and Ag:Cd-1,4-BDOAH2 is assigned to the O-H, C=O and 
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O-C=O groups transmittance as compared with the free ligand, showing the interaction 

possibility of Cd
2+

 ion with the OH group of free ligand. The peak observed at 1600 cm
-1

 for 

the benzene ring skeleton stretching of 1,4-BDOAH2 can be seen at the same wavenumber 

for the Cd-1,4-BDOAH2 and Ag:Cd-1,4-BDOAH2, proving the successful synthesis of the 

materials. 

<Fig.3> 

The analysis of the surface morphology for the Cd-1,4-BDOAH2 and Ag:Cd-1,4-BDOAH2 

was examined using SEM in Figs. 4 (a-c) and (d-f), respectively. As it is observed, the Cd-

1,4-BDOAH2  is a nano-powder with the typical needle shape of the particles. 

<Fig.4> 

The EDX spectrum (Fig. 5a) clearly shows the existence of O, C, and Cd in the sample, and 

the changes observed in the chemical composition of the sample (Fig. 5b) containing Ag 

clearly shows the incorporation of Ag in Ag:Cd-1,4-BDOAH2. The A% of the elements in the 

obtained samples is in good agreement with the compositions, indicating the favorable 

synthesis of understudy materials. 

<Fig.5> 

The Cd-1,4-BDOAH2 and Ag:Cd-1,4-BDOAH2 in terms of shape and size are respectively 

shown in Fig. 6 (a) and (b). The approximate size of the Cd-1,4-BDOAH2 particles is about 

100 nm and Ag nano-particles in the Ag:Cd-1,4-BDOAH2 are in the range of 30-80 nm (Fig. 

6b). The TEM results are in agreement with those of SEM. 

<Fig.6> 

 

The XRD patterns of the samples were applied to determine their crystalline structures. Fig. 7 

(a) reveals the absence of CdO and CdO2. The XRD peaks prove that the Cd-1,4-BDOAH2 is 

successfully synthesized [44, 45]. Comparing the XRD patterns of the Cd-1,4-BDOAH2 and 
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Ag:Cd-1,4-BDOAH2 indicates no extra peaks corresponding to secondary phases, while the 

absence of silver and silver oxide peaks in the synthesized photocatalysts is probably due to 

the low amount of the loaded Ag [46]. According to the XRD, the average particle size is 80 

nm using Debye-Scherrer equation. 

<Fig.7> 

 

In general, photocatalytic efficiency can be seriously influenced by rapid recombination rate 

of the photo-generated charge carriers. The direct measurement of the electron-hole 

recombination rate is done by photoluminescence (PL) intensity and accordingly increasing 

in intensity of spectrum denotes faster recombination.  The samples were investigated by PL 

spectra and the results in Fig. 8 for the Cd-1,4-BDOAH2 and Ag:Cd-1,4-BDOAH2 (using an 

excitation wavelength of 360 nm) denote a lower intensity of fluorescence emission for the 

Ag:Cd-1,4-BDOAH2, implying a lower rate of electron-hole recombination and higher 

photocatalytic activity in comparison with the Cd-1,4-BDOAH2. 

<Fig.8> 

 

3.2. Comparison of photocatalytic activity of the Cd-1,4-BDOAH2 and Ag:Cd-1,4 

BDOAH2 

The degradation efficiency of BG using the Cd-1,4-BDOAH2 and Ag:Cd-1,4 BDOAH2 (Fig. 

9) reveals higher degradation efficiency using the Ag:Cd-1,4 BDOAH2 in comparison with 

the Cd-1,4-BDOAH2, which prove that the incorporation of Ag leads to enhance in the PEF-

PH activity. 

<Fig.9> 

 

3.3. Analysis of central composite design 
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ANOVA analysis for CCD is applied to find the best operational conditions and construct 

mathematical equation, which are applicable to correlate signal to effective terms. The error 

functions were applied to fit the model to empirical data for calculating the significance of 

each term based on the comparison of the calculated F-value and P-value [47, 48].  The 

results represented in Table 3 for BG degradation by the Ag:Cd-1,4-BDOAH2 reveals the F-

value of 81.57 obtained by the model. The lack-of-fit (LOF) of the proposed model with the 

amount of 0.0502 for BG photo degradation by the Ag:Cd-1,4-BDOAH2 is not significant, 

and "Lack of Fit F-value" is 6.15. The reduced model equation in terms of the coded factors 

was given as follows: 

 

BG 1 2 3 4 5 6 1 2

1 3 1 4 1 5 1 6 2 3 2 4 2 6

2 2 2 2 2

3 4 4 5 5 6 1 3 4 5 6

R%  = + 65.4 +16.8 X - 4.0 X -5.1X + 5.6X +11.3X +8.7X +1.9X X +

6.8X X + 7.3X X + 5.0X X + 0.9X X  + 8.3X X + 2.5X X + 7.9X X -

3.3X X + 5.7 X X +1.0X X - 0.6 X + 6.6X +1.5X +1.4X + 4.1X

           (3) 

<Table. 3> 

 

3.4. Response surface plots 

3D RSM plots were applied to indicate the combined effects and main interactions between 

the factors on PEF-PH of BG by the Ag:Cd-1,4-BDOAH2 (Fig. 10a-c). The fitted response 

surface plots (R%) versus the main variables (Fig. 10a) shows the presence of interaction 

between reaction time and BG concentration on the PEF-PH degradation efficiency. 

Increasing BG degradation efficiency of BG with raising time is due to higher contact time 

between the Ag:Cd-1,4-BDOAH2 and BG. Increasing initial dye concentration leads to 

reduce in degradation efficiency. Lower BG concentration is proportional with higher ratio of 

reaction sites to BG concentration, which causes an increase in degradation efficiency of the 

understudy system. The effects of pH and photocatalyst dosage on PEF-PH degradation 

efficiency and their interactions are shown in Fig. 10(b). The reactor probably enhances the 
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production of H
+
 ion species at lower range of pH, which mainly causes an increase in 

degradation efficiency. In addition, PEF-PH degradation efficiency increases by the 

production of •OH
- 

ion species due to increase in pH value. An enhance in degradation 

efficiency of BG is observed when photocatalyst dosage raised due to the higher specific 

surface of photocatalyst at higher dosage. The results show that current and the amount of 

FeCl3 have a positive effect on PEF-PH degradation efficiency (Fig. 10b). The higher value 

of current and FeCl3 amount cause an increase in PEF rate in the aqueous solution.  

<Fig. 10> 

 

3.5. Optimization condition study 

The present study used a desirability function (DF) approach based on CCD model for the 

optimization of the parameters in the PEF-PH process [38, 39]. The predicated values and DF 

for the PEF-PH degradation of BG dye by the Ag:Cd-1,4-BDOAH2 is displayed in Fig. 11. 

The maximum degradation efficiency represents the desired conditions while desirability is 

close to 1. The desirability profile represents the maximum PEF-PH degradation of 100% 

(DF = 1) for BG using the Ag:Cd-1,4-BDOAH2. The optimum conditions for this percentage 

are the process time (X1) of 50 (min), BG concentration (X2) of 4 (mg L
-1

), pH (X3) of 5, 

Ag:Cd-1,4-BDOAH2 (X4) dosage of 0.4 (g L
-1

), current (X5) of 250 (mA), and FeCl3 amount 

(X6) of 0.3 (mmol L
-1

). 

<Fig.11> 

 

3.6. Kinetic effect study 

To design a PEF-PH reactor, the degradation rate assigning to the studies of kinetic is 

considered as an important stage. The degradation kinetic in aqueous solutions can be 

expressed by first-order kinetic model by the bellowing equation: 
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0ln
t

C
kt

C

 
 

 
  (4) 

All parameters corresponding to this equation have been described elsewhere [9, 42]. Fig. 

12(a) shows the fitness of the experimental data by pseudo-first order model with a high 

order of linearity. The L–H model was employed to analyze the degradation kinetic of BG 

[49-51]. By using the definition of surface coverage factor (θ), the reaction between the 

interface of solid-liquid with the photocatalyst and FeCl3 for BG degradation was described 

by L-H kinetic model: 

0

01
r r

s s

KCdC
R k k

dt KC K C
   

 
  (5) 

All parameters corresponding to this equation have been described elsewhere [9, 42]. The 

final form of the kinetic rate is as follows: 

0

1 1 1

r A rR k K C k
    (6) 

Where KA is defined by KA=K/ (1+Ks Cs). The result in Fig. 12(b) shows a straight line 

formed by the plot of 1/R versus 1/C0 according to L–H model with the coefficient of 

determination value of 0.998. The plot gives the intercept of 1/kr and slope of 1/krKA. The 

rate constant values of PEF-PH degradation were calculated to be kr=1.164 mg L
−1

 min
−1

 and 

KA=0.0181 Lmg
−1

.  

 

<Fig.12> 

 

3.7. Effect of procedure on the treatment efficiency 

To evaluate the performance of individual and combinational procedures, different treatment 

processes including catalysis (adsorption), photolysis (light irradiation without catalyst), 

photocatalysis (light irradiation + catalyst), Fenton (electro Fenton + catalyst), and 
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photoelectro-Fenton (electro Fenton + light irradiation + catalyst) were investigated (Fig. 

13a). The experimental results indicate the treatment percentages of 6.74, 19.22, 32.22, 

58.54, and 76.45% using adsorption, photolysis, photocatalyst, Fenton, and photoelectro-

Fenton, respectively. The contribution of Fenton and photocatalytic processes leads to an 

increase in BG degradation efficiency due to the generation of the hydroxyl radicals. Fig. 13b 

indicates the reusability of the photoelectron Fenton for the degradation of BG in three cycles 

under visible-light (LED) irradiation, and the experimental results reveal that the photo-

catalyst can be reused three times, indicating the good stability of understudy photoelectron 

Fenton. 

<Fig.13 > 

 

3.8. Proposed mechanism of BG degradation by the PEF-PH process 

The mechanism of PEF-PH degradation using the synthesized photocatalyst under the 

irradiation of blue LED is illustrated in Fig. 14. Since the blue LED provides energy higher 

than the energy band gap of the synthesized photocatalyst, it can be excited by light energy, 

leading to the formation of electron-hole pairs. The valence holes (h VB
+
) are strong oxidants 

and are able to oxidize various contaminants and form hydroxyl radicals, while the 

conduction band electrons (e CB
_
 ) are good reductants and can reduce the dissolved oxygen 

to O2
.-
[52, 53].                                         

  
- +

2 2Ag:Cd-1,4-BDOAH  + h Ag:Cd-1,4-BDOAH (e  + h )                                    (7) 

2

+ .H O  h    + OH                                                                                                 (8) 

- .-

2 2O  + e O                                                                                                            (9) 

On the other hand, iron is added as a Fe
3+

 salt and H2O2 is produced by reduction of oxygen 

at the cathode.  

3+ - 2+Fe  + e Fe                                                                                                        (10) 
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+ -

2 2 2O  + 2H  + 2e H O                                                                                           (11) 

In the presence of light, the photo-Fenton process can be more efficient by the photo 

reduction of Fe
+‏3

 to Fe
2+
 .and the generation of additional hydroxyl radicals ‏

2+ 3+ -

2 2

.Fe  + H O  Fe  + OH  + OH                                                                           (12) 

3 2

2 2

.Fe H O Fe H OOH                                                                               (13) 

In both processes, a large number of O2
-•
 and OH

•
 is produced that can act as strong oxidants 

and play an efficient role in BG degradation. 

<Fig.14 > 

 

3.9. Comparison of the PEF-PH with other systems 

BG degradation efficiency by the PEF-PH was compared with formerly reported photocatalyst, and 

the results is represented in Table 4. The results indicate that the PEF for Ag:Cd-1,4-BDOAH2 is 

suitable and shows reasonable degradation performance for BG. 

 

<Table. 4> 

 

4. Conclusion 

In this work, the synthesis of a photocatalyst (Cd-1,4-BDOAH2) with a low band gap was 

performed without using any toxic and expensive solvents. By loading this photocatalyst with 

Ag, a better photocatalyst, namely Ag:Cd-1,4-BDOAH2, was synthesized with a lower band 

gap that showed higher efficiency in PEF-PH degradation of BG under blue LED irradiation. 

The combination of photoelectro-Fenton and photocatalytic processes showed an efficient 

approach for degradation of BG dye. The optimum values to reach the maximum degradation 

efficiency using the Ag:Cd-1,4-BDOAH2 were obtained at 50 min of time, 4 mg L
-1

 of BG 

concentration, 5 of pH, 0.4 g L
-1

 of the Ag:Cd-1,4-BDOAH2, 250 mA of current, and 0.3 
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mmol L
-1

 of FeCl3. At these conditions, the maximum degradation efficiency of BG by the 

PEF-PH was obtained (100%). The treatment percentages of 6.74, 19.22, 32.22, 58.54, and 

76.45% obtained by adsorption, photolysis, photocatalyst, Fenton, and photoelectro-Fenton, 

respectively. All hypotheses about the applicability of the PEF-PH were achieved, and it 

showed to be high efficient. As a result, it could be considered as a promising approach for 

the treatment of dye wastewater. 
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Fig. 1. Schematic diagram of the reactor setup for electrolytic–photocatalytic process: (1) 

power supply, (2) the reaction flask, (3) Pt anode, (4) graphite cathode, (5) LED lamp, (6) 

sparger (diffuser), (7) power source, (8) flow meter, and (9) oxygen cylinder. 
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Fig. 2. UV–Vis absorption spectra of photoelectro-Fenton/photocatalytic degradation of BG. 
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Fig. 3. FT-IR spectra of 1,4-BDOAH2, Cd-1,4-BDOAH2, and Ag:Cd-1,4-BDOAH2. 
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Fig. 4. SEM images of (a-c) Cd-1,4-BDOAH2 and (d-f) Ag:Cd-1,4-BDOAH2.
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Fig. 5. EDX spectra of the prepared (a) Cd-1,4-BDOAH2 and (b) Ag:Cd-1,4-BDOAH2.
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Fig. 6. TEM images of (a) Cd-1,4-BDOAH2 and (b) Ag:Cd-1,4-BDOAH2.
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Fig. 7. XRD patterns of (a) Cd-1,4-BDOAH2 and (b) Ag:Cd-1,4-BDOAH2.Jo
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Fig. 8. Photoluminescence (PL) spectra of Cd-1,4-BDOAH2 and Ag:Cd-1,4 BDOAH2.
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Fig. 9. Comparison of the photocatalytic activity of Cd-1,4-BDOAH2 and Ag:Cd-1,4 

BDOAH2. 
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Fig. 10. Response surface plots for (a) X1X2, (b) X3X4, and (c) X5X6 for PEF-PH degradation of 

BG.
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Fig. 11. Profiles of predicated values and desirability functions for PEF-PH degradation of BG.
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Fig. 12. Plots of the kinetic models, typically for BG degradation using Ag:Cd-1,4-BDOAH2: (a) 

first-order and (b) L–H. Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

36 

 

 

Fig. 13. (a) Comparison of the obtained efficiency using different treatment methods and (b) 

Reusability of Ag:Cd-1,4 BDOAH2 for PEF-PH degradation of BG.
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Fig. 14. Proposed mechanism for PEF-PH degradation of BG. 
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Table 1. Characteristics of Brilliant Green dye. 

Name BG 

Chemical formula C27H33N2.HO4S 

Molecular weight 482.64 g mol
-1

 

Molecular structure 
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Table 2. CCD matrix and responses for the PEF-PH degradation of BG. 

Factor 
Levels 

Low (-1) Central (0) High (+1) -α +α 

X1: Time (min) 30 50 70 10 90 

X2: Dye concentration (mg L
-1

) 3 4 5 2 6 

X3: pH 5 7 9 3 11 

X4: Photocatalyst dosage (g L
-1

) 0.02 0.03 0.04 0.01 0.05 

X5: Current (mA) 150 200 250 100 300 

X6: Fecl3 (mmol L
-1

) 0.2 0.3 0.4 0.1 0.6 

Run Block X1 X2 X3 X4 X5 X6 P% 

1 1 90 4 7 0.03 200 0.30 94.61 

2 1 50 4 11 0.03 200 0.30 79.60 

3 1 30 5 9 0.04 250 0.20 46.22 

4 1 50 4 7 0.03 200 0.30 65.35 

5 1 50 4 7 0.01 200 0.30 58.32 

6 1 50 4 7 0.03 200 0.30 66.83 

7 1 30 3 5 0.04 250 0.20 99.67 

8 1 70 3 5 0.02 250 0.20 98.80 

9 1 70 5 9 0.02 250 0.20 82.93 

10 1 70 3 9 0.04 150 0.40 76.28 

11 1 50 4 7 0.03 300 0.30 91.71 

12 1 30 5 9 0.02 150 0.20 39.98 

13 1 50 4 7 0.03 200 0.10 62.74 

14 1 50 4 7 0.05 200 0.30 80.73 

15 1 70 5 9 0.04 150 0.20 78.49 

16 1 30 5 5 0.02 150 0.40 71.30 

17 1 50 2 7 0.03 200 0.30 72.73 

18 1 50 4 7 0.03 100 0.30 46.52 

19 1 50 4 7 0.03 200 0.30 64.90 

20 1 30 3 5 0.02 150 0.20 89.16 

21 1 50 4 7 0.03 200 0.30 67.84 

22 1 30 3 9 0.02 150 0.40 54.06 

23 1 50 4 7 0.03 200 0.30 67.52 

24 1 70 3 5 0.04 150 0.20 95.85 

25 1 50 6 7 0.03 200 0.30 56.54 

26 1 70 3 9 0.02 250 0.40 98.90 

27 1 70 5 5 0.04 150 0.40 97.03 

28 1 10 4 7 0.03 200 0.30 27.62 

29 1 50 4 7 0.03 200 0.50 97.37 

30 1 50 4 3 0.03 200 0.30 100.0 

31 1 70 5 5 0.02 250 0.40 94.10 

32 1 30 3 9 0.04 250 0.40 53.67 

33 1 30 5 5 0.04 250 0.40 91.76 
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Table 3. Results of ANOVA for the response surface quadratic model for the PEF-PH 

degradation of BG. 

Source  

variation 

BG 

SS
a 

DF
b 

MS
c 

F-value P-value 

Model 12522.94 22 569.22 81.57 < 0.0001 

X1 2243.83 1 2243.83 321.56 < 0.0001 

X2 391.72 1 391.72 56.14 < 0.0001 

X3 208.08 1 208.08 29.82 0.0003 

X4 251.10 1 251.10 35.98 0.0001 

X5 1021.07 1 1021.07 146.33 < 0.0001 

X6 599.62 1 599.62 85.93 < 0.0001 

X1X2 56.33 1 56.33 8.07 0.0175 

X1X3 739.57 1 739.57 105.99 < 0.0001 

X1X4 284.51 1 284.51 40.77 < 0.0001 

X1X5 133.00 1 133.00 19.06 0.0014 

X1X6 13.10 1 13.10 1.88 0.2005 

X2X3 365.87 1 365.87 52.43 < 0.0001 

X2X4 103.23 1 103.23 14.79 0.0032 

X2X6 328.34 1 328.34 47.05 < 0.0001 

X3X4 170.04 1 170.04 24.37 0.0006 

X4X5 174.04 1 174.04 24.94 0.0005 

X5X6 15.25 1 15.25 2.19 0.1701 

X1
2
 11.61 1 11.61 1.66 0.2261 

X3
2
 1297.19 1 1297.19 185.90 < 0.0001 

X4
2
 66.44 1 66.44 9.52 0.0115 

X5
2
 57.57 1 57.57 8.25 0.0166 

X6
2
 511.81 1 511.81 73.35 < 0.0001 

Residual 69.78 10 6.98   

Lack of Fit 62.95 6 10.49 6.15 0.0502 

Pure Error 6.83 4 1.71   

Cor Total 12592.72 32    
a
 Sum of Square 

b
 Degree of freedom 

 
c
 Mean of Square 
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Table 4. Performance comparison of different degradation systems for degradation of some 

pollutants. 

Photocataly

st 

(dispersed) 

Anode Cathode Dye 

Tim

e 

(min

) 

Eliminatio

n  

(%) 

Sourc

e of 

light 

Ref. 

TiO2 

Boron-

doped 

diamon

d 

Carbon felt 
Reactive 

yellow 17 
30 99.0 UV [54] 

TiO2 
Pt 

sheets 

Carbon nanotube–

polytetrafluoroethyle

ne 

Basic Red 

46 
360 98.8 UV [52] 

TiO2 Pt sheet 

Carbon nanotube-

polytetrafluoroethyle

ne 

Acid Red 

17 
36 96.4 UV [55] 

TiO2 Pt sheet Graphite felt Acid Blue 9 8 98.0 UV [21] 

TiO2 
Platinu

m 
Carbon felt 

Reactive 

Red 120 
90 99.5 UV [56] 

- 
TiO2 –

Ti mesh 
Pt sheet Orange-G 300 96.8 UV [57] 

- WO3/W 
Fe@Fe2O3 /carbon 

felt 
Methyl blue 90 91.6 UV [58] 

- Pt plate 

Reduced graphene 

oxide (RGO)-

Ce/WO3 nanosheets 

(RCW) 

Ciprofloxac

in 
60 100.0 UV [59] 

Ag:Cd-1,4-

BDOAH2 

Platinu

m 
Graphite BG 50 ~99.9 LED 

Presen

t  

study 
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1. Highlights 
 

1) Cadmium-benzene-1,4-dioxyacetic acid photocatalyst synthesis by ultrasonication. 

2) Doping Cd-1,4-BDOAH2 with Ag to produce Ag:Cd-1,4-BDOAH2 with a low band 

gap. 

3) Photoelectro-Fenton degradation of BG at various time of blue LED irradiation. 

4) The degradation kinetic data of BG were successfully fitted to L–H model. 
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Figure 2
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