

Studies toward the Synthesis of Amphidinolide C1: Stereoselective Construction of the C(1)–C(15) Segment

Sheila Namirembe, Lu Yan, and James P. Morken*

ABSTRACT: An enantioselective synthesis of the C(1)-C(15) segment of the marine natural product amphidinolide C has been accomplished by a route that includes a stereoselective boron–Wittig reaction to furnish a trisubstituted alkenylboronate. In addition, the route employs enantioselective alkene diboration to install the C(6) hydroxyl group which undergoes intramolecular conjugate addition to establish a tetrahydrofuran ring. Lastly, a catalytic Suzuki–Miyaura cross-coupling is accomplished to construct the C(9)-C(10) bond.

A mphidinolides are a large family of macrolide natural products isolated from dinoflagellates *Amphidinium* sp.¹ As of this writing, more that 40 compounds have been isolated from this organism by the Kobayashi group with amphidino-lide C1 (1, Figure 1) being a unique structure.² As shown in Figure 1, the bioactivity of the C1 macrolactone is very high with an IC₅₀ of 8 nM versus L1210 cells. Interestingly, very subtle changes to the C1 structure lead to significant erosion of cytotoxicity: protection of the C(29) hydroxyl group

Figure 1. Structure and bioactivity of several members of the amphidinolide family of marine natural products.

(amphidinolide C2, 2) or removal of the C(8) hydroxyl (amphidinolide C4, 3) leads to a 100-fold loss in potency as does alteration of the macrolide side chain (amphidinolide F, 4).³ Many other amphidinolides possess nanomolar potency against cancer cell lines, and nearly all of the cytotoxic examples bear alkenyl epoxide functional groups such as that present in amphidinolide H (5).⁴ Amphidinolide H has been shown to covalently modify actin, an activity that is thought to originate from the electrophilicity of the alkenyl epoxide group.⁵ That amphidinolide C1 can retain potency while not enjoying the added binding ability proffered by a highly electrophilic functional group has made this compound a target of interest. Subsequent to Kobayashi's reports on the isolation, structural elucidation² and absolute stereochemistry⁶ of amphidinolide C1, several groups have worked toward its efficient chemical synthesis. In addition to a number of fragment studies,⁷ completed total synthesis have been recorded by teams from the Fürstner⁸ and Carter⁹ laboratories. In this report, we describe our approach to the C(1)-C(15)segment of amphidinolide C1 via a combination of catalytic synthetic methods.

Received: September 17, 2020

Our interest in amphidinolide C stems from its biological activity and the challenges posed by its efficient and practical synthesis. To address the target, we planned to employ a Yamaguchi esterification¹⁰ to complete the lactone and to join fragments A and B (Figure 2) by a nitroalkane conjugate

Figure 2. Synthetic approach to the construction of amphidinolide C1 from smaller fragments.

addition¹¹/Nef reaction.¹² Fragment A represents the C(1) to C(15) segment of amphidinolide C and might be accessible by transition metal-catalyzed cross-coupling of fragments C and D to connect C(9) with C(10). Of note, a cross-coupling approach was employed by the Fürstner team to connect C(9) and C(10), albeit a Stille reaction was employed whereas we wished to examine the utility of the Suzuki–Miyaura reaction to establish this linkage. Lastly, the synthesis of the individual C and D fragments, as delineated below, was accomplished using boron-based methodology as described by our laboratories.

To synthesize fragment C in a catalytic enantioselective fashion, we considered the Krische anti crotylation¹³ as a scalable and reliable method for efficient construction of the two stereogenic centers. Thus, aldehyde 6 was employed as substrate under reducing conditions with 2-propanol as reductant and iridium complex (R)-I as the catalyst (Scheme 1). This process furnished alcohol 7 in good yield and with excellent stereoselectivity (98% ee). While synthesis of trisubstituted alkenyl boronates such as that which appears in compound 10 can be effected by alkyne carbometalation/ borylation,¹⁴ this process employs potently pyrophoric trimethylaluminum as a requisite reagent. As an alternative, we considered the boron-Wittig reaction of ketones that was recently established in our laboratory.¹⁵ Thus, after hydroxyl protection, compound 8 was subjected to Wacker oxidation¹⁶ of the terminal alkene, which delivered ketone 9 in good yield. Using the recently reported modified boron–Wittig reaction,¹ we converted ketone 9 into the desired alkenyl boronic ester 10 in high yield and excellent diastereoselectivity. ¹H NMR NOESY analysis was used to establish the E configuration of the olefin (see the Supporting Information for details).

To access fragment **D** (compound 16, Scheme 2), we started with readily accessible known alcohol 11.¹⁷ Alcohol 11 underwent a Swern oxidation¹⁸ to afford an aldehyde which was directly subjected to stabilized-Wittig olefination¹⁹ to furnish known unsaturated ester 12.²⁰ At this juncture, we applied the recently developed carbohydrate and DBU cocatalyzed diboration²¹ to terminal alkene 12 which enabled formation of diol 13 in good yield and diasteroselectivity. To Scheme 1. Synthesis of the C(10)-C(16) (10) Segment of Amphidinolide C1

access the trans tetrahydrofuran ring, we considered basepromoted cyclization according to a stereoselectivity model proposed by Roush.^{7c} After investigating a number of bases and reaction conditions, it was found that reaction in the presence of DBU at 60 °C promoted the intramolecular cyclization of 13 to give trans-disubstituted tetrahydrofuran 14 in good yield and diastereoselectivity. Completion of the synthesis of fragment 16 employed Parikh-Doering oxidation²² to transform alcohol 14 into the derived aldehyde which, given its instability, was immediately subjected to proline-catalyzed aldol reaction with α -siloxyacetone to give 15. This procedure was employed by Fürstner⁸ and, with slight modification was found to be effective for the production of 15. After silyl protection of 15 the ketone was deprotonated with KHMDS and then treated with Comins' reagent²³ to furnish the alkenyl triflate 16 in moderate yield.

Previous syntheses of amphidinolide C and F have relied on the Stille cross-coupling to construct the diene motif. While this methodology is feasible, it utilizes toxic organotin reagents and might pose a safety concern on large scale. To the best of our knowledge, the Suzuki-Miyaura cross-coupling with appropriate alkenyl derivatives has not been employed in the construction of amphidinolide targets. Moreover, through the use of the boron-Wittig reaction, ample material was available to explore this strategy. During these studies, a number of conditions were investigated to execute the Suzuki-Miyaura cross-coupling. During the course of the optimization studies, it was found that the amount of protodeboronation product (19, Scheme 3) was affected by the amount of base. In

addition, the amount of isomerized product **18** was influenced by the nature of the base and light. After optimization, we found that $Pd(dppf)Cl_2$, K_3PO_4 , THF/H₂O, and reaction at 60 °C in the dark provided the desired cross coupling product in 52–61% isolated yield. During the course of the reaction, the silyl ether group at C(7) was cleaved to generate alcohol **17** as the product. This outcome is expected to be inconsequential to the ultimate synthesis strategy.

In conclusion, we have accomplished the synthesis of the C(1)-C(15) segment of amphidinolide C. The key steps included a catalytic and enantioselective *anti* Krische crotylation and a modified boron-Wittig olefination. Also critical were the carbohydrate/DBU co-catalyzed diboration and an organocatalytic *anti* aldol reaction. This report also describes the first time a Suzuki–Miyuara cross-coupling has been demonstrated to assemble two advanced intermediates for the synthesis amphidinolide C. An important aspect of the cross-coupling is that it should be done in the absence of light; otherwise, isomerization of the product diene occurs. Collectively, the knowledge gained from the syntheses described above will assist in completion of amphidinolide C.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c03134.

Procedures, characterization, spectral and chromatographic data (PDF)

AUTHOR INFORMATION

Corresponding Author

James P. Morken – Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States; Occid.org/0000-0002-9123-9791; Email: morken@bc.edu

Authors

Sheila Namirembe – Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States

Lu Yan – Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c03134

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the NIH for funding (NIGMS GM-R35-127140). We also acknowledge Chenlong Zhang and Alex Vendola for helpful experimental assistance.

REFERENCES

(1) Review: Kobayashi, J. J. Antibiot. 2008, 61, 271-284.

(2) Kobayashi, J.; Ishibashi, M.; Wälchli, M. R.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Ohizumi, Y. J. Am. Chem. Soc. **1988**, 110, 490– 494.

(3) Amphidinolide F: Kobayashi, J.; Tsuda, M.; Ishibashi, M.; Shigemori, H.; Yamasu, T.; Hirota, H.; Sasaki, T. J. Antibiot. **1991**, 44, 1259–1251.

(4) Kobayashi, J.; Shigemori, H.; Ishibashi, M.; Yamasu, T.; Hirota, H.; Sasaki, T. J. Org. Chem. **1991**, *56*, 5221–5224.

(5) Usui, T.; Kazami, S.; Dohmae, N.; Mashimo, Y.; Konda, H.; Tsuda, M.; Terasaki, A. G.; Ohashi, K.; Kobayashi, J.; Osada, H. *Chem. Biol.* **2004**, *11*, 1269–1277.

(6) (a) Kubota, T.; Tsuda, M.; Kobayashi, J. Org. Lett. 2001, 3, 1363–1366. (b) Kubota, T.; Tsuda, M.; Kobayashi, J. Tetrahedron 2003, 59, 1613–1625.

(7) (a) Shotwell, J. B.; Roush, W. R. Org. Lett. 2004, 6, 3865-3868. (b) Williams, D. R.; Fultz, M. W. J. Am. Chem. Soc. 2005, 127, 14550-14551. (c) Mohapatra, D. K.; Rahaman, M.; Chorghade, S.; Gurjar, M. K. Synlett 2007, 18, 567-570. (d) Bates, R. H.; Shotwell, J. B.; Roush, W. R. Org. Lett. 2008, 10, 4343-4346. (e) Armstrong, A.; Pyrkotis, C. Tetrahedron Lett. 2009, 50, 3325-3328. (f) Mohapatra, D. K.; Dasari, P.; Rahaman, H.; Pal, R. Tetrahedron Lett. 2009, 50, 6276-6279. (g) Paudyal, M. P.; Rath, N. P.; Spilling, C. D. Org. Lett. 2010, 12, 2954-2957. (h) Ferrié, L.; Figadère, B. Org. Lett. 2010, 12, 4976-4979. (i) Roy, S.; Spilling, C. D. Org. Lett. 2010, 12, 5326-5329. (j) Morra, N. A.; Pagenkopf, B. L. Org. Lett. 2011, 13, 572-575. (k) Wu, D.; Forsyth, C. J. Org. Lett. 2013, 15, 1178-1181. (l) Clark, J. S.; Yang, G.; Osnowski, A. P. Org. Lett. 2013, 15, 1460-1463. (m) Clark, J. S.; Yang, G.; Osnowski, A. P. Org. Lett. 2013, 15, 1464-1467. (n) Morra, N. A.; Pagenkopf, B. L. Tetrahedron 2013, 69, 8632-8644. (o) Morra, N. A.; Pagenkopf, B. L. Eur. J. Org. Chem. 2013, 2013, 756-760. (p) Williams, D. R.; De, R.; Fultz, M. W.; Fischer, D. A.; Morales-Ramos, A.; Rodríguez-Reyes, D. Org. Lett. 2020, 22, 4118-4122.

(8) Valot, G.; Mailhol, D.; Regens, S. C.; O'Malley, P. D.; Godineau, E.; Takikawa, H.; Philipps, P.; Fürstner, A. *Chem. - Eur. J.* **2015**, *21*, 2398–2408.

(9) Mahapatra, S.; Carter, G. R. J. Am. Chem. Soc. 2013, 135, 10792-10803.

(10) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. **1979**, *52*, 1989–1993.

(11) (a) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Chem. Rev. 2005, 105, 933–971. (b) Ono, N.; Kamimura, A.; Kaji, A. Synthesis 1984, 1984, 226–227. (c) Pollini, G. P.; Barco, A.; De Giuli, G. Synthesis 1972, 1972, 44–45. (d) Chavan, S. P.; Pasupathy, K.; Venkatraman, M. S.; Kale, R. R. Tetrahedron Lett. 2004, 45, 6879–6882. (e) Ballini, R.; Barboni, L.; Bosica, G.; Fiorini, D. Synthesis 2002, 18, 2725–2728.

(12) For recent examples: (a) Ballini, R.; Petrini, M. Adv. Synth. Catal. 2015, 357, 2371–2402. (b) Aghahosseini, H.; Ramazani, A.; Jalayer, N. S.; Ranjdoost, Z.; Souldozi, A.; Ślepokura, K.; Lis, T. Org. Lett. 2019, 21, 22–26.

(13) (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340–6341. (b) Kim, I. S.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891–14899. (c) Gao, X.; Townsend, I. A.; Krische, M. J. J. Org. Chem. 2011, 76, 2350–2354. (d) Dechert-Schmitt, A. M.; Schmitt, D. C.; Krische, M. J. Angew. Chem., Int. Ed. 2013, 52, 3195–3198.

(14) Zhurakovskyi, O.; Dias, R. M. P.; Noble, A.; Aggarwal, V. K. Org. Lett. **2018**, 20, 3136–3139.

(15) (a) Coombs, J. R.; Zhang, L.; Morken, J. P. Org. Lett. **2015**, *17*, 1708. (b) Namirembe, S.; Gao, C.; Wexler, P. R.; Morken, J. P. Org. Lett. **2019**, *21* (11), 4392–4394.

(16) Czuba, I. R.; Zammit, S.; Rizzacasa, M. A. Org. Biomol. Chem. **2003**, 1, 2044–2056.

(17) (a) Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 83-91.

(b) Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 77-82. (c) Meiries,

S.; Bartoli, A.; Decostanzi, M.; Parrain, J.-L.; Commeiras, L. Org. Biomol. Chem. 2013, 11, 4882-4890.

(18) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651-1660.

(19) Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198-2200.

(20) Sakamoto, K.; Hakamata, A.; Iwasaki, A.; Suenaga, K.; Tsuda, M.; Fuwa, H. *Chem. - Eur. J.* **2019**, *25*, 8528–8542.

(21) (a) Fang, L.; Yan, L.; Haeffner; Morken, J. P. J. Am. Chem. Soc. 2016, 138, 2508–2511. (b) Yan, L.; Meng, Y.; Haeffner, F.; Leon, R. M.; Crockett, M. P.; Morken, J. P. J. Am. Chem. Soc. 2018, 140, 3663– 3673.

(22) Parikh, J. R.; Doering, W. v. E. J. Am. Chem. Soc. 1967, 89, 5505-5507.

(23) Comins, D. L.; Dehghani, A. Tetrahedron Lett. **1992**, 33, 6299–6302.

https://dx.doi.org/10.1021/acs.orglett.0c03134 Org. Lett. XXXX, XXX, XXX-XXX