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Abstract 

The design, synthesis and biological evaluations of eight 4-substituted 5-methyl-furo[2,3-

d]pyrimidines are reported. Synthesis involved N
4
-alkylation of N-aryl-5-methylfuro[2,3-
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d]pyrimidin-4-amines, obtained from Ullmann coupling of 4-amino-5-methylfuro[2,3-

d]pyrimidine and appropriate aryl iodides. Compounds 3, 4 and 9 showed potent microtubule 

depolymerizing activities, while compounds 6‒8 had slightly lower potency. Compounds 4, 6, 7 

and 9 inhibited tubulin assembly with IC50 values comparable to that of combretastatin A-4 (CA-

4). Compounds 3, 4, and 6‒9 circumvented Pgp and βIII-tubulin mediated drug resistance, 

mechanisms that can limit the efficacy of paclitaxel, docetaxel and the vinca alkaloids. In the 

NCI 60-cell line panel, compound 3 exhibited GI50 values less than 10 nM in 47 of the cell lines. 

In an MDA-MB-435 xenograft model, compound 3 had statistically significant antitumor effects. 

The biological effects of 3 identify it as a novel, potent microtubule depolymerizing agent with 

antitumor activity.   

 

Introduction 

Microtubules are filamentous cytoskeleton protein polymers composed of -tubulin 

heterodimers. Microtubules play an important role in many aspects of cellular function, including 

cellular transport, protein trafficking and mitosis. Microtubule targeting agents (MTAs) are some 

of the most effective drugs used to treat cancer.
1-3

 MTAs are the only class of cytotoxic agents 

effective against p53-mutant cell lines, which constitute 39 of the 58 cell lines in the NCI 60-cell 

line panel.
4, 5 

MTAs are widely used for the treatment of both solid tumors and hematological 

malignancies.
1-3

 These drugs are structurally diverse and are classified into two main groups: 

microtubule stabilizers and microtubule destabilizers. Microtubule stabilizers promote 

microtubule polymerization and include the taxanes, paclitaxel, docetaxel and cabazitaxel and 

the epothilone, ixabepilone. Microtubule destabilizers induce microtubule depolymerization and 

include the vinca alkaloids and colchicine-site agents. However, at low antiproliferative 
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concentrations, both types of agents suppress microtubule dynamics leading to mitotic arrest and 

subsequent cell death in cells in culture.
1, 2

 New evidence suggests that the ability of these drugs 

to inhibit interphase signaling events likely contributes to their anticancer actions.
6
  

 

Figure 1. Representative microtubule targeting agents. 

 

MTAs are divided into 5 classes based on their interactions within the taxane, vinca, 

colchicine, laulimalide/peloruside or the maytansine site on tubulin (Figure 1). Paclitaxel, 

docetaxel, cabazitaxel and ixabepilone bind to -tubulin in the interior of the microtubule, a site 

referred to as the taxane site.
7, 8

 The taxanes are widely used in the treatment of adult solid 

tumors.
9, 10 

The vinca alkaloids, including vincristine, vinblastine, vindesine and vinorelbine, as 

shown in a crystal structure with vinblastine, require two distinct tubulin αβ-heterodimers to 

form a binding site. The site is formed by amino acid residues from both α- and β-tubulin, and 

the vinblastine molecule was located between the two heterodimers. The vinca alkaloids are 

important in the treatment of hematological malignancies, lymphoma and childhood cancers.
9 

Laulimalide and peloruside A bind to a distinct site on β-tubulin, referred to as the 
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laulimalide/peloruside site, and both compounds cause microtubule stabilization. This site is 

located on the exterior of the microtubule.
11

 Recently, Prota et al.
12

 demonstrated that 

maytansine binds to a different site on β-tubulin, and they named this the maytansine site. 

Maytansine, rhizoxin F and a polyketide PM060184, initially isolated from the marine sponge 

Lithoplocamia lithistoides, bind within this newly characterized site, occupancy of which  

prevents the addition of new subunits to the plus ends of microtubules, resulting in microtubule 

depolymerization.
12

 Maytansine is the cytotoxic component in the antibody drug conjugate 

trastuzumab emtansine recently approved by the FDA for the treatment of HER2-positive 

advanced breast cancer.
13

 The fifth class of MTAs comprises a variety of small molecules that 

includes colchicine and combretastatins A-1 (CA-1) and A-4 (CA-4), which bind in the 

colchicine site located on -tubulin at its interface with -tubulin.
14, 15

 Combretastatin A-4 

phosphate (CA-4P, fosbretabulin) and A-1 diphosphate (CA-1P, OXi4503), 2-methoxyestradiol 

and verubulin
16, 17

 are a few of the colchicine site binding agents which have been evaluated in 

phase 1 and 2 clinical trials as anticancer agents alone and in combination with other drugs. Thus 

far, no colchicine site agent has been approved as an anticancer agent.
18-24

 Hence, this site 

provides new opportunities for drug discovery.  

 

Rationale and Molecular Modeling 

We previously reported
25

 that cyclopenta[2,3-d]pyrimidine (±)-1·HCl (Figure 2) has potent 

microtubule depolymerization activity (EC50 in A-10 cells = 47 nM) and in vitro cytotoxic  

effects against MDA-MB-435 cancer cells (IC50 ± SD  = 18.8 ± 0.4 nM). 
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Figure 2. Parent 5-methyl-cyclopenta[2,3-d]pyrimidine (±)-1 and target 5-methyl-furo[2,3-

d]pyrimidines 2 and 3. 

Replacement of the cyclopentyl and the 2-methyl groups of the potent MTA (±)-1 with a 

furan and a 2-H moiety, respectively, afforded the 5-methyl-furo[2,3-d]pyrimidine scaffold of 2 

and 3 (Figure 2). It was of interest to explore the antitumor activity of compounds with the 5-

methyl-furo[2,3-d]pyrimidine scaffold without the 2-position substitution as MTAs to determine 

the contribution of the 2-position substitution and the furo ring to both inhibition of cancer cell 

proliferation and microtubule depolymerization. Additionally, these lead compounds are similar 

in structure to verubulin (Figure 1), which is a N
4
,2-dimethylquinazoline-4-amine analog with p-

methoxyphenyl substitution at N
4
-position.

16
 Similar N

4
-p-methoxyphenyl substitution pattern 

has not been explored before in 5-methyl-furo[2,3-d]pyrimidine series of compounds. 

Compounds 2 and 3 were docked in the X-ray crystal structure of colchicine in tubulin at the 

colchicine site (PDB: 4O2B,
26

 2.30 Å) using Molecular Operating Environment MOE 

2013.0801.
27

 Multiple low energy conformations were obtained on docking. Figure 3 shows the 

docked conformation of 3 (green) as a representative example in the colchicine site of tubulin. 

The furo[2,3-d]pyrimidine scaffold of 3 overlaps the C-ring of colchicine (orange) and forms 

hydrophobic interactions at the αβ tubulin interface with Alaα180, Asnβ258 and Lysβ352. The 5-

Me group of 3 interacts with Leuβ255, Asnβ258 and Metβ259 of tubulin. The N-Me moiety of 3 

mimics the bridged C5- and C6-positions of the B-ring of colchicine and forms hydrophobic 

interactions with Leuβ248, Alaβ250 and Lysβ254. The 4'-OMe-Ph of 3 is oriented towards the 
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hydrophobic pocket formed by Thrβ240, Cysβ241, Alaβ316, Ileβ318, Ileβ378 and binds in the 

region occupied by the A-ring of colchicine. The phenyl ring of 3 makes hydrophobic 

interactions with Leuβ248, Leuβ255, Alaβ316 and Alaβ354. Figure 3 also shows that the docked 

pose of 3 at the colchicine site is similar to that of the lead compound (S)-1. The best docked 

pose of 3 had a score of -5.07 kcal/mol comparable to that of colchicine (-5.54 kcal/mol) and the 

lead compound (S)-1 (-5.19 kcal/mol). 

 

Figure 3. Superimposition of the docked pose of 3 (green) in the colchicine site (colchicine in 

orange) of tubulin (PDB: 4O2B
26

). 
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Design of target compounds 4‒9.  

The N-Me moiety of 3 forms hydrophobic interactions with Leuβ248, Alaβ250, Lysβ254 

and Asnβ258 in the colchicine site (Figure 3). To optimize these hydrophobic interactions, 

compounds 4‒7 (Figure 4) with larger alkyl groups at the N
4
-position were synthesized. In 

addition, these compounds were also designed to determine the bulk tolerance at the colchicine 

site for substituents at the N
4
-position for the furo[2,3-d]pyrimidine scaffold. The key binding 

interactions indicated by the docking study of the lead compound 3 in the colchicine-binding site 

of tubulin (Figure 3) are retained by target compounds 4‒7 with docking scores (-5.60 kcal/mol, 

-5.11 kcal/mol, -4.35 kcal/mol, -5.12 kcal/mol respectively) similar to that of 3 (see Supporting 

Information).  

 

Figure 4. Target compounds 4–9. 

Compounds 8 and 9 were designed to improve hydrophobic interactions of the 4'-OMe of 3 

within the hydrophobic pocket formed by residues Thrβ240, Cysβ241, Alaβ316, Ileβ318 and 

Ileβ378 at the colchicine site as suggested by the docking scores of 8 and 9 (-5.16 kcal/mol and -

5.16 kcal/mol respectively), both of which were similar to that of 3. Thus, compounds 8 and 9 

were designed to evaluate the role of the 4'-OMe group on tubulin depolymerization and 

inhibition of cancer cell growth by substituting the oxygen of the 4'-OMe with a methylene and 

sulfur respectively, thus decreasing the electronegative nature of the 4'-OMe substituent and 

increasing the hydrophobic interactions at the colchicine site. 
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Results and Discussion 

Chemistry 

Scheme 1. Synthesis of target compounds 2 and 3 

 

Target compounds 2 and 3 were synthesized as described in Scheme 1. Compound 11 was 

obtained by reacting hydroxyacetone 10 with malononitrile in the presence of triethylamine and 

was used without purification for the subsequent step.
28

 Treatment of 11 with formamidine 

hydrochloride under basic conditions provided 5-methyl-furo[2,3-d]pyrimidine 12 in 47% yield 

(two steps). Ullmann coupling of 12 and 4-iodo anisole 13 using CuI and L-proline afforded 

target compound 2. N
4
-Methylation of 2 with dimethyl sulfate furnished target compound 3 in 

70% yield. 

 

Scheme 2. Synthesis of target compounds 4–7  

 

Compounds 4–7 were synthesized from 2 (Scheme 1) by N
4
-alkylation with the appropriate 

alkyl iodides 14–17, respectively (Scheme 2).  
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9 

 

Scheme 3. Synthesis of target compounds 8 and 9 

 

Ullmann coupling of 12 and appropriate aryl iodides 18 and 19 (Scheme 3) using CuI and L-

proline afforded 20 and 21, respectively, which upon N
4
-methylation furnished target compounds 

8 and 9, respectively.  

 

Biological Results 

Effects on microtubule depolymerization and cell proliferation. Compounds 2–9 were 

first evaluated for their ability to depolymerize microtubules (Table 1 and Figure 5). Compounds 

that caused at least 50% microtubule depolymerization at a concentration of 10 µM were further 

evaluated to determine the EC50, the concentration that causes loss of 50% of cellular 

microtubules in A-10 cells and for antiproliferative effects against MDA-MB-435 cancer cells. 

The embryonic rat smooth muscle A-10 cells are useful to evaluate the effects of microtubule 

targeting agents on interphase microtubules. Unlike cancer cells, A-10 cells do not accumulate in 

mitosis in response to compounds that disrupt microtubules and allow effects on interphase 

microtubules to be easily visualized and quantified. The N-H analog 2 was inactive in the 

microtubule depolymerization assay and was not evaluated further. The N-Me analog 3 showed 

potent microtubule depolymerization effects and also inhibited the proliferation of MDA-MB-

435 cells with potency comparable to those of CA-4 and paclitaxel. This indicates that for the 

furo[2,3-d]pyrimidine scaffold the N-Me moiety is important for biological activity. Compound 

3 was 2.3-fold more potent for microtubule depolymerizing effects and about 4-fold more potent 
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antiproliferative activity (MDA-MB-435) than the lead compound (±)-1·HCl. Compounds 4 and 

9 were equipotent with (±)-1·HCl as microtubule depolymerizers and were 1.4–2.1-fold more 

active against MDA-MB-435 cells than (±)-1·HCl. These data indicate that the 2-desmethyl 

furo[2,3-d]pyrimidine scaffold is conducive to both microtubule depolymerization and 

antiproliferative effects.  

 

Table 1. IC50 values for inhibition of proliferation of MDA-MB-435 cells and EC50 values for 

microtubule depolymerization.  

Compd 

EC50 for Microtubule  

Depolymerization  

in A·10 Cells (nM) 

IC50 ± SD  

MDA-MB-435 (nM) 

(±)-1·HCla 

(Lead) 

56 17.0 ± 0.7 

2  > 10 μM NDb 

3  24 4.3 ± 0.3 

4  53 8.1 ± 0.5 

5  > 10 μM 504 ± 28 

6  306 27.3 ± 4.5 

7  340 100 ± 6.5 

8  750 183 ± 13 

9  45 12.3  ± 0.9 

21  > 10 μM NDb 

Paclitaxel   4.5 ± 0.5 

CA-4 9.8 4.4 ± 0.5 

aResults previously published.25 bND: Not determined. 
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Compounds 4–7 with larger alkyl groups at the N
4
-position had lower microtubule 

depolymerizing potency and higher antiproliferative IC50 values than that of the N-Me compound 

3 (Table 1). The potency decreased with increased homologation and the N-Et analog 4 was 2-

fold less potent than 3 and was equipotent with 1. The N-iPr analog 5 was ineffective at 

depolymerizing microtubules even at concentrations as high as 10 µM. However, compound 5 

exhibited some antiproliferative activity, but it was 60-fold less potent (IC50) than the N-Et 

analog 4. The N-Me analogs 8 and 9 with variations at the 4'-position had quite different 

microtubule depolymerization activities in that 8 had an EC50 of 750 nM while 9 was quite 

potent, with an EC50 of 45 nM (Table 1), and both were less potent than 3. The 4'-Et analog 8 had 

a 30–fold lower potency for microtubule depolymerization than the 4'-OMe analog 3. In the X-

ray crystal structure (PDB: 4O2B
26

), there is a water mediated hydrogen bond between Cysβ241 

of tubulin and the 3-OMe group on the A-ring of colchicine. The 4'-OMe group of 3 mimics the 

3-OMe group on the A-ring of colchicine (Figure 3), suggesting its importance for the biological 

activity of 3. The 4'-SMe analog 9 had a 2-fold lower microtubule depolymerizing potency than 

the 4'-OMe analog 3. In addition, in the MDA-MB-435 cell antiproliferative assay, compounds 8 

and 9 had 43- and 3-fold lower antiproliferative potencies, respectively, than 3. These data 

indicate that bioisosteric replacement of the electronegative oxygen of the 4'-OMe group with 

sulfur in the 2-H,5-methylfuro[2,3-d]pyrimidine scaffold is detrimental to cellular microtubule 

depolymerization and to antiproliferative activity. The N
4
-desmethyl synthetic precursor, 21, like 

2, was inactive as a MTA with EC50 >10 μM, substantiating the importance of the N
4
-alkyl 

substitution. 

Page 11 of 46

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12 

 

The effects of compounds 3, 4 and 6–9 on cellular microtubules in A-10 cells are shown in 

Figure 5. A concentration of two-times their respective EC50 values caused almost complete loss 

of the microtubule cytoskeleton, with only a few remnant microtubules remaining.   

 

Figure 5. Effects of compounds 3, 4 and 6–9 on cellular microtubules. A-10 cells were treated 

for 18 h with 2x the EC50, and cellular microtubules were visualized by indirect 

immunofluorescence with a β-tubulin antibody.  

 

Effects on mitotic spindles and cell cycle distribution. A common propensity of MTAs is their 

ability to interrupt the structure and function of mitotic spindles. The disruption of microtubule 

dynamics leads to the formation of aberrant mitotic spindles that are unable to align the 
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chromosomes into the metaphase plate leading to the accumulation of cells arrested in mitosis. 

 

Figure 6. Effects of compounds 3, 4 and 6–9 on mitotic spindles. HeLa cells were treated for 18 

h with a concentration five-times the respective IC50, and cellular microtubules and mitotic 

spindles were visualized by indirect immunofluorescence techniques with a β-tubulin antibody. 

 

The effects of the microtubule active compounds on mitotic spindles and cell cycle 

distribution were evaluated in HeLa cells. The results showed that cells treated with these 

compounds were devoid of the normal bipolar spindles that were seen in vehicle-treated cells 

(Figure 6). No mitotic spindles were seen in cells treated with any of the test compounds, but 

multiple spindle poles were apparent, and these effects are consistent with effects seen with other 
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colchicine site agents.
29

 These aberrant mitotic spindles suggested that these compounds could 

initiate mitotic arrest, and thus the cell cycle distribution of the HeLa cells was evaluated by flow 

cytometry (Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Cell cycle analysis of HeLa cells treated with 3, 4 and 6–9. (A) Cell cycle distribution 
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profiles of cells treated for 18 h with five-times the IC50 of each compound. (B) Table showing 

the percent of cells in G2/M in each treatment group. Values are reported as the mean ± SD from 

2 independent experiments.  

 

In the flow cytometry study (Figure 7), typical results were obtained for cells treated with 

the MTAs 3, 4 and 6–9. These compounds cause the accumulation of cells in the G2/M phase of 

the cell cycle, as was observed following treatment with CA-4, while a normal cell cycle 

distribution was observed in the vehicle-treated control cells (Figure7A). HeLa cells treated with 

five-times the IC50 of 3, 4 or 6–9 exhibited a significant accumulation of cells in G2/M, as with 

CA-4 (Figure 7A). The percentage of cells in G2/M in each treatment group was quantified 

(Figure 7B). 

 

Inhibition of tubulin assembly and colchicine binding. On the basis of their microtubule 

depolymerizing activities, compounds 3–7 and 9 were evaluated for their direct effects on tubulin 

assembly and inhibition of colchicine binding (Table 2). Except for 5, all the compounds at 5 µM 

inhibited [
3
H]colchicine binding to the protein, and the extent of inhibition was similar to that 

obtained with CA-4. Straight chain N
4
-alkyl analogs 4 (N-Et), 6 (N-Pr) and 7 (N-Bu) inhibited 

tubulin assembly about as well as CA-4, and were about 2-fold more potent than the lead 

compound (±)-1·HCl. In the colchicine inhibition assay, compounds 4 (N-Et), 6 (N-Pr) and 7 (N-

Bu), at 5 M, inhibited the binding of [
3
H]colchicine by 87‒95%, whereas the branched alkyl N-

iPr 5 showed only a 47% inhibition of [
3
H]colchicine binding. The lower activity of the sterically 

bulky isopropyl moiety could be attributed to limited steric tolerance in the colchicine site. The 

data indicate that N
4
-alkylation is tolerated to an extent as predicted by molecular modeling 
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(Figure 3). Compound 9 (4'-SMe) inhibited tubulin assembly with an IC50 value comparable to 

that of CA-4, and it is 3-fold better than the 4'-OMe analog 3. However it is interesting to note 

that 3, despite its somewhat lower activity as an inhibitor of tubulin assembly, compared to CA-

4, it was a strong inhibitor of [
3
H]colchicine binding to tubulin.  

 

Table 2. Inhibition of tubulin assembly and colchicine binding. 

Compd  

Inhibition of tubulin assembly  

(IC50 ± SD (M)) 

Inhibition of colchicine binding 

(% inhibition ± SD)                  

1 µM 5 µM 

(±)-1·HCla 

(Lead) 

  1.9 ± 0.01 60 ± 2 84 ± 3 

3  3.3 ± 0.5 71 ± 6 96 ± 2 

4 0.97 ± 0.09  84 ± 0.7 95 ± 0.5 

5 3.0 ± 0.2  ND 47 ± 0.2 

6  1.1 ± 0.1  75 ± 1 92 ± 0.3 

7 1.3 ± 0.2  61 ± 0.4 87 ± 0.2 

9 1.2 ± 0.007 79 ± 2 94 ± 0.01 

CA-4  0.96 ± 0.07  90 ± 1 99 ± 0.2 

 aResults previously published.25  

 

Ability to overcome multidrug resistance mechanisms. The clinical activity of the taxanes and 

the vinca alkaloids is limited by two mechanisms of drug resistance: the expression of the drug 

efflux pump Pgp and the III-isotype of tubulin.
30

 Pgp expression is observed clinically, 

particularly in patients who have received prior chemotherapy.
31

 The expression of Pgp was 

associated with poor response to paclitaxel-based chemotherapy in patients with non-small cell 
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lung and breast cancer.
31, 32

 While the use of Pgp inhibitors to overcome this resistance has been 

explored, it has been unsuccessful due to the side effects which occur when using the high doses 

required.
33

 Tubulin binding agents that are not substrates for Pgp represent a viable alternate 

strategy for circumventing Pgp-mediated resistance. Such agents would be extremely useful for 

patients that develop tumor resistance due to Pgp expression.
30, 34, 35

 

The expression of βIII-tubulin is involved in clinical resistance to taxanes and vinca 

alkaloids in non-small cell lung,
36-38

 breast,
39 

ovarian
40, 41

 and gastric
42

 cancers. Colchicine site 

agents are generally not susceptible to βIII-tubulin mediated resistance,
43, 44

 illustrating the 

importance of developing anticancer agents that bind to the colchicine site. Development of 

tubulin binding agents that are less sensitive to Pgp and/or βIII-tubulin mediated resistance could 

result in broader antitumor activity and improved rates of survival with significant advantages 

over other MTAs. 

 

Effect on Pgp and βIII-tubulin mediated cancer cell resistance. The potent MTAs 3, 4 and 6‒

9 were evaluated for their activity in the SK-OV-3 ovarian carcinoma cell line and the Pgp 

expressing subline SK-OV-3 MDR-1-6/6 (Table 3).
45

 In these cell lines, compound 3 was the 

most potent compound in the series, and it had 5-fold higher potency than the lead compound 

(±)-1·HCl. In addition, compound 3 had potency similar to paclitaxel and CA-4 in the SK-OV-3 

cell line. Comparison of the IC50 values in the parental SK-OV-3 and genetically manipulated 

SK-OV-3 MDR-1-6/6 cell line allows for the calculation of a relative resistance value, 

designated Rr. This value is calculated by dividing the IC50 value obtained in the Pgp-expressing 

MDR-1-6/6 cells by the IC50 obtained in the parental SK-OV-3 cells. Paclitaxel, a known Pgp 

substrate has a Rr value of 240, while CA-4, a poor substrate has a Rr value of 1.3 (Table 3). 
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Compound 3 had IC50 values in SK-OV-3 and SK-OV-3 MDR-1-6/6 cells comparable to that of 

CA-4 and a Rr of 1.1, indicating that it is able to overcome drug resistance mediated by Pgp.  

Compounds 4 and 6‒9 also had Rr values less than 2, suggesting that they are all poor substrates 

for Pgp-mediated transport and have advantages over the taxanes and vinca alkaloids. 

 

Table 3. Target compounds 3, 4 and 6–9 circumvent Pgp and βIII-tubulin mediated resistance. 

Compd 

            IC50 ± SD (nM)            IC50 ± SD (nM) 

SK-OV-3  SK-OV-3 MDR1-M6/6  Rr HeLa 

HeLa 

WTβIII 

Rr 

(±)-1·HCla (Lead) 38.6 ± 3.1 44.4 ± 3.2 1.2 37.3 ± 4.1 23.9 ± 1.7 0.6 

3  7.7 ± 0.8 8.4 ± 0.4  1.1  9.5 ± 0.8 8.1 ± 0.9  0.9  

4  14.5  ± 1.0 18.3 ± 1.0 1.3 15.8  ± 1.4 14.6 ± 1.8 0.9 

6  40.3 ± 2.6 71.0  ± 19 1.8 33.8 ± 7.4 35.3  ± 9.9 1.0 

7  147.8 ± 2.9 200.0 ± 17.1 1.4 111.1 ± 19.0 115.9 ± 9.8 1.0 

8  155.8 ± 15.0 161.9 ± 21.5 1.0 120.5  ± 4.2 159.0 ± 17.6 1.3 

9  18.6 ± 0.1 32.1 ± 1.5 1.7 15.7 ± 1.2 14.9 ± 1.9 0.9 

Paclitaxel 5.0 ± 0.6 1,200 ± 58 240 2.8 ± 0.36 24.0 ± 3.0 8.6 

CA-4 5.5 ± 0.5 7.2 ± 1.1  1.3 3.3 ± 0.4 3.3 ± 0.3 1.0 

 aResults previously published.25  

 

Compounds 3, 4 and 6‒9 were also evaluated for the ability to overcome βIII-tubulin 

mediated resistance in an isogenic HeLa cell line pair (Table 3).
45

 Compound 3 was the most 

potent compound in the series in HeLa and HeLa WT βIII cell lines with 4-fold better activity 

than the lead compound (±)-1·HCl. Similar to the Rr value in the SK-OV-3 isogenic cell line 
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pair, the Rr value was calculated by dividing the IC50 of the βIII-tubulin expressing line by the 

IC50 obtained in the parental HeLa cells. The expression of βIII-tubulin is known to lead to 

paclitaxel resistance, and paclitaxel has a Rr value of 8.6 in this cell line pair (Table 6). The 

target compounds 3, 4 and 6‒9 have Rr values ≈ 1.0 (Table 3), suggesting that they circumvent 

βIII-tubulin mediated drug resistance. 

 

Activity of compound 3 in the NCI cancer cell line panel. The most potent compound (3) of 

the series was evaluated in the NCI cancer cell line panel,
46

 and it had GI50 values <10 nM 

against 47 of the 57 cancer cell lines (Table 4). Compound 3 had better potency than the lead 

compound (±)-1·HCl
25

 in 29 cancer cell lines and comparable potency to (±)-1·HCl
25

 in 19 

cancer cell lines (Table 4). 

 

Table 4. Comparison of cancer cell growth inhibitory activity (NCI) GI50 (nM) of 3 with (±)-

1·HCl
a
 

Panel/ Cell line GI50 (nM) Panel/ Cell line GI50 (nM) Panel/ Cell line GI50 (nM) Panel/ Cell line GI50 (nM) 

Leukemia 3 

(±)-1· 

HCl 

Colon Cancer 3 

(±)-1· 

HCl 

Melanoma 3 

(±)-1· 

HCl 

Renal Cancer 3 

(±)-1· 

HCl 

CCRF-CEM <10 16.3 COLO 205 <10 18.3 LOX IMVI <10 22.7 786-0 <10 34.8 

HL-60(TB) <10 <10 HCC-2998 <10 24.0 MALME-3M 38.7b  A498 <10 <10 

K-562 <10 <10 HCT-116 <10 15.1 M14 <10 10.2 ACHN 22.5 14.6 

MOLT-4 <10 31.8 HCT-15 <10 <10 MDA-MB-435 <10 <10 CAKI-1 <10  

RPMI-8226 <10 15.7 HT29 <10 11.8 SK-MEL-28 <10 <10 RXF 393 <10 <10 

SR <10 <10 KM12 <10 <10 SK-MEL-5 <10 <10 SN12C <10 31.8 

NSCLC   SW-620 <10 <10 UACC-62 29.6b <10 TK10 75.3b 292 
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aResults previously published.25 bGI50 values in µM. 

 

 

Figure 8. Conformational restriction of C4-N and N-C1' bonds in the presence of the N-Me 

moiety. 

 

1
H NMR evidence for conformational restriction in compound 3. The 

1
H NMR spectra of the 

N-H analog 2 and N-Me analog 3 in DMSO-d6 afforded additional information related to the 

conformational restriction in 3 (Figures 8 and 9). For 2, the “5-Me” protons appeared at  2.40 

whereas for 3, they were significantly shielded at  1.05. This shielding of the “5-Me” protons in 

3 was attributed to a diamagnetic anisotropic effect in 3 arising from the proximity of the phenyl 

A549/ATCC <10 24.4 CNS Cancer  Ovarian cancer  UO-31 <10 13.4 

EKVX <10 19.6 SF-268 10.1 15.2 IGROVI <10 11.0 Prostate Cancer  

HOP-62 18.4b 19.4 SF-295 <10 <10 OVCAR-3 <10 <10 PC-3 <10 14.6 

HOP-92 62.5 55.4 SF-539 <10 11.4 OVCAR-4 <10 26.8 DU-145 <10 21.4 

NCI-H226 <10 31.5 SNB-19 <10 36.9 OVCAR-5 12.8 38.5 Breast Cancer  

NCI-H23 <10 16.4 SNB-75 <10 <10 OVCAR-8 <10 32.8 MCF7 <10 <10 

NCI-H322M >100b 59.0 U251 <10 12.5 NCI/ADR-RES <10 <10 

MDA-MB-231/ 

ATCC 

<10 24.6 

NCI-H460 <10 23.4   SK-OV-3 <10 27.5 HS 578T <10 <10 

NCI-H522 <10 <10     BT-549 59.6 21.9 

      MDA-MB-468 <10 <10 
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ring as shown in Figure 8 (more favored anti-conformation for 3 on the basis of the N-Me and 

the 5-Me groups). The steric bulk of the N-Me and/or steric clash of the N-Me and the 5-Me 

groups in 3 restricts the conformation and positions the phenyl group on top of the 5-Me moiety 

(Figure 9B), resulting in the observed shielding effect, in the 
1
H NMR, on the 5-Me group in 3 as 

compared to that in 2.  
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Figure 9. The conformations and 
1
H NMR analyses of 2 (A) and 3 (B).   

 

This shielding effect of the phenyl group on the 5-Me group (≈was also observed 

for the N
4
-alkyl analogs 4‒7 and N

4
-Me analogs 8 and 9 (Figure 10).  

 

Figure 10. The values (
1
H NMR) for compounds 2‒9. 
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Figure 11. (A) The docked pose of 3 without the protein showing the distance (in Å) between 5-

Me and the closest carbons on the phenyl ring. (B) Stereo view. Superimposition of docked 

poses of 3 (green), 4 (magenta), 5 (yellow), 6 (blue), 7 (brown), 8 (orange) and 9 (cyan) in the 

colchicine site of tubulin. 

 

The prediction of the possible putative bound conformation of 3 gleaned from the 
1
H NMR 

was further supported by the docked pose of 3 in the colchicine site (Figure 11A, MOE 

2013.0801
27

). The phenyl ring of 3 sits on top of the 5-Me group of the furo[2,3-d]pyrimidine 

scaffold and exerts its anisotropic effect on the 5-Me protons. In the docked pose of 3, the 

distance of the 5-Me with the most proximal carbons on the phenyl ring were found to be 3.62 Å 

and 4.08 Å. Similar mode of binding was observed for compounds 4‒9 when docked in the 

colchicine site of tubulin (Figure 11B). 

 

Antitumor activity of compound 3 in MDA-MB-435 xenografts.  Compound 3 was selected 

for an in vivo xenograft mouse study in light of its nanomolar potency in vitro in the NCI cancer 

A 
 

B 
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cell line panel and its potent microtubule depolymerization activity.  Compound 3 was tested for 

in vivo antitumor effects in the MDA-MB-435 xenograft model (Figure 12). MDA-MB-435 

tumor fragments were injected sc into the flank of nude mice. Once tumors reached ~200 mm
3
, 

mice were injected 3 times ip with 3 (cumulative dose 170 mg/kg) or 6 times with paclitaxel 

(120 mg/kg cumulative dose).  The results show that 3 caused statistically significant inhibition 

of tumor growth as compared to the untreated control and the mean tumor volume was slightly 

lower than that achieved with paclitaxel.  

 

Figure 12. Effect of 3 and paclitaxel (PTX) on MDA-MB-435 tumor growth. Nude mice 

bilaterally implanted with MDA-MB-435 tumor fragments were dosed with 60 mg/kg of 3 on 

days 0 and 2; and 50 mg/kg of 3 on day 8 or PTX at 20 mg/kg on days 0, 2, 4, 6, 8 and 11 as a 

positive control. (A) The average tumor volume is graphed with error bars representing the 

standard deviation. (B) The final tumor volumes are plotted with lines representing the mean and 

95% confidence intervals. *p = 0.0425 and **p = 0.0014 

 

Summary 

 A series of eight 5-methyl-furo[2,3-d]pyrimidines were designed and synthesized as 

microtubule depolymerizing agents. Synthesis of target compounds involved an Ullmann 
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coupling reaction as the key step. Compounds 3, 4 and 9 showed microtubule depolymerizing 

activity at concentrations less than 100 nM. Compounds 3, 4 and 6–9 demonstrated the ability to 

cause G2/M cell cycle accumulation and induce the formation of abnormal mitotic spindles.  

Replacing the N-Me group with higher alkyl groups led to a 210-fold decrease in microtubule 

depolymerizing activity. N
4
-Alkyl-4'-OMe analogs 4, 6 and 7 and the N

4
-Me-4'-SMe analog 9 

inhibited tubulin assembly with activity comparable to that of CA-4. Compounds 3, 4, 6 and 9, at 

5 M, inhibited [
3
H]colchicine binding to tubulin about as well as did CA-4. Compounds 3, 4, 6‒

9 circumvented Pgp and βIII-tubulin mediated drug resistance. Proton NMR and molecular 

modeling were utilized to determine the role of the N
4
-methyl group in tubulin inhibitory 

activity. The N
4
-alkyl group, in addition to the 5-Me group, on the furo[2,3-d]pyrimidine 

scaffold restricts the conformation about the C4-N and N-C1' bonds and contributes, in part, to 

the biological activity of these analogs. The N
4
-H analog 2, where such a conformational 

restriction is not attainable, is essentially devoid of activity as an MTA. Compound 3 displayed 

nanomolar antiproliferative activity in the NCI cancer cell line panel and thus was selected for 

xenograft study. In MDA-MB-435 xenografts in mice, compound 3 significantly inhibited tumor 

growth. Compound 3 is an important preclinical candidate as a MTA and is currently undergoing 

extensive preclinical evaluations.   

 

Experimental Section 

Chemistry. All evaporations were carried out in vacuum with a rotary evaporator. 

Analytical samples were dried in vacuo (0.2 mm Hg) in a CHEM-DRY drying apparatus over 

P2O5 at 50 °C. Thin‒layer chromatography (TLC) was performed on Whatman® Sil G/UV254 

silica gel plates, and the spots were visualized by irradiation with ultraviolet light (254 and 366 
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nm). Proportions of solvents used for TLC are by volume. All analytical samples were 

homogeneous on TLC in at least two different solvent systems. Column chromatography was 

performed on a 70−230 mesh silica gel (Fisher Scientific) column. The amount (weight) of silica 

gel for column chromatography was in the range of 50−100 times the amount (weight) of the 

crude compounds being separated. Columns were wet-packed with appropriate solvent unless 

specified otherwise. Melting points were determined using a digital MEL-TEMP II melting point 

apparatus with FLUKE 51 K/J electronic thermometer or using an MPA100 OptiMelt automated 

melting point system and are uncorrected. Nuclear magnetic resonance spectra for proton (
1
H 

NMR) were recorded on Bruker Avance II 400 (400 MHz) and 500 (500 MHz) systems and were 

analyzed using MestReC NMR data processing software. The chemical shift (δ) values are 

expressed in ppm (parts per million) relative to tetramethylsilane as an internal standard: s, 

singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad singlet; exch, protons 

exchangeable by addition of D2O.  

Elemental analyses or high-performance liquid chromatography (HPLC)/mass analysis were 

used to determine the purities of the target compounds. Elemental analyses were performed by 

Atlantic Microlab, Inc., Norcross, GA, USA. Elemental compositions are within ±0.4% of the 

calculated values and indicate >95% purity. Fractional moles of water or organic solvents 

frequently found in some analytical samples could not be prevented despite 24−48 h of drying in 

vacuo and were confirmed where possible by their presence in the 
1
H NMR spectra. Mass 

spectral data were acquired on an Agilent G6220AA TOF LC/MS system using the nano ESI 

(Agilent chip tube system with infusion chip). HPLC analysis was performed on a Waters HPLC 

system using XSelect® CSH C18 column. Peak area of the major peak versus other peaks was 
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used to determine purity. All solvents and chemicals were purchased from Sigma‒Aldrich Co. or 

Fisher Scientific Inc. and were used as received. 

 

N-(4-Methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (2). A 50 mL round bottom 

flask was charged with CuI (66.5 mg, 0.35 mmol), anhydrous potassium carbonate (480 mg, 3.5 

mmol), L-proline (80 mg, 0.7 mmol), compound 12 (150 mg, 1 mmol) and 4-iodoanisole 13 (350 

mg, 3.5 mmol). The flask was connected to a vacuum for 3 min followed by addition of 

anhydrous DMF (15 mL) using syringe. The flask was purged with argon for 5 min and then 

stirred at 110 
o
C. Upon heating, the color of the suspension turned blueish grey, and this color 

persisted for about 2 h. The reaction was stirred for another 22 h at 110 
o
C, at the end of which 

the mixture was allowed to cool to room temperature. Ethyl acetate (25 mL) was added, and the 

mixture was poured into water (100 mL). The product was extracted with ethyl acetate (100 mL 

× 2). The combined organic extracts were washed with brine (100 mL), dried (anhydrous 

Na2SO4) and concentrated under reduced pressure. Silica gel (500 mg) was added and the solvent 

evaporated to obtain a plug. Purification by column chromatography using hexanes and ethyl 

acetate (10:1 to 2:1) afforded 87.5 mg (33%) of 2 as a light brown solid. TLC Rf = 0.77 

(CHCl3/MeOH, 10:1); mp 99.5–101.6 
o
C; 

1
H NMR (400 MHz, DMSO-d6):  = 2.383‒2.386 (d, 

3H, 5-CH3, J = 1.2 Hz), 3.75 (s, 3H, OCH3), 6.92‒6.94 (d, 2H, Ar,  J = 8.8 Hz), 7.47‒7.49 (d, 

2H, Ar, J = 8.8 Hz ), 7.650‒7.653 (d, 1H, C6-CH, J = 1.2 Hz), 8.23 (s, 1H, C2-CH), 8.38 (s, 1H, 

4-NH, exch). Anal. (C14H13N3O2) C, H, N.  

N-(4-Methoxyphenyl)-N,5-dimethylfuro[2,3-d]pyrimidin-4-amine (3). In a 25 mL round 

bottom flask, compound 2 (510 mg, 2 mmol) was dissolved in DMF (10 mL). The flask was 

purged with argon for 5 min and cooled to 0 
o
C using an ice bath. NaH (144 mg, 6 mmol) was 
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added to the solution at 0 
o
C, and the reaction mixture was stirred for 30 min at 0 

o
C under argon 

atmosphere. Dimethyl sulfate (757 mg, 6 mmol) was injected into the reaction mixture, and the 

flask was warmed to room temperature. The mixture was stirred for 3 h, and 1 N HCl (5 mL) 

was added carefully to quench the reaction. Water (20 mL) was added, resulting in formation of 

a precipitate. The product was extracted with ethyl acetate (50 mL × 3). The combined organic 

extracts were washed with brine (10 mL), dried (anhydrous Na2SO4) and concentrated under 

reduced pressure. Silica gel (2 g) was added, and the solvent was evaporated to yield a plug. 

Column chromatography by elution with hexanes and ethyl acetate (5:1) afforded 3 (416 mg, 

70%) as an off-white solid. TLC Rf = 0.87 (CHCl3/MeOH, 10:1); mp 87‒88 
o
C; 

1
H NMR (400 

MHz, DMSO-d6):  = 1.05 (s, 3H, 5-CH3), 3.44 (s, 3H, OCH3), 3.77 (s, 3H, NCH3), 6.96‒6.98 

(d, 2H, Ar, J = 9.0 Hz), 7.19‒7.22 (d, 2H, Ar, J = 9.0 Hz), 7.52 (s, 1H, C6-CH), 8.45 (s, 1H, C2-

CH). Anal. (C15H15N3O2) C, H, N. 

General procedure for the synthesis of substituted furo[2,3-d]pyrimidines 4-7. In a 25 mL 

round bottom flask, compound 2 (1 equivalent) was dissolved in DMF (2 mL). The flask was 

purged with argon for 5 min and cooled to 0 
o
C using an ice bath. NaH (3 equivalents) was added 

to the solution at 0 
o
C, and the reaction mixture was stirred for 20 min under argon atmosphere. 

The appropriate alkyl iodide (3‒4 equivalents) was injected into the reaction mixture, and the 

flask was warmed to room temperature. The mixture was stirred at room temperature until TLC 

showed disappearance of the reactant 2. Aqueous 1 N HCl was added dropwise to quench the 

reaction. Water (4 mL) was added, resulting in formation of a precipitate. The product was 

extracted with ethyl acetate (10 mL × 3). The combined organic extracts were washed with brine 

(10 mL), dried (anhydrous Na2SO4) and concentrated under reduced pressure. Silica gel (200 

mg) was added and the solvent was evaporated under reduced pressure. The resulting plug was 
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loaded onto a silica gel column in hexanes (the silica was twenty times the weight of the plug), 

and the column was eluted with hexanes and ethyl acetate (5:1) to obtain 4‒7 in yields of 57‒

85%. 

N-Ethyl-N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (4). Using the general 

procedure described above, ethyl iodide 14 (61.70 mg or 0.1 mL, 1.2 mmol) was added to an ice-

cold solution of 2 (100 mg, 0.4 mmol) and NaH (28.8 mg, 1.2 mmol) in 2 mL of DMF, and the 

reaction was run at room temperature for 2 h to provide 94 mg (85%) of 4 as an off-white solid. 

TLC Rf = 0.88 (CHCl3/MeOH, 15:1); mp 77.8–78.3 
o
C; 

1
H NMR (400 MHz, CDCl3):  = 1.064‒

1.067 (d, 3H, 5-CH3, J = 1.2 Hz), 1.22 (t, 3H, CH3, J = 7 Hz), 3.82 (s, 3H, OCH3), 4.06‒4.11 (q, 

2H, N-CH2, J = 7 Hz), 6.88‒6.91 (d, 2H, Ar, J = 8.9 Hz), 7.074‒7.077 (d, 1H, C6-CH, J = 1.2 

Hz), 7.09‒7.11 (d, 2H, Ar, J = 8.9 Hz), 8.48 (s, 1H, C2-CH). Anal. (C16H17N3O2) C, H, N. 

N-Isopropyl-N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (5). Using the 

general procedure described above, isopropyl iodide 15 (266.36 mg, 1.6 mmol) was added to an 

ice-cold solution of 2 (100 mg, 0.4 mmol) and NaH (38.4 mg, 1.6 mmol) in 2 mL of DMF, and 

the reaction was run at room temperature for 6 h to provide 75 mg (63%) of 5 as an off-white 

solid. TLC Rf = 0.88 (CHCl3/MeOH, 15:1); mp 95.8–96.6 
o
C; 

1
H NMR (400 MHz, CDCl3):  = 

1.02 (d, 3H, 5-CH3, J = 1.3 Hz), 1.14‒1.16 (d, 6H, two CH3, J = 6.8 Hz), 3.79 (s, 3H, OCH3), 

5.30‒5.37 (m, 1H, N-CH), 6.85‒6.87 (d, 2H, Ar, J = 8.9 Hz), 7.000‒7.004 (d, 1H, C6-CH, J = 

1.3 Hz), 7.02‒7.04 (d, 2H, Ar, J = 8.9 Hz), 8.42 (s, 1H, C2-CH). Anal. (C17H19N3O2) C, H, N. 

N-(4-Methoxyphenyl)-5-methyl-N-propylfuro[2,3-d]pyrimidin-4-amine (6). Using the 

general procedure described above, propyl iodide 16 (199 mg or 0.12 mL, 1.2 mmol) was added 

to an ice-cold solution of 2 (100 mg, 0.4 mmol) and NaH (28.8 mg, 1.2 mmol) in 2 mL of DMF, 

and the reaction was run at room temperature for 2 h to provide 80 mg (69%) of 6 as an off-white 
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solid. TLC Rf = 0.88 (CHCl3/MeOH, 15:1); mp 113.5–114.2 
o
C; 

1
H NMR (400 MHz, CDCl3):  

= 0.94‒0.97 (t, 3H, CH3), 1.095‒1.098 (d, 3H, 5-CH3, J = 1.2 Hz), 1.70‒1.74 (m, 2H, CH2), 3.84 

(s, 3H, OCH3), 3.96‒3.99 (m, 2H, N-CH2), 6.89‒6.91 (d, 2H, Ar, J = 8.95 Hz), 7.092‒7.095 (d, 

1H, C6-CH, J = 1.2 Hz), 7.10‒7.12 (d, 2H, Ar, J = 9.0 Hz), 8.49 (s, 1H, C2-CH). Anal. 

(C17H19N3O2) C, H, N. 

N-Butyl-N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (7). Using the general 

procedure described above, butyl iodide 17 (216.26 mg or 0.13 mL, 1.2 mmol) was added to an 

ice-cold solution of 2 (100 mg, 0.4 mmol) and NaH (28.8 mg, 1.2 mmol) in 2 mL of DMF, and 

the reaction was run at room temperature for 2.5 h to provide 70 mg (57%) of 7 as a semisolid. 

TLC Rf = 0.88 (CHCl3/MeOH, 15:1); 
1
H NMR (400 MHz, CDCl3):  = 0.88‒0.92 (t, 3H, CH3), 

1.06 (s, 3H, 5-CH3), 1.30‒1.39 (m, 2H, CH2), 1.59‒1.67 (m, 2H, CH2), 3.81 (s, 3H, OCH3), 

3.96‒4.00 (m, 2H, N-CH2), 6.86‒6.88 (d, 2H, Ar, J = 8.9 Hz), 7.06‒7.09 (m, 3H, Ar and C6-

CH), 8.45 (s, 1H, C2-CH). HRMS (ESI): m/z calculated for C18H21N3O2 + H
+
 [M+H

+
]: 

312.1712. Found: 312.1709. HPLC analysis: retention time = 38.76 min; peak area, 97.33%; 

eluent A, H2O; eluent B, ACN; gradient elution (100% H2O to 10% H2O) over 60 min with a 

flow rate of 0.5 mL/min and detection at 254 nm; column temperature, rt. 

General procedure for the synthesis of substituted furo[2,3-d]pyrimidines 8 and 9. In a 25 

mL round bottom flask, the appropriate furo[2,3-d]pyrimidine (1 equivalent of 20 or 21) was 

dissolved in DMF. The flask was purged with argon for 5 min and cooled to 0 
o
C using an ice 

bath. To the solution at 0 
o
C was added NaH (3 equivalents), and the reaction mixture was stirred 

for 20 min at 0 
o
C under argon atmosphere. Dimethyl sulfate (3 equivalents) was injected into 

the reaction mixture, and the flask was warmed to room temperature. The mixture was stirred at 

room temperature until TLC showed disappearance of the reactant 20 or 21. Aqueous 1 N HCl 
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was added dropwise to quench the reaction, followed by water (20 mL) to yield a precipitate. 

The product was extracted with ethyl acetate (10 mL × 3). The combined organic extracts were 

washed with brine (10 mL), dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (200 mg) was added, and the solvent was evaporated to obtain a plug. The 

plug was loaded onto a silica gel column in hexanes (the silica was twenty times the weight of 

the plug), and the column was eluted with hexanes and ethyl acetate (5:1) to obtain 8 or 9. 

N-Methyl-N-(4-ethylphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (8). Using the general 

procedure described above, the reaction between 20 (40 mg, 0.16 mmol) and dimethyl sulfate 

(0.04 mL, 0.48 mmol) in DMF (2 mL) in the presence of NaH (11.5 mg, 0.48 mmol) provided 23 

mg (53%) of 8 as a white solid. TLC Rf = 0.77 (CHCl3/MeOH, 10:1); mp 116.3–116.8 
o
C; 

1
H 

NMR (400 MHz, CDCl3):  = 1.09 (s, 3H, 5-CH3), 1.24‒1.28 (t, 3H, CH3), 2.64‒2.70 (q, 2H, 

CH2), 3.57 (s, 3H, NCH3), 7.10‒7.12 (d, 2H, Ar), 7.19‒7.21 (m, 3H, Ar and C6-CH), 8.56 (s, 1H, 

C2-CH). Anal. (C16H17N3O·0.07CH3CO2C2H5) C, H, N. 

N,5-Dimethyl-N-(4-(methylthio)phenyl)furo[2,3-d]pyrimidin-4-amine (9). Using the general 

procedure described above, the reaction between 21 (105 mg, 0.4 mmol) and dimethyl sulfate 

(0.08 mL, 1.2 mmol) in DMF (8 mL) in the presence of NaH (28.8 mg, 1.2 mmol) provided 56 

mg (51%) of 9 as a brown solid. TLC Rf = 0.88 (CHCl3/MeOH, 10:1); mp 95.8–96.2 
o
C; 

1
H 

NMR (400 MHz, DMSO-d6):  = 1.109‒1.112 (d, 3H, 5-CH3, J = 1.1 Hz), 2.48 (s, 3H, SCH3), 

3.47 (s, 3H, NCH3), 7.20‒7.22 (d, 2H, Ar, J = 8.65 Hz), 7.28‒7.30 (d, 2H, Ar, J = 8.66 Hz), 

7.567‒7.570 (d, 1H, C6-CH, J = 1.2 Hz), 8.50 (s, 1H, C2-CH). Anal. (C15H15N3OS) C, H, N, S. 

2-Amino-4-methylfuran-3-carbonitrile (11). To a solution of malononitrile (1.46 g, 22.1 

mmol) in anhydrous MeOH (20 mL) was added triethylamine (2.23 g, 22.1 mmol) under argon 

atmosphere. To this solution at 0 
o
C was added a solution of hydroxyacetone 10 (1.64 g, 1.08 
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g/mL, 22.1 mmol) in 10 mL anhydrous methanol. The solution was warmed to room temperature 

and stirred for 14 h. The solvents were removed in vacuo to give 11 as a brown-colored crude 

solid. TLC Rf = 0.60 (hexane/EtOAc, 10:1); 
1
H NMR (400 MHz, CDCl3):  = 2.01 (s, 3H, 4-

CH3), 4.75 (br, 2H, 2-NH2), 6.61 (s, 1H, C5-CH). 
1
H NMR agreed well with the literature

28
 

values. This material was used directly for the next step without purification.  

5-Methylfuro[2,3-d]pyrimidin-4-amine (12). In a 500 mL round bottom flask, sodium metal 

(2.3 g, 0.1 mol) was added cautiously to stirred anhydrous EtOH (5.8 mL, 0.1 mol) over 10 min 

at room temperature. After stirring for another 5 min, formamidine hydrochloride (8.05 g, 0.1 

mol) was added. The resulting slurry was stirred at room temperature for 30 min, after which a 

solution of 11 (13 g crude, ≈ 0.1 mol) in anhydrous EtOH (200 mL) was added. The mixture was 

heated to reflux for 8 h. After cooling the reaction mixture to room temperature, silica gel (25 g) 

was added, and the solvent was evaporated under reduced pressure to obtain a plug. Purification 

was performed by flash chromatography using 1% MeOH in CHCl3. Fractions containing the 

product (TLC) were pooled and evaporated to provide 7.1 g (47%, two steps) of 12 as lustrous 

pink crystals. TLC Rf = 0.29 (CHCl3/MeOH, 10:1); mp 240.2–242.5 
o
C; 

1
H NMR (400 MHz, 

DMSO-d6)  = 2.288‒2.292 (d, 3H, CH3, J = 1.4 Hz), 7.02 (br, 2H, NH2, exch), 7.533‒5.536 (d, 

1H, C6-CH, J = 1.4 Hz), 8.13 (s, 1H, C2-CH). Anal. (C7H7N3O) C, H, N.  

General procedure for the synthesis of N-(4-substitutedphenyl)-5-methylfuro[2,3-

d]pyrimidin-4-amines 20 and 21. A 50 mL round bottom flask was charged with CuI (66.5 mg, 

0.35 mmol), anhydrous potassium carbonate (480 mg, 3.5 mmol), L-proline (80 mg, 0.7 mmol), 

compound 12 (150 mg, 1 mmol) and the appropriate iodobenzene (3.5 mmol). The flask was 

connected to a vacuum for 3 min, followed by addition of anhydrous DMF (15 mL) using a 

syringe. The flask was purged with argon for 5 min and then stirred at 110 
o
C. On heating, the 
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color of the suspension turned blueish grey, and this color change lasted for about 2 h. The 

reaction was stirred for an additional 22 h at 110 
o
C, at the end of which the mixture was allowed 

to cool to room temperature. Ethyl acetate (25 mL) was added, and the mixture was poured into 

water (100 mL). The product was extracted with ethyl acetate (100 mL × 2). The combined 

organic extracts were washed with brine (100 mL), dried (anhydrous Na2SO4) and concentrated 

under reduced pressure. Silica gel (500 mg) was added and the solvent evaporated to yield a 

plug, which was purified by column chromatography using hexanes and ethyl acetate (10:1 to 

2:1). Fractions containing the product (TLC) were pooled and evaporated to afford 20 or 21. 

N-(4-Ethylphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (20). Using the general procedure 

described above, reaction between 12 (150 mg, 1 mmol) and 1-ethyl-4-iodobenzene 18 (350 mg, 

3.5 mmol) provided 74 mg (29%) of 20 as a brown semisolid. TLC Rf = 0.78 (CHCl3/MeOH, 

10:1); 
1
H NMR (400 MHz, CDCl3):  = 1.23‒1.27 (t, 3H, CH3), 2.421‒2.423 (d, 3H, 5-CH3, J = 

0.9 Hz), 2.65‒2.69 (q, 2H, CH2), 6.85 (s, 1H, 4-NH, exch), 7.21‒7.23 (d, 2H, Ar, J = 8.3 Hz), 

7.296‒7.298 (d, 1H, C6-CH, J = 0.9 Hz), 7.51‒7.53 (d, 2H, Ar, J = 8.3 Hz), 8.45 (s, 1H, C2-CH). 

Anal. (C15H15N3O·0.1CH3CO2C2H5) C, H, N. 

5-Methyl-N-(4-(methylthio)phenyl)furo[2,3-d]pyrimidin-4-amine (21). Using the general 

procedure described above, reaction between 12 (150 mg, 1 mmol) and 4-iodo-thioanisole 19 

(350 mg, 3.5 mmol) afforded 40 mg (15%) of 21 as a brown semisolid. TLC Rf = 0.83 

(CHCl3/MeOH, 10:1); 
1
H NMR (400 MHz, CDCl3):  = 2.41 (s, 3H, SCH3), 2.51 (s, 3H, 5-CH3), 

7.02 (s, 1H, 4-NH, exch), 7.28‒7.34 (m, 3H, Ar and C6-CH), 7.57‒7.59 (d, 2H, Ar), 8.47 (s, 1H, 

C2-CH). Anal. (C14H13N3OS·0.07CH3(CH2)4CH3) C, H, N, S. 
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Molecular modeling. Docking of target compounds 2‒9 was carried out in the colchicine site of 

tubulin (PDB: 4O2B, 2.30 Å)
26

 using Molecular Operating Environment (MOE 2013.0801).
27

 

The crystal structures were obtained from the protein database and imported into MOE 

2013.0801. The proteins were then prepared using the LigX function and the Amber99 forcefield 

for energy minimization under default settings. Ligands were prepared using the builder function 

in MOE and minimized using MMF94x forcefield. The ligands were then docked in the binding 

site using the Alpha triangle placement method. Refinement was carried out using Forcefield and 

scored using the Affinity dG scoring system. 

After the preparation of the protein using the LigX function, chains C, D, E and F were 

deleted along with Ca
2+

, Mg
2+

, GDP, GTP and all the other bound ligands except colchicine. To 

validate the docking study at the colchicine site, the native ligand colchicine was re-docked into 

the binding site using the same set of parameters as described above. The rmsd of the best 

docked pose was 0.5347 Å, thus validating the docking using MOE. 

 

Biological studies 

Effects of compounds on cellular microtubules. A-10 cells were used to evaluate the effects of 

the compounds on cellular microtubules using indirect immunofluorescence techniques. Cells 

were treated for 18 h with compounds, and microtubules were visualized with a β-tubulin 

antibody (Sigma‒Aldrich, St. Louis, MO). EC50 values were calculated as previously described
47

 

and represent an average of at least three independent experiments.
 

Sulforhodamine B (SRB) assay. The SRB assay was used to evaluate the antiproliferative and 

cytotoxic effects of the compounds against cancer cells as previously described.
45

 MDA-MB-

435, SK-OV-3 and HeLa cells were purchased from the American Type Culture Collection 
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(Manassas, VA). Details about the generation of the SK-OV-3-MDR1-M6/6 and HeLa WTβIII 

cells were previously described.
45

 The IC50 values represent an average of 3 independent 

experiments using triplicate points in each experiment.   

 

Quantitative tubulin studies. Bovine brain tubulin was purified as described previously.
48

 The 

tubulin assembly assay has been described in detail.
49

 Briefly, 1.0 mg/mL of tubulin (10 µM) 

was preincubated for 15 min at 30 °C in 0.8 M monosodium glutamate (pH of 2 M stock solution 

adjusted to 6.6 with HCl), varying compound concentrations and 4% (v/v) DMSO as compound 

solvent. After preincubation, the reaction mixtures were placed on ice, and 0.4 mM GTP was 

added. The reaction mixtures were transferred to cuvettes at 0 °C in a recording 

spectrophotometer equipped with an electronic temperature controller. After baselines were 

established, the temperature was elevated over about 30 s to 30 °C, and changes in turbidity were 

monitored for 20 min. The compound concentration that caused a 50% reduction in increase in 

turbidity, interpolated from the values obtained with defined compound concentrations, was 

defined as the IC50 value. The assay to measure inhibition of [
3
H]colchicine binding was 

described in detail previously.
50

 Briefly, 0.1 mg/mL (1.0 µM) tubulin was incubated at 37 °C 

with 5.0 µM [
3
H]colchicine, and potential inhibitors at 1.0 or 5.0 µM, as indicated. Incubation 

was for 10 min, at which point the reaction has reached 40-60% of the maximum colchicine that 

can be bound in reaction mixtures without inhibitor. The [
3
H]colchicine was a product of Perkin-

Elmer. CA4 was a generous gift of Dr. G. R. Pettit, Arizona State University. 

Cell culture. HeLa, A-10, SK-OV-3, and SK-OV-3 MDR1-M6/6 cells were grown  at 37 °C 

with 5% CO2 and maintained in Basal Medium Eagle (Sigma‒Aldrich, St. Louis, MO) 

supplemented with 10% FBS (Hyclone, GE Life Sciences, Logan, UT), 1% GlutaMAX (Gibco, 
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Life Technologies, Waltham, MA) and 50 μg/mL gentamycin (Life Technologies). HeLa WTβIII 

cells were grown at 37 °C with 5% CO2 and maintained in Dulbecco’s Modified Eagle Medium 

(Life Technologies) supplemented with 10% FBS (Hyclone, GE Life Sciences) and 50 μg/mL 

gentamycin (Life Technologies). MDA-MB-435 cells were grown at 37 °C with 5% CO2 and 

maintained in Improved Minimum Essential Medium (Life Technologies) supplemented with 

10% FBS (Hyclone, GE Life Sciences) and 25 μg/mL gentamycin (Life Technologies). 

 

Flow cytometry. Cell cycle distribution was evaluated by flow cytometry. HeLa cells in log 

phase growth were treated with 5-times the IC50 value of each test compound: 16.5 nM CA-4, 

47.5 nM 3, 79 nM 4, 169 nM 6, 605 nM 8, 555 nM 7, 78.5 nM 9 or vehicle (0.2% DMSO). Cells 

were treated for 18 h, harvested on ice and stained with Krishan’s reagent.
51

 DNA content was 

analyzed using a BD LSRII flow cytometer (BD Biosciences, San Jose, CA). ModFitLT™ 3.3 

(Verity software House, Topsham, ME) was used to determine the percentage of cells in each 

phase of the cell cycle. 

 

MDA-MB-435 flank xenograft model.  MDA-MB-435 tumor fragments were implanted sc into 

the flanks of nude mice. Once tumors reached ~200 mm
3
, mice were injected ip with compound 

3 (60 mg/kg on days 0 and 2 and 50 mg/kg on day 8) or paclitaxel (20 mg/kg on days 0, 2, 4, 6, 

8, and 11). Compound 3 was dissolved in a 50:50 Cremophor:DMSO mixture and further 

dissolved in PBS for a final concentration of less than 5% (v/v) Cremophor/DMSO in PBS. 

Paclitaxel was dissolved in a 50:50 Cremophor:EtOH mixture and further dissolved in PBS for a 

final solvent concentration of less than 5% (v/v) Cremophor/EtOH in PBS. Tumor volumes and 

mouse weights were measured 2‒3 times a week. One-way ANOVA with Dunnett’s post-hoc 
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test was used to determine significance of final tumor volumes of drug-treated groups as 

compared to untreated control. Other experimental agents were evaluated during this trial and the 

untreated and paclitaxel controls published previously.
52

 These animal studies were performed in 

compliance with a protocol approved by the Institutional Animal Care and Use Committee at the 

University of Texas Health Science Center at San Antonio. 

 

Supporting Information. Elemental Analysis, High-Resolution Mass Spectra (HRMS) (EI) and 

Docked Poses of Target Compounds 4‒9.  This material is available free of charge via the 

Internet at http://pubs.acs.org.    
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