Synthesis of the Carbon Framework of Scholarisine A by Intramolecular Oxidative Coupling

Tsugunori Watanabe, Nobuki Kato, Naoki Umezawa, and Tsunehiko Higuchi* ${ }^{[a]}$

Abstract

Scholarisine A, isolated from the leaves of Alstonia scholaris, is a monoterpene indole alkaloid with an unprecedented cage-like structure. In this paper, preparation of the distinctive cage-like core skeleton of scholarisine A is described. The key feature of this synthetic strategy is an intramolecular oxidative coupling reaction at the

late stage to construct a 10-oxa-tricyclo[5.3.1.0 $0^{3,8}$]undecan-9-one structure fused with indolenine. Intramolecular

Keywords: cage compounds • $\mathrm{C}-\mathrm{C}$ coupling • heterocyclic compounds • natural products • polycyclic compounds • synthetic methods
oxidative coupling by using N-iodosuccinimide gave the carbon framework of scholarisine A in moderate yield, which is the first example of intramolecular oxidative-coupling reaction between non-activated enolate and indole. This study lays the foundation for continued investigations towards the total synthesis of scholarisine A .

Introduction

Scholarisine A (1), which was isolated from the leaves of $A l$ stonia scholaris, is a monoterpene indole alkaloid having an unprecedented cage-like structure fused with indolenine. ${ }^{[1]}$ Several analogues of $\mathbf{1}$ have interesting biological activities. ${ }^{[2]}$ The unprecedented molecular architecture of scholarisine A (1) has made it a challenging synthetic target, and the elegant first total synthesis of $\mathbf{1}$ was reported by the group of Smith in 2012. ${ }^{[3]}$
From the viewpoints of flexibility and convenience in the synthesis of 1, we considered that it might be effective to construct the cyclic imine from amino aldehyde $\mathbf{2}$ at the last stage (Scheme 1). Accordingly, we needed to construct the 10-oxa-tricyclo[5.3.1.0 ${ }^{3,8}$]undecan-9-one structure fused with indolenine, as in compound $\mathbf{2}$. To examine the feasibility of this approach, we set out to synthesize $\mathbf{3}$ as a model compound of $\mathbf{2}$.

scholarisine A (1)

2

3

Scheme 1. Synthetic approach to scholarisine A.

[^0]

Scheme 2. Retrosynthetic analysis of scholarisine A model compound (3).

The retrosynthetic analysis of $\mathbf{3}$ is outlined in Scheme 2. We thought that the construction of $\mathbf{3}$ might be accomplished by linking C7 and C16 by using an intramolecular oxida-tive-coupling reaction. Direct intermolecular oxidative-coupling of indoles with carbonyl compounds was developed by Baran and co-workers. ${ }^{[4,5]}$ Recently, Ma and co-workers have investigated the intramolecular oxidative-coupling between indole and α-carbonyl carbons, and utilized their methodology in the synthesis of complicated indole alkaloids. ${ }^{[6]}$ But, although several examples of intramolecular oxidative coupling between activated α-carbonyl carbon and indole C3 have been reported, there is no case involving a non-activated lactone, as in 4 . The intermediate 4 could be obtained from the carboxylic acid 5 and the 8 -membered ring could be constructed by the ring-closing metathesis of 6. The intermediate $\mathbf{6}$ was split into two fragments, bromide $\mathbf{7}$ and aldehyde $\mathbf{8}$ by disconnection of the C5-C18 bond.

Results and Discussion

The synthesis of bromide 7 began with 2-butene-1,4-diol 9 (Scheme 3). Mono-PMB (p-methoxybenzyl ether) protec-

Scheme 3. Reagents and conditions: a) $\mathrm{PMBCl}, \mathrm{NaH}, \mathrm{TBAI}, \mathrm{THF}$ heated at reflux; b) $\mathrm{MeC}(\mathrm{OMe})_{3}$, hydroquinone, toluene, reflux, 83% (2 steps) ; c) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to RT; d) TBSCl, imidazole, DMF; e) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{pH} 7$ buffer, 88% (3 steps); f) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant.
tion of 2-butene-1,4-diol $\boldsymbol{9}^{[7]}$ and a subsequent JohnsonClaisen rearrangement ${ }^{[8]}$ afforded methyl ester 11. Reduction of the methyl ester with LiAlH_{4} and protection of the resulting hydroxy group as a tert-butyldimethylsilyl (TBS) ether, followed by oxidative deprotection of PMB group with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), gave the alcohol 13. Finally, alcohol $\mathbf{1 3}$ was treated with PPh_{3} and CBr_{4} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to afford bromide 7.
Synthesis of olefin 21, which has an eight-membered ring, is summarized in Scheme 4. Here, alcohol 14, prepared from 3 -indoleacetic acid according to the literature procedure ${ }^{[9]}$ was treated with PivCl in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to afford the pivaloate (Piv) ester 15. Formylation and subsequent introduction of the methylene group by using the Wittig reaction gave olefin 17. Deprotection of the Piv group followed by oiodoxybenzoic acid (IBX) oxidation ${ }^{[10]}$ afforded aldehyde 8. Bromide 7 was treated with tert-butyllithium and the resulting anion was immediately coupled to the aldehyde 8, affording alcohol $\mathbf{1 9}$ as a $1: 1$ diastereomeric mixture. Acetyla-

Scheme 4. Reagents and conditions: a) $\mathrm{PivCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 95%; b) $\mathrm{POCl}_{3}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 88 \%$; c) $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}, n-\mathrm{BuLi}, \mathrm{THF}, 0^{\circ} \mathrm{C}$, 92%; d) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 91 \%$; e) IBX, DMSO, 69%; f) $t \mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}$, $-95^{\circ} \mathrm{C}$; compound $7,-78^{\circ} \mathrm{C}$; g) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to RT, 56% (2 steps); h) second-generation Grubbs catalyst, toluene, heated at reflux, 96%.
tion and ring-closing metathesis by using the second-generation Grubbs catalyst ${ }^{[11]}$ to construct the eight-membered ring gave cyclooctene 21. In the ring-closing metathesis step with compound 19, which has a free hydroxy group in the neighborhood of the olefin, the desired eight-membered ring compound was not obtained; the undesired dimer was obtained instead. It is crucial to protect the hydroxy group for ring-closing metathesis. ${ }^{[12]}$ On the other hand, even when the hydroxy-protected diene $\mathbf{2 0}$ was used as a substrate, the eight-membered ring compound 21 could not be obtained by using the first-generation Grubbs catalyst.

The synthesis of lactone 4 , which is the precursor for intramolecular oxidative coupling, is summarized in Scheme 5. The olefin of $\mathbf{2 1}$ was hydrogenated and then the TBS group

Scheme 5. Reagents and conditions: a) $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{MeOH}$, benzene; b) HF , pyridine, THF, 62% (2 steps); c) IBX, DMSO; d) $\mathrm{AgNO}_{3}, \mathrm{NaOH}$, EtOH, THF, $\mathrm{H}_{2} \mathrm{O}$; e) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, THF, 91% (3 steps); f) $\mathrm{Na}, \mathrm{NH}_{3}$, $-78^{\circ} \mathrm{C}, 74 \%$; g) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, THF, $0^{\circ} \mathrm{C}$ to RT, 73%; h) PPh_{3}, DEAD, THF, $0^{\circ} \mathrm{C}, 33 \%$.
was removed with HF in the presence of pyridine to afford alcohol 23. IBX oxidation ${ }^{[10]}$ gave aldehyde 24, which was treated with AgNO_{3} under basic conditions ${ }^{[13]}$ to give carboxylic acid 25. In the oxidation of aldehyde 24, the use of NaClO_{2} instead of AgNO_{3} resulted in the formation of a complex mixture. Hydrolysis of the acetyl group and nitrogen deprotection furnished hydroxy carboxylic acid 26. At this stage, diastereomers of cis-26 and trans-26 were separated by silica-gel column chromatography. The mixed-anhydride method using acetic anhydride was employed to convert cis-hydroxy carboxylic acid cis-26 to lactone $\mathbf{4}$ in moderate yield. In contrast to cis-26, lactonization of trans-26 was unsuccessful. Although we investigated the conditions of Mitsunobu lactonization ${ }^{[14]}$ (temperature, solvent, and reagents) and the effect of various leaving groups on lactonization by intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction, the yield could not be improved. It is considered that trans- $\mathbf{2 6}$ does not readily adopt the conformation required for the intramolecular $\mathrm{S}_{\mathrm{N}} 2$ lactonization reaction.

With the intramolecular oxidative coupling precursor 4 in hand, we investigated the construction of $\mathbf{3}$, the 10 -oxa-tricyclo[5.3.1. $0^{3,8}$]undecan-9-one structure fused with indolenine (Table 1). First, we examined $\mathrm{Fe}(\mathrm{acac})_{3}{ }^{[5]}$ and Cu (2-ethylhex-

Table 1. Intramolecular oxidative-coupling.

[a] Addition of oxidant at $-78^{\circ} \mathrm{C}$.
anoate) $)_{2},{ }^{[4]}$ which are commonly used oxidants for oxidative heterocoupling (Table 1 , entries 1 and 2). The reaction did not proceed with $\mathrm{Fe}(\mathrm{acac})_{3}$ (Table 1, entry 1). However, $\mathrm{Cu}(2 \text {-ethylhexanoate })_{2}$ gave the desired intramolecular oxidative coupling product $\mathbf{3}$, though the reaction yield was low (Table 1, entry 2). We next investigated $\mathrm{I}_{2},{ }^{[6,15]}$ which is the best oxidant for intramolecular oxidative coupling between activated enolates and indoles (Table 1, entry 3). Fortunately, the yield was increased to 59%, even though the substrate was a non-activated simple lactone. It is considered that the key intermediate $\mathbf{4}$ is conformationally restricted and the enolate can easily approach the indole. We then screened various iodine reagents (Table 1, entries 4-6). The yield was slightly improved when N-iodosuccinimide (NIS) was used instead of I_{2} (Table 1, entry 5). Iodine monochloride and hypervalent iodine reagents ${ }^{[16]}$ were less effective (Table 1, entries 4 and 6). Nevertheless, this is the first example of intramolecular oxidative coupling reaction between non-activated enolate and indole, with moderate yield. The product was deduced to be $\mathbf{3}$ by detailed NMR analysis using HMBC (see the Experimental Section, Figure 1), HMQC, and NOE experiments.

Conclusion

A possible method for construction of the core carbon framework of scholarisine A was examined by using model compound $\mathbf{3}$ as a target. The ring-closing metathesis strategy successfully led to the key eight-membered ring structure 21. The key reaction, intramolecular oxidative coupling of non-activated lactone $\mathbf{4}$, proceeded in the desired manner to afford the 10 -oxa-tricyclo[5.3.1. $0^{3,8}$] undecan-9-one structure fused with indolenine. Thus, the intramolecular oxidative coupling reaction is an effective tool for the construction of
complex structures, and a non-activated lactone can also be employed as a substrate. Based on the chemistry described herein, further studies directed towards the total synthesis of scholarisine A are underway.

Experimental Section

PMB ether 10: Compound 9 ($3.2 \mathrm{~mL}, 34.0 \mathrm{mmol}$) was added to a suspension of $\mathrm{NaH}(61 \%$ in oil, $816 \mathrm{mg}, 34.0 \mathrm{mmol}$) in THF (68 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2.5 h at $0^{\circ} \mathrm{C} . \mathrm{PMBCl}(4.6 \mathrm{~mL}$, 34.0 mmol) was added and stirring was continued with heating at reflux for 17 h . Then, 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (AcOEt $/ n$ hexane $=1: 5)$ to afford $10(5.11 \mathrm{~g}, 72 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.85($ brs, 1 H$), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 5.71-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.85$ $(\mathrm{m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27 \mathrm{ppm}(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=55.24,58.70,65.33,113.82,128.32,129.46,129.89$, 132.28, 159.28 ppm ; IR (Zn-Se): $\tilde{v}=3447 \mathrm{~cm}^{-1}$ (br), 1613, $1514 \mathrm{~cm}^{-1}$; MS (EI): $m / z: 208\left[M^{+}\right]$; HRMS (EI): $m / z:$ calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}: 208.1100\left[M^{+}\right.$], found: 208.1102.
Methyl ester 11: Compound $\mathbf{1 0}(2.04 \mathrm{~g}, 9.80 \mathrm{mmol})$ and hydroquinone $(324 \mathrm{mg}, 2.94 \mathrm{mmol})$ were dissolved in toluene $(15 \mathrm{~mL})$ and $\mathrm{MeC}(\mathrm{OMe})_{3}$ $(4 \mathrm{~mL})$. The mixture was stirred at reflux, and MeOH was removed in a Dean Stark apparatus with MS $4 \AA$. After 16 h , the solvent was removed under reduced pressure. The crude product was purified by silica-gel column chromatography (AcOEt / n-hexane $=1: 9$) to afford $11(2.15 \mathrm{~g}$, 83%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35(\mathrm{dd}, J=10.5$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (dd, $J=10.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (dd, $J=$ $9.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 4.42 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 (ddd, $J=10.5$, $1.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.12 (ddd, $J=17.3,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (ddd, $J=17.3$, $10.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=36.40,40.23,51.45,55.25,72.39,72.64$, 113.71, 116.13, 129.18, 130.34, 137.94, 159.13, 172.90; IR (Zn-Se): $\tilde{v}=$ 1738, 1613, $1513 \mathrm{~cm}^{-1}$; MS (EI): $m / z: 264$ [$\left.M^{+}\right]$; HRMS (EI): m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}: 264.1362\left[M^{+}\right]$; found: 264.1363.
Alcohol 12: A solution of $\mathbf{1 1}(27.8 \mathrm{~g}, 99.7 \mathrm{mmol})$ in THF $(150 \mathrm{~mL})$ was added to a suspension of $\mathrm{LiAlH}_{4}(80 \%$ in oil, $4.74 \mathrm{~g}, 125 \mathrm{mmol})$ in THF $(400 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 40 min and then the reaction was quenched with saturated aqueous Rochelle salt. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford $\mathbf{1 2}\left(22.9 \mathrm{~g}\right.$, mixture) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.63$ (ddt, $J=13.5,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ (ddt, $J=13.5,7.8,6.0 \mathrm{~Hz}$, 1 H), 2.09 (brs, 1H), 2.51 (m, 1H), 3.37 (dd, $J=9.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (dd, $J=9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{dt}, J=11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 5.06-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.71$ (ddd, $J=17.3,10.3,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta=35.16,41.54,55.25,61.03,72.82,73.55,113.80,115.77$, 129.30, 130.08, 139.55, 159.22; IR (Zn-Se): $\tilde{v}=3399,1614,1514 \mathrm{~cm}^{-1} ;$ MS (EI): $m / z: 236\left[M^{+}\right]$; HRMS (EI): $m / z:$ calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}: 236.1413$ [M^{+}]; found: 236.1412 .
TBS ether 13: $\operatorname{TBSCl}(16.8 \mathrm{~g}, 112 \mathrm{mmol})$ was added to a solution of $\mathbf{1 2}$ (22.9 g , mixture) and imidazole ($16.8 \mathrm{~g}, 247 \mathrm{mmol}$) in DMF (200 mL). The mixture was stirred for 15 h and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with n-hexane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The corresponding silyl ether (34.8 g , mixture) was obtained and used for the next reaction without further purification.
DDQ ($25.0 \mathrm{~g}, 110 \mathrm{mmol}$) was added to a solution of the silyl ether (34.8 g , mixture) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and pH 7 buffer $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$ $\mathrm{NaH}_{2} \mathrm{PO}_{4}, 30 \mathrm{~mL}$). The reaction mixture was stirred for 1 h , then the re-
action was quenched with saturated aq. NaHCO_{3} and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (AcOEt $/ n$-hexane $=1: 9$) to afford $\mathbf{1 3}(20.2 \mathrm{~g}, 3$ steps $88 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.06(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, 1.60 (ddt, $J=14.0,7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65$ (ddt, $J=14.0,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.89 (brs, 1 H$), 2.41(\mathrm{~m}, 1 \mathrm{H}), 3.52$ (dt, $J=11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dt, $J=$ $11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 2 \mathrm{H}), 5.67 \mathrm{ppm}$ (ddd, $J=17.0,11.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.43$, $-5.41,18.24,25.88,34.38,44.09,61.12,65.69,116.66,139.52 \mathrm{ppm}$; IR (ZnSe) $\tilde{v}=3447$ (br) cm^{-1}; MS (FAB): $m / z: 231\left[M^{+}\right]$; HRMS (FAB): m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}: 231.1780\left[M+\mathrm{H}^{+}\right]$; found: 231.1772.
Bromide 7: $\mathrm{CBr}_{4}(46.0 \mathrm{mg}, 139 \mu \mathrm{~mol})$ and $\mathrm{PPh}_{3}(36.2 \mathrm{mg}, 138 \mu \mathrm{~mol})$ were added to a solution of $\mathbf{1 3}(10.5 \mathrm{mg}, 45.6 \mu \mathrm{~mol})$ and TEA ($38 \mu \mathrm{~L}$, $274 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mu \mathrm{~L})$. The reaction mixture was stirred for 3 h , then the reaction was quenched with saturated aqueous NaHCO_{3} and the mixture was extracted with n-pentane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford 7 (13.3 mg , crude) as a colorless oil. The crude product was used in the next step without purification. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.04$ (s, 6 H), 0.89 (s, 9H), 1.57 (ddt, $J=11.1,8.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 2.59$ $(\mathrm{m}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (m, 1H), 3.65 (dt, $J=10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.66 \mathrm{ppm}$ (ddd, $J=17.0,10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$).
Piv ester 15: $\mathrm{PivCl}(2.2 \mathrm{~mL}, 18.1 \mathrm{mmol})$ was added to a solution of $\mathbf{1 4}$ $(4.17 \mathrm{~g}, 16.6 \mathrm{mmol})$, TEA $(6.9 \mathrm{~mL}, 49.5 \mathrm{mmol})$, and DMAP $(204 \mathrm{mg}$, $1.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h , then a saturated aqueous solution of NaHCO_{3} was added at $0^{\circ} \mathrm{C}$. The mixture was separated and the water layer was extracted with n-hexane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was again dissolved in n-hexane and the solution was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography $(\mathrm{AcOEt} / n$-hexane $=1: 20)$ to afford $\mathbf{1 5}(5.25 \mathrm{~g}, 95 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.16(\mathrm{~s}, 9 \mathrm{H}), 3.03(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.13$ $(\mathrm{m}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.64 \mathrm{ppm}(\mathrm{d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=24.68,27.19,38.68,49.88$, $64.42,109.62,111.30,118.99,119.10,121.80,126.16,126.83,127.57,128.11$, 128.73, 136.55, 137.54, 178.61 ppm ; IR (Zn-Se): $\tilde{v}=1725 \mathrm{~cm}^{-1}$; MS (EI): $m / z: 335\left[M^{+}\right]$; HRMS (EI): $m / z:$ calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}: 335.1885\left[M^{+}\right]$; found: 335.1883.
Aldehyde 16: A mixture of DMF (5 mL) and $\mathrm{POCl}_{3}(2.9 \mathrm{~mL}, 32 \mathrm{mmol})$ was stirred at room temperature for 1 h , and a solution of $\mathbf{1 5}$ (33.3 g , 99.3 mmol) in DMF (160 mL) was added. The mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred for 5 h . Then it was added to saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at $0^{\circ} \mathrm{C}$ and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, then brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silicagel column chromatography (AcOEt / n-hexane $=1: 9$) to afford $16(31.7 \mathrm{~g}$, 88%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.11(\mathrm{~s}, 9 \mathrm{H}), 3.46$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 10.16 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 23.33, 27.12, $38.68,47.82,64.39,110.96,120.85,121.27,126.45,126.47,126.61,127.27$, 127.60, 128.56, 131.28, 137.88, 139.53, 178.50, 181.38 ppm ; IR (Zn-Se): $\tilde{v}=$ $1729,1660 \mathrm{~cm}^{-1}$; MS (FAB): $m / z: 364[M+\mathrm{H}]^{+}$; HRMS (EI): m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}: 363.1835\left[M^{+}\right]$; found: 363.1833 .
Alkene 17: n - $\mathrm{BuLi}(1.63 \mathrm{~m}$ in n-hexane, $6.5 \mathrm{~mL}, 10.6 \mathrm{mmol})$ was added to a suspension of $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}(3.64 \mathrm{~g}, 10.2 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 15 min . The resulting orange solution was added to a solution of $\mathbf{1 6}(3.08 \mathrm{mg}, 8.47 \mathrm{mmol})$ in THF (32 mL) at $0^{\circ} \mathrm{C}$. Stirring was continued for 15 min at $0^{\circ} \mathrm{C}$, then the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was puri-
fied by silica-gel column chromatography (AcOEt / n-hexane $=1: 20$) to afford $\mathbf{1 7}(2.97 \mathrm{~g}, 92 \%)$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.17(\mathrm{~s}, 9 \mathrm{H}), 3.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H})$, 5.45 (dd, $J=11.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (dd, $J=17.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (dd, $J=17.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.34-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.68 \mathrm{ppm}(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right):$ $\delta=24.43,27.19,38.70,47.28,64.37,109.55,110.04,118.83,119.03,119.66$, 122.50, 125.61, 125.91, 127.23, 128.03, 128.74, 135.12, 137.20, 137.91, 178.72 ppm ; IR (Zn-Se): $\tilde{v}=1719 \mathrm{~cm}^{-1}$; MS (EI): $m / z: 361\left[M^{+}\right]$; HRMS (EI): m / z : calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{2}: 361.2042$ [$\left.M^{+}\right]$; found: 361.2045.
Alcohol 18: A solution of $\mathbf{1 7}(2.97 \mathrm{~g}, 8.22 \mathrm{mmol})$ in THF (8 mL) was added to a suspension of $\mathrm{LiAlH}_{4}(80 \%$ in oil, $368 \mathrm{mg}, 7.76 \mathrm{mmol})$ in THF $(17 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$ and then the reaction was quenched with saturated aqueous Rochelle salt. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography $(\mathrm{AcOEt} / n$-hexane $=3: 7)$ to afford $\mathbf{1 8}(2.07 \mathrm{~g}, 91 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.1(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{dt}, J=8.5,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 5.44(\mathrm{dd}, J=11.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (dd, $J=17.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (dd, $J=17.5,11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.65 \mathrm{ppm}(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=28.36$, $47.38,63.18,109.67,110.50,119.01,119.73,122.60,125.64,125.95,127.27$, 128.13, 128.77, 135.55, 137.36, 137.87 ppm ; IR (Zn-Se): $\tilde{v}=3357 \mathrm{~cm}^{-1}$; MS (EI): m/z: $277\left[M^{+}\right]$; HRMS (EI): $m / z:$ calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}: 277.1467$ [$\left.M^{+}\right]$; found: 277.1462.
Aldehyde 8: IBX ($4.05 \mathrm{~g}, 1.45 \mathrm{mmol}$) was added to a solution of $\mathbf{1 8}$ $(2.59 \mathrm{~g}, 7.16 \mathrm{mmol})$ in DMSO $(50 \mathrm{~mL})$. The mixture was stirred at room temperature for 3.5 h . The reaction was quenched with pH 7 buffer $\left(\mathrm{KH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was filtered and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (AcOEt / n-hexane $=1: 9(0.5 \% \mathrm{MeOH}$ was added)) to afford $\mathbf{8}(1.36 \mathrm{~g}, 69 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.90(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 5.49-5.53$ $(\mathrm{m}, 2 \mathrm{H}), 6.68(\mathrm{dd}, J=17.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.73 \mathrm{ppm}(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=40.40,47.38,103.93,109.82,118.62$, 120.20, 120.56, 122.92, 125.32, 125.95, 127.41, 128.05, 128.82, 136.56, 137.09, 137.53, 199.47 ppm ; IR (Zn-Se): $\tilde{v}=1720 \mathrm{~cm}^{-1}$; MS (EI): m/z: 275 $\left[M^{+}\right]$; HRMS (EI): m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}: 275.1310\left[M^{+}\right]$; found: 275.1318.

Alcohol 19: A solution of $t \operatorname{BuLi}(1.59 \mathrm{~m}$ in n-pentane, $4.7 \mathrm{~mL}, 11.3 \mathrm{mmol})$ was added to a solution of $7(1.60 \mathrm{~g}, 5.45 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(23 \mathrm{~mL})$ at $-95^{\circ} \mathrm{C}$. The mixture was stirred for 10 min at $-95^{\circ} \mathrm{C}$ and a solution of $\mathbf{8}$ $(1.04 \mathrm{~g}, 3.78 \mathrm{mmol})$ in THF $(7.5 \mathrm{~mL})$ was added to it. The reaction mixture was stirred at $-75^{\circ} \mathrm{C}$ for 4 h , then the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with AcOEt. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The non-reacted starting materials were removed by silica-gel column chromatography $(\mathrm{AcOEt} / n$-hexane $=$ 1:9) to afford 19 (1.21 g , mixture) as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.55(\mathrm{~m}, 1 \mathrm{H})$, $1.62-1.74(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}),\{2.90(\mathrm{dd}, J=14.2,9.0 \mathrm{~Hz}), 3.10(\mathrm{dd}, J=$ $14.2,4.1 \mathrm{~Hz}), 1 \mathrm{H}\},\{2.90(\mathrm{dd}, J=14.3,8.5 \mathrm{~Hz}), 3.10(\mathrm{dd}, J=14.3,6.5 \mathrm{~Hz})$, $1 \mathrm{H}\}, 3.55-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.96-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.98-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~s}$, 2H), 5.38- 5.44 (m, 1H), 5.49-5.73 (m, 2H), 6.73 (dd, $J=17.9,11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.30(\mathrm{~m}, 6 \mathrm{H}),\{7.62(\mathrm{~d}, J=5.0 \mathrm{~Hz})$, $7.63 \mathrm{ppm}(\mathrm{d}, J=5.1 \mathrm{~Hz}), 1 \mathrm{H}\} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.29$, $-5.28,18.31,25.97,32.73,33.66,37.55,37.78,38.10,38.43,42.40,42.47$, $47.43,47.45,60.88,61.23,69.94,70.63,76.74,109.62,109.63,110.97$, 111.13, 114.94, 115.33, 118.99, 119.07, 119.34, 119.35, 119.73, 122.58, 122.62, 125.71, 125.75, 125.91, 127.25, 128.24, 128.27, 128.77, 135.66, 135.76, 137.45, 137.48, 137.91, 142.10, 143.00 ppm ; IR (Zn-Se): $\tilde{v}=3565$, $3450 \mathrm{~cm}^{-1}$; MS (EI): m/z: 489 [$\left.M^{+}\right]$; HRMS (EI): m/z: calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{NO}_{2} \mathrm{Si}: 489.306\left[M^{+}\right]$; found: 489.306.

Acetate 20: $\mathrm{Ac}_{2} \mathrm{O}(14 \mathrm{~mL})$ was added to a solution of $\mathbf{1 9}(1.21 \mathrm{~g}$, mixture) and DMAP $(60.3 \mathrm{mg} 493 \mu \mathrm{~mol})$ in pyridine $(24 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 3 h and warmed to room temperature. The solvents were removed under reduced pressure with toluene. The crude product was purified by silica-gel column chromatography (AcOEt / n-hexane $=3: 97$) to afford $20(1.12 \mathrm{~g}, 2$ steps $56 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.00-0.02(\mathrm{~m}, 6 \mathrm{H}),\{0.87(\mathrm{~s}), 0.88$ (s), 9 H$\}, 1.26-1.76(\mathrm{~m}, 4 \mathrm{H}),\{1.85(\mathrm{~s}), 1.94(\mathrm{~s}), 3 \mathrm{H}\}, 2.22-2.32(\mathrm{~m}, 1 \mathrm{H})$, $2.99-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.60(\mathrm{~m}, 2 \mathrm{H}), 4.85-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.16-5.25(\mathrm{~m}$, $1 \mathrm{H}), 5.30-5.63(\mathrm{~m}, 3 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}),\{6.72$ (dd, $J=18.0,10.9 \mathrm{~Hz}), 6.72$ (dd, $J=17.9,11.9 \mathrm{~Hz}), 1 \mathrm{H}\}, 6.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.30(\mathrm{~m}, 6 \mathrm{H})$, $7.68 \mathrm{ppm}(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.35$, $-5.33,14.17,18.24,21.18,21.23,25.91,25.93,29.80,30.21,36.95,37.66$, $37.81,38.18,39.16,39.58,47.33,47.34,60.61,60.76,61.93,72.75,73.20$, $109.44,110.44,110.57,114.71,115.77,118.60,118.64,119.45,119.62$, $119.67,122.40,125.81,127.14,127.15,128.36,128.38,128.71,135.20$, $135.22,137.30,137.33,138.01,138.02,141.16,141.97,170.32,170.43 \mathrm{ppm} ;$ IR (Zn-Se): $\tilde{v}=1736 \mathrm{~cm}^{-1}$; MS (EI): m/z: $531\left[M^{+}\right]$; HRMS (EI): $m / z:$ calcd for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{NSi}$: $531.3169\left[M^{+}\right]$; found: 531.3149.
Alkene 21: A solution of second-generation Grubbs catalyst (555 mg , $65.4 \mu \mathrm{~mol})$ in toluene $(10 \mathrm{~mL})$ was added to a solution of $20(5.69 \mathrm{~g}$, $10.7 \mathrm{mmol})$ in toluene $(500 \mathrm{~mL})$. The mixture was stirred with heating at reflux for 13 h and the solvent was removed under reduced pressure. The crude product was purified by silica-gel column chromatography $($ AcOEt $/ n$-hexane $=4: 96)$ to afford $21(5.26 \mathrm{~g}, 96 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=\{-0.03(\mathrm{~s}),-0.02(\mathrm{~s}), 6 \mathrm{H}\},\{0.80(\mathrm{~s}), 0.82$ $(\mathrm{s}), 9 \mathrm{H}\}, 1.56-1.97(\mathrm{~m}, 4 \mathrm{H}),\{2.00(\mathrm{~s}), 2.09(\mathrm{~s}), 3 \mathrm{H}\}, 2.20-3.10(\mathrm{~m}, 2 \mathrm{H})$, $3.21-3.57(\mathrm{~m}, 3 \mathrm{H}),\{4.95(\mathrm{~m}), 5.45(\mathrm{~m}), 1 \mathrm{H}\}, 5.30(\mathrm{~m}, 2 \mathrm{H}),\{5.73(\mathrm{~m}), 5.89$ $(\mathrm{m}), 1 \mathrm{H}\},\{6.34(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 6.37(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 1 \mathrm{H}\}, 6.99(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.25(\mathrm{~m}, 6 \mathrm{H}),\{7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 7.67 \mathrm{ppm}(\mathrm{d}, J=$ $7.2 \mathrm{~Hz}), 1 \mathrm{H}\} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.37,-5.32,14.19,18.18$, $18.19,21.04,21.45,21.57,25.81,25.85,38.11,41.19,46.87,47.16,60.38$, $60.88,61.10,73.23,109.15,109.24,117.39,118.43,118.83,119.33,119.50$, $121.98,122.12,126.04,126.13,127.24,127.27,128.18,128.65,128.67$, $135.38,136.69,136.76,137.91,137.94,170.58,171.13 \mathrm{ppm}$; IR (Zn-Se): $\tilde{v}=$ $1730 \mathrm{~cm}^{-1}$; MS (EI): m/z: 503 [$\left.M^{+}\right]$; HRMS (EI): m/z: calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{NSi}$: $503.2856\left[M^{+}\right]$; found: 503.2848
Cyclooctane 22: $\mathrm{PtO}_{2}(474 \mathrm{mg}, 2.09 \mathrm{mmol})$ was added to a solution of $\mathbf{2 1}$ $(5.26 \mathrm{~g}, 10.4 \mathrm{mmol})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ and benzene $(50 \mathrm{~mL})$. Hydrogen was admitted through a balloon and the reaction mixture was stirred for 22 h . The catalyst was removed by filtration through Celite, and the solvent was removed under reduced pressure. The crude product was purified by silica-gel column chromatography (AcOEt / n-hexane $=5: 95$) to afford $22\left(5.27 \mathrm{~g}\right.$, mixture) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=\{-0.04$ (s), -0.03 (s), 0.01 (s), 6 H$\},\{0.79$ (s), 0.85 (s), 9 H$\}, 1.20-1.86$ (m, 7H), $\{1.99(\mathrm{~s}), 2.11(\mathrm{~s}), 3 \mathrm{H}\}, 2.73-3.30(\mathrm{~m}, 4 \mathrm{H}), 3.45-3.58(\mathrm{~m}, 2 \mathrm{H})$, $\{4.82(\mathrm{~m}), 5.26(\mathrm{~m}), 1 \mathrm{H}\},\{5.30(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 5.34(\mathrm{~d}, 17.5 \mathrm{~Hz}), 2 \mathrm{H}\}$, 6.97 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.29(\mathrm{~m}, 4 \mathrm{H}),\{7.51(\mathrm{~m})$, $7.58 \mathrm{ppm}(\mathrm{m}), 1 \mathrm{H}\} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.40,-5.32$, $-5.28,18.13,18.25,21.46,21.58,22.46,23.63,25.81,25.89,27.39,29.02$., $29.13,30.12,34.02,38.39,41.11,41.49,46.33,46.34,60.81,61.19,73.11$, $74.66,107.36,107.88,109.09,109.13,117.68,118.01,119.28,119.31,120.91$, $120.97,125.85,125.88,127.27,127.92,128.35,128.72,128.73,136.35$, $136.49,136.89,137.14,138.18,138.25,170.34,170.80 \mathrm{ppm}$; IR (Zn-Se): $\tilde{v}=$ $1731 \mathrm{~cm}^{-1}$; MS (EI): m/z: 505 [$\left.M^{+}\right]$; HRMS (EI): m / z : calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{O}_{3} \mathrm{NSi}: 505.3012\left[M^{+}\right]$; found: 505.3026
Alcohol 23: HF-pyridine ($7: 3,3 \mathrm{~mL}$) was added to a solution of $\mathbf{2 2}$ $(5.27 \mathrm{~g}$, mixture) and pyridine $(10 \mathrm{~mL})$ in THF $(120 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred for 11 h , then the reaction was quenched with saturated aq. CuSO_{4} and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude mixture was purified by silica-gel column chromatography ($\mathrm{AcOEt} / \mathrm{hexane}=1: 9$) to afford $\mathbf{2 3}$ $(2.55 \mathrm{~g}, 2$ steps $62 \%)$ as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta=1.20-1.89(\mathrm{~m}, 7 \mathrm{H}),\{2.02(\mathrm{~s}), 2.09(\mathrm{~s}), 3 \mathrm{H}\}, 2.76-2.88(\mathrm{~m}, 1 \mathrm{H})$, $\{2.90-3.02$ (m), 3.12 (dd, $J=14.7,4.1 \mathrm{~Hz}), 3.24$ (dd, $J=14.7,7.8 \mathrm{~Hz}), 3.28$ (dd, $J=14.7,2.6 \mathrm{~Hz}$), 3H\}, \{4.78 (m), 5.29 (m), 1H\}, 5.34 (d, $J=17.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 4 \mathrm{H}),\{7.53$
(m), $7.59 \mathrm{ppm}(\mathrm{m}), 1 \mathrm{H}\} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.39,21.57$, 22.28, 23.48, 27.27, 28.13, 29.31, 30.26, 34.09, 35.37, 35.63, 38.08, 40.55, $41.00, ~ 46.31, ~ 46.34, ~ 60.21, ~ 60.45,73.39,74.96,107.28,107.98,109.17$, $109.20,117.63,117.90,119.32,119.35,120.97,121.03,125.82,125.86$, $127.28,127.79,128.17,128.71,128.72,136.36,136.47,136.79,137.13$, 138.16, 138.19, 170. 62, 170.66 ppm; IR (Zn-Se): $\tilde{v}=3423$ (br), $1730 \mathrm{~cm}^{-1}$; MS (EI): m/z: $391\left[M^{+}\right]$; HRMS (EI): m/z: calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{3}$: $391.2146\left[M^{+}\right]$; found: 391.2145.
Carboxylic acid 5: IBX ($3.66 \mathrm{~g}, 13.1 \mathrm{mmol}$) was added to a solution of $\mathbf{2 3}$ $(2.55 \mathrm{~g}, 6.51 \mathrm{mmol})$ in DMSO $(45 \mathrm{~mL})$. The mixture was stirred at room temperature for 2 h , then the reaction was quenched with pH 7 buffer. The mixture was filtered through Celite and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ again and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford $24(2.32 \mathrm{~g}$, mixture). The crude product was used for the next reaction without further purification.
$\mathrm{NaOH}(898 \mathrm{mg}, 22.4 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=9: 1(20 \mathrm{~mL})$ was added to a solution of the above aldehyde 24 and $\mathrm{AgNO}_{3}(1.52 \mathrm{~g}, 8.95 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=9: 1(30 \mathrm{~mL})$ and THF $(17 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. Brine and $\mathrm{Et}_{2} \mathrm{O}$ were added and the whole solution was acidified with 2 m aqueous $\mathrm{HCl}(\rightarrow \mathrm{pH} 1)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford 25 (2.42 g , mixture). The crude product was used for the next reaction without further purification. $\mathrm{K}_{2} \mathrm{CO}_{3}(4.12 \mathrm{~g}, 29.8 \mathrm{mmol})$ was added to a solution of $\mathbf{2 5}(2.42 \mathrm{~g}$, mixture) in MeOH $(57 \mathrm{~mL})$ and THF (34 mL). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h and the solvent was removed under reduced pressure. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water were added and the mixture was acidified with 2 m aqueous HCl (to pH 1). The organic layer was separated and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography $(\mathrm{AcOEt} / n$-hexane $=1: 3(+0.5 \% \mathrm{AcOH}))$ to afford $5(2.16 \mathrm{~g}, 3$ steps 91%) as a yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.24-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.70(\mathrm{~m}, 3 \mathrm{H}), 2.08-2.26(\mathrm{~m}, 3 \mathrm{H}),\{2.76-3.02$ $(\mathrm{m}), 3.10(\mathrm{~m}), 3.28(\mathrm{~m}), 4 \mathrm{H}\},\{3.94(\mathrm{~m}), 4.24(\mathrm{~m}), 1 \mathrm{H}\}, 5.32(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (m, 2H), 7.11-7.16 (m, 2H), 7.20-7.29 (m, 4H), 7.59-7.66 ppm (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.28,23.19,27.71,30.28,30.32,31.97,33.65,35.23,39.22,41.82,42.29$, 42.60, 46.29, 46.33, 70.02, 72.43, 107.71, 108.94, 109.17, 109.24, 117.80, $117.98,119.38,119.41,121.03,121.07,125.80,125.86,127.30,128.00$, 128.17, 128.72, 136.38, 136.40, 136.49, 136.63, 138.16, 138.19, 177.89, 178.13 ppm ; IR (Zn-Se): $\tilde{v}=3362$ (br), $1705 \mathrm{~cm}^{-1}$; MS (FAB): m/z: 363 [M^{+}]; HRMS (EI): m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}: 363.1835$ [M^{+}]; found: 363.1832.

Hydroxycarboxylic acid 26: Compound $5(1.42 \mathrm{~g}, 3.91 \mathrm{mmol})$ was added to a solution of $\mathrm{Na}\left(931 \mathrm{mg}, 40.5 \mathrm{mmol}\right.$) in liq. $\mathrm{NH}_{3}(\mathrm{ca} .20 \mathrm{~mL}$) in THF $(14 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3.5 h . The reaction was quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$ and the whole was warmed up to room temperature. Then, $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$ were added and the mixture was acidified with $6 \mathrm{~m} \mathrm{HCl}(\rightarrow \mathrm{pH} 1)$, then extracted with AcOEt. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (AcOEt / n-hexane $=9: 1(0.5 \%$ of AcOH was added $)$) to afford $26(3.77 \mathrm{~g}, 96 \%)$ as a white amorphous solid.
cis and trans isomers of $\mathbf{2 6}$ were partially separated by silica-gel column chromatography ($\mathrm{MeOH} / \mathrm{CHCl}_{3} / \mathrm{AcOH}=10: 200: 1$). cis-26: white amorphous solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.58-$ $1.68(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=14.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.7$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{dt}, J=7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dt}, J=7.2$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (dd, $J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (dd, $J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.89 (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.94,30.90,31.08$, 34.44, 41.48, 42.82, 72.42, 107.09, 110.46, 117.75, 119.54, 121.11, 129.10, 135.02, 135.34, 177.55; IR (Zn-Se): $\tilde{v}=3392$ (br), $1704 \mathrm{~cm}^{-1}$; MS (EI): $\mathrm{m} /$ $z: 273\left[M^{+}\right]$; HRMS (EI): $m / z:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}: 273.1365\left[M^{+}\right]$; found: 273.1359. trans-26: white amorphous solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=1.56(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H})$, $2.28-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.86-3.00(\mathrm{~m}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=14.4,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.1 \mathrm{~Hz}), 7.29(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81 \mathrm{ppm}(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.88,28.20,29.99,36.17,39.41,42.38,70.21$, $108.75,110.42,117.86,119.45,121.06,128.95,134.87,135.42,176.95 \mathrm{ppm} ;$ IR (Zn-Se): $\tilde{v}=3390-3000$ (br), $1703 \mathrm{~cm}^{-1}$; MS (EI): m/z: $273\left[M^{+}\right]$; HRMS (EI): m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}: 273.1365$ [M^{+}]; found: 273.1358.
Lactone 4 from cis-26: $\mathrm{Ac}_{2} \mathrm{O}(150 \mu \mathrm{~L}, 1.6 \mu \mathrm{~mol})$ was added to a solution of 26 (cis/trans $=67: 33,383 \mathrm{mg}, 1.40 \mathrm{mmol})$ and TEA $(220 \mu \mathrm{~L}, 1.6 \mathrm{mmol})$ in THF (10 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 11 h at the same temperature, and then allowed to warm to room temperature. The reaction was quenched by adding saturated aqueous NaHCO_{3} and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (AcOEt $/ n$ hexane $=6: 4)$ to afford $\mathbf{4}\left(175 \mathrm{mg}, 73 \%\right.$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.80(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (dt, $J=15.1$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=17.9$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (dd, $J=17.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (ddd, $J=16.6,10.3$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=15.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{ddd}, J=16.6,8.3$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dd, $J=15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.92 (ddd, $J=9.6,7.8,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11$ (dd, $J=7.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dd, $J=7.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98 \mathrm{ppm}($ brs, 1 H$) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.43,27.34,28.77,29.98,31.49,34.67,79.08$, $107.64,110.36,117.38,119.66,121.58,128.53,134.95,135.73,171.53 \mathrm{ppm}$; IR (KBr): $\tilde{v}=3252,1716 \mathrm{~cm}^{-1}$; MS (FAB): $m / z: 256\left[M+\mathrm{H}^{+}\right]$; HRMS (EI): m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}: 255.1259$ [M^{+}], found: 255.1258 .
Lactone 4 from trans-26: DEAD (2.2 m in toluene, $20 \mu \mathrm{~L}, 43 \mu \mathrm{~mol}$) was added to a solution of $\mathrm{PPh}_{3}(11.4 \mathrm{mg}, 43.4 \mu \mathrm{~mol})$ in THF $(400 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , and then a solution of trans$26(7.9 \mathrm{mg}, 29 \mu \mathrm{~mol})$ in THF ($300 \mu \mathrm{~L}$) was added to the mixture. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with brine and the mixture was extracted with AcOEt. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by GPC to afford $4(2.4 \mathrm{mg}, 9.4 \mathrm{mmol}, 33 \%)$ as a white solid.
Intramolecular oxidative coupling product (3): Preparation of LiHMDS: n-BuLi (1.65 m in n-hexane, $430 \mu \mathrm{~L}, 710 \mu \mathrm{~mol}$) was added to a solution of 1,1,1,3,3,3-hexamethyldisilazane ($150 \mu \mathrm{~L}, 710 \mu \mathrm{~mol}$) in THF $(920 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 30 min .
Oxidative coupling: The above solution of LiHMDS ($160 \mu \mathrm{~L}, 75 \mu \mathrm{~mol}$) was added to a solution of $\mathbf{4}(8.6 \mathrm{mg}, 34 \mu \mathrm{~mol})$ in THF $(600 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Then, a solution of NIS $(11.4 \mathrm{mg}, 50.6 \mu \mathrm{~mol})$ in THF ($100 \mu \mathrm{~L}$) was added and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the mixture was extracted with AcOEt. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by PTLC (silica-gel, AcOEt $/ n$-hexane $=90 \%$) to afford $3(5.4 \mathrm{mg}$, 63%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.74$ (ddd, $J=$ $14.5,3.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.81 (dt, $J=13.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (dd, $J=15.1$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16$ (dddd, $J=13.6,6.3,3.1,1.1 \mathrm{~Hz}$, 1 H), 2.30 (dt, $J=15.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (dddd, $J=14.5,11.7,3.7,3.3 \mathrm{~Hz}$, 1 H), 2.53 (dquin, $J=11.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ddd, $J=14.5,13.6,6.3 \mathrm{~Hz}$, 1 H), 2.97 (ddd, $J=14.5,5.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.97 (dddd, $J=3.7,3.3,1.3$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $7.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57 \mathrm{ppm}(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz ,

Figure 1. Structure determination of scholarisine A model compound (3)
CDCl_{3}): $\delta=24.05,27.31,29.25,30.42,34.03,48.39,51.85,74.20,120.42$, 122.24, 126.19, 128.68, 142.68, 154.07, 172.44, 183.73 ppm ; IR (Zn-Se): $\tilde{v}=$ $1753 \mathrm{~cm}^{-1}$; MS (FAB); m/z: $254\left[M+\mathrm{H}^{+}\right]$; HRMS (EI): m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}: 253.1103\left[M^{+}\right]$; found: 253.1111. Figure 1 shows the structural determination of $\mathbf{3}$.

Acknowledgements

This work was supported by a Grant-in-Aid for Young Scientists (B) (No. 19790019) (N. K.) and a Grant-in-Aid for Scientific Research (A) (No. 20249006) (T. H.) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.
[1] X. H. Cai, Q. G. Tan, Y. P. Liu, T. Feng, Z. Z. Du, W. Q. Li, X. D. Luo, Org. Lett. 2008, 10, 577-580.
[2] a) A. Z. Britten, G. F. Smith, J. Chem. Soc. 1963, 3850-3854; b) A. Britten, G. Smith, G. Spiteller, Chem. Ind. 1963, 1492-1493; c) H. Arai, Y. Hirasawa, A. Rahman, I. Kusumawati, N. C. Zaini, S. Sato, C. Aoyama, J. Takeo, H. Morita, Bioorg. Med. Chem. 2010, 18, $2152-2158$; d) W. Meng, B. A. Ellsworth, A. A. Nirschl, P. J. McCann, M. Patel, R. N. Girotra, G. Wu, P. M. Sher, E. P. Morrison, S. A. Biller, R. Zahler, P. P. Deshpande, A. Pullockaran, D. L. Hagan, N. Morgan, J. R. Taylor, M. T. Obermeier, W. G. Humphreys, A. Khanna, L. Discenza, J. G. Robertson, A. Wang, S. Han, J. R. Wetterau, E. B. Janovitz, O. P. Flint, J. M. Whaley, W. N. Washburn, J. Med. Chem. 2008, 51, 1145-1149.
[3] a) G. L. Adams, P. J. Carroll, A. B. Smith III, J. Am. Chem. Soc. 2012, 134, 4037-4040; b) L. Adams, P. J. Carroll, A. B. Smith III, J. Am. Chem. Soc. 2013, 135, 519-528.
[4] a) P. S. Baran, J. M. Richter, J. Am. Chem. Soc. 2004, 126, 74507451; b) P. S. Baran, J. M. Richter, J. Am. Chem. Soc. 2005, 127, 15394-15396; c) J. M. Richter, B. W. Whitefield, T. J. Maimone, D. W. Lin, P. Castroviejo, P. S. Baran, J. Am. Chem. Soc. 2007, 129, 12857-12869; d) Y. Ito, T. Konoike, T. Harada, T. Saegusa, J. Am. Chem. Soc. 1977, 99, 1487-1493.
[5] a) P. S. Baran, J. M. Richter, D. W. Lin, Angew. Chem. 2005, 117, 612-615; Angew. Chem. Int. Ed. 2005, 44, 606-609; b) P. S. Baran, M. P. DeMartino, Angew. Chem. 2006, 118, 7241-7244; Angew. Chem. Int. Ed. 2006, 45, 7083-7086; c) C. L. Martin, L. E. Overman, J. M. Rohde, J. Am. Chem. Soc. 2008, 130, 7568-7569; d) J. M. Richter, Y. Ishihara, T. Masuda, B. W. Whitefield, T. Llamas, A. Pohjakallio, P. S. Baran, J. Am. Chem. Soc. 2008, 130, 17938-17954; e) C. L. Martin, L. E. Overman, J. M. Rohde, J. Am. Chem. Soc. 2010, 132, 4894-4906.
[6] For studies of intramolecular oxidative coupling between α-carbonyl carbons and the C3 position of indoles, see: a) Z. Zuo, W. Xie, D. Ma, J. Am. Chem. Soc. 2010, 132, 13226-13228; b) Z. Zuo, D. Ma, Angew. Chem. 2011, 123, 12214-12217; Angew. Chem. Int. Ed. 2011, 50, 12008-12011; c) F. Fan, W. Xie, D. Ma, Org. Lett. 2012, 14, 1405-1407; d) W. Zi, W. Xie, D. Ma, J. Am. Chem. Soc. 2012, 134, 9126-9129.
[7] J. M. Marshall, G. Schaaf, A. Nolting, Org. Lett. 2005, 7, 5331-5333.
[8] E. Marotta, P. Righi, G. Rosini, Org. Lett. 2000, 2, 4145-4148.
[9] A. U. Rauman, T. Fatina, N. M. Hasan, J. Chem. Soc. Pak. 1989, 11, 24-28.
[10] M. Frigerio, M. Santagostino, Tetrahedron Lett. 1994, 35, 8019-8022.
[11] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, $953-$ 956.
[12] a) S. D. Edwards, T. Lewis, R. J. K. Taylor, Tetrahedron Lett. 1999, 40, 4267-4270; b) D. Bourgeois, A. Pancrzi, L. Ricard, J. Prunet, Angew. Chem. 2000, 112, 741-744; Angew. Chem. Int. Ed. 2000, 39, 725-728; c) I. Hanna, L. Ricard, Org. Lett. 2000, 2, 2651-2654.
[13] For a similar example, see: S. J. Danishefsky, G. B. Phillips, Tetrahedron Lett. 1989, 30, 3157-3162.
[14] O. Mitsunobu, Synthesis 1981, 1-28.
[15] a) T. J. Brocksom, N. Petragnani, R. Rodrigues, H. La Scala, Synthesis 1975, 396-397; b) J. L. Belletire, E. G. Spletzer, A. R. Pinhas, Tetrahedron Lett. 1984, 25, 5969-5972; c) J. L. Belletire, D. F. Fry, J. Org. Chem. 1987, 52, 2549-2555; d) P. Renaud, M. A. Fox, J. Org. Chem. 1988, 53, 3745-3752; e) N. Kise, K. Tokioka, Y. Aoyama, J. Org. Chem. 1995, 60, 1100-1101; f) T. Langer, M. Illich, G. Felmchen, Tetrahedron Lett. 1995, 36, 4409-4412.
[16] a) A. Seveno, G. Morel, A. Foucaud, E. Marchand, Tetrahedron Lett. 1977, 18, 3349-3352; b) J. Yan, L.-R. Zhong, Z.-C. Chen, J. Org. Chem. 1991, 56, 459-461; c) J. W. Kim, J.-J. Lee, S.-H. Lee, K.W. Anh, Synth. Commun. 1998, 28, 1287-1292.

Received: September 27, 2012
Published online: February 11, 2013

[^0]: [a] T. Watanabe, Dr. N. Kato, Dr. N. Umezawa, Prof. Dr. T. Higuchi Graduate School of Pharmaceutical Sciences
 Nagoya City University
 3-1, Tanabe-dori, Mizuho-ku
 Nagoya, 467-8603 (Japan)
 Fax: (+81) 52-836-3435
 E-mail: higuchi@phar.nagoya-cu.ac.jp
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem. 201203454.

