Tetrahedron 68 (2012) 9035-9044

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Silver-catalyzed regioselective synthesis of acridines, quinolines, and naphthalenes from $3-(2-alkynyl)aryl-\beta-ketoesters$

Satya Prakash Shukla^a, Rakesh Tiwari^{a,b}, Akhilesh Kumar Verma^{a,*}

^a Department of Chemistry, University of Delhi, Delhi 110007, India

^b Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA

ARTICLE INFO

Article history: Received 16 June 2012 Received in revised form 11 August 2012 Accepted 21 August 2012 Available online 30 August 2012

Keywords: Electrophilic cyclization Regioselective Enolates Diketoacid Silver-catalyzed

ABSTRACT

A facile, efficient, and general synthetic method for a wide range of medicinally useful 2-carboxylate derivatives of acridinols, quinolinols, and naphthalenols has been developed via silver-catalyzed electrophilic cyclization of 3-(2-alkynyl)aryl- β -ketoesters. The designed reaction involved selective C–C bond formation on more electrophilic alkynyl carbon, which resulted in the regioselective 6-*endo-dig* cyclized product, as confirmed by X-ray crystallographic studies. The deuterium labeling experiments were performed to support the proposed mechanism. The synthetic methodology accommodates wide functional group variations on alkyne, which proves to be highly advantageous for structural and biological activity assessments.

© 2012 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Transition-metal-catalyzed electrophilic cyclization of alkynes and carbon–carbon bond formation using enolates have made a large contribution in organic chemistry for the synthesis of a variety of natural products, heterocycles, and carbocycles.¹ Among the various transition metals employed, silver-catalyzed reactions have gathered remarkable importance because of their ability to activate various π -systems at low-catalyst loading.²

The biochemical properties and therapeutic applications of polycyclic compounds largely depend on substituents in the basic structure. Acridines, quinolines and naphthalenes, have demonstrated significant biological activity against cancer,³ viruses,⁴ bacteria,⁵ parasites,⁶ fungus,⁷ Alzheimer's disease,⁸ and HIV/AIDS.⁹ Substrates with diketoacid (DKAs) functionality have been disclosed as promising HIV-1 integrase (IN) inhibitor.¹⁰ Acridine based alkaloids, such as Glyfoline, Acronycine (Fig. 1, **A** and **B**), and quinoline based compound **C** with analogous DKAs functionality, have found their application as potential antitumor and anti-HIV agents.¹¹ Thus, the development of novel and efficient routes for rapid access to such functionalized heterocycles under mild conditions are of high demand.

Although several reports are available for synthesis of these heterocycles, yet the efficient and general routes to synthesize such heterocyclic compounds with requisite DKAs functionality under mild reaction condition still have to be explored. The most common approaches for the synthesis of acridines proceed via corresponding acridones,¹² aminobenzannulation¹³ cycloisomerisation,¹⁴ and [4+2] annulations of benzynes.¹⁵ Most of the methods for the synthesis of acridines require rather harsh conditions.¹⁶

Fig. 1. Selected biologically active acridines and quinolines.

Prompted by importance of these heterocycles and in continuation of our ongoing efforts in the synthesis of heterocycles¹⁷ by the electrophilic cyclization of alkynes, we herein, report a straight forward approach for the synthesis of acridinol, quinolinol, naphthalenol and benzothiophenol via silver-catalyzed electrophilic cyclization of 3-(2-alkynyl)aryl-β-ketoesters (**3a**–**t**) with requisite DKAs functionality in excellent regioselectivity at room temperature. *ortho*-Alkynyl-β-keto esters **3** required for the reaction were readily prepared from easily accessible *ortho*-alkynyl aldehydes **1**, by reacting it with ethyl 2-diazoacetate **2** using NbCl₅ in CH₂Cl₂ at

^{*} Corresponding author. E-mail address: averma@acbr.du.ac.in (A.K. Verma).

^{0040-4020/\$ —} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.08.068

25 °C.¹⁸ Alkynes **3** were then subjected to electrophilic cyclization using AgOTf as a catalyst in CH_2Cl_2 to afford the desired product **4** (Scheme 1, C).

A. Synthesis of naphthalenols by Ciufolini and Wiess

B (i). Attempt to synthesize acridinols by Belmont and co-workers

B (ii). Synthesis of acridinols derivative by Belmont and co-workers

C. Our designed reaction pathway

Scheme 1. Previous approaches and our designed reaction pathway.

Previously, Ciufolini and Weiss¹⁹ have reported electrophilic cyclization on the parent benzaldehyde moiety using camphor sulphonic acid (CSA) in CHCl₃ under reflux condition for 8–12 h (Scheme 1, A). However, the methodology failed on quinolinecarbaldehyde moiety when Belmont and co-workers²⁰ used same reaction condition and ended up only with the 15% yield of the desired product {Scheme 1, B(i)}. This forced them to design a new strategy for the synthesis of acridinol derivatives^{14,20} {Scheme 1. B(ii)}. Our designed strategy accomodates various substrates like quinolinecarbaldehyde, nicotinaldehyde, benzaldehyde and benzothiophenecarbaldehyde, which afforded various 2-carboxylate derivative of acridinols, guinolinols, naphthalenols and benzothiophenols, respectively, under mild reaction condition in good yields. Reaction afforded the 6-endo-dig cyclized products by selective C-C bond formation on the more electrophilic alkynyl carbon (Scheme 1, C).

2. Results and discussion

In order to find the optimal reaction condition, we first analyzed various factors affecting reaction by using ethyl 3-oxo-3-(2-(phe-nylethynyl)quinolin-3-yl)propanoate **3a** (0.5 mmol) as a starting substrate. First of all, the reaction was performed with 5.0 mol % AgNO₃ in 2.0 mL of CHCl₃ at 25 °C, the cyclized product **4a** was obtained in only 22% yield after 3 h (Table 1, entry 1). However, when the reaction was further allowed to stir for 5 h, the product **4a** was obtained in 30% yield (Table 1, entry 2). Increasing the amount of AgNO₃ from 5 mol % to 10 mol %, led to the formation of **4a** in 44% yield (entry 3). Further efforts were made to come up with better conditions, which could afford the product in good yield. Among the various factors, we first varied silver salt. Employing AgOTf

instead of AgNO₃, afforded the desired product **4a** in 58% yield (entry 4). Various solvents like CH₃CN, CH₂Cl₂, H₂O, DMSO, DMF, and methanol were screened at low and elevated temperatures to find an appropriate system for the proposed reaction. From entries 5–10 in Table 1, it is apparent that CH₂Cl₂ was found to be quite successful for the transformation, as compound **4a** was obtained in a 75% yield. The use of AgOAc afforded the desired product **4a** only in 45% yield; whereas, other triflates like CuOTf and HOTf were found to be ineffective (entries 11–13). The combination of AgOTf (10.0 mol %) in CH₂Cl₂ (2.0 mL) at 25 °C was found to be most suitable for the reaction.

Optimization of reaction condition^a

Entry	Solvent	Catalyst (mol %)	T °C	Time (h)	Yield ^b (%)
1	CHCl ₃	AgNO ₃ (5)	25	3 h	22
2	CHCl ₃	$AgNO_3(5)$	25	5 h	30
3	CHCl ₃	AgNO ₃ (10)	25	5 h	44
4	CHCl ₃	AgOTf (10)	25	5 h	58
5	CH ₃ CN	AgOTf (10)	25	5 h	48
6	CH_2Cl_2	AgOTf (10)	25	5 h	75
7	H ₂ O	AgOTf (10)	80	5 h	68
8	DMSO	AgOTf (10)	120	5 h	28
9	DMF	AgOTf (10)	120	5 h	32
10	MeOH	AgOTf (10)	70	5 h	Trace
11	CH_2Cl_2	AgOAc (10)	25	5 h	45
12	CH_2Cl_2	CuOTf (10)	25	5 h	Trace
13	CH_2Cl_2	HOTf (10)	25	5 h	Trace

 $^{\rm a}$ All reactions were performed using 0.5 mmol of the alkyne ${\bf 3a},$ in 2.0 mL of solvent.

^b Isolated yields.

The scope and limitation of this silver-catalyzed electrophilic cyclization process were next examined by employing various alkynes bearing different substituents. The alkyne **3a** bearing phenyl substituent, afforded the desired cyclized product 4a in 75% yield (Table 2, entry 1). Substrates **3b-d** bearing electron-releasing methyl, ethyl, and methoxy groups on the phenyl, para to the triple bond resulted 6-endo-dig cyclized product 4b-d in 78-83% yields (entries 2-4). Alkyne bearing biphenyl substituent 3e provided the cyclized product 4e in 76% yield (entry 5). Alkyne 3f bearing an electron-withdrawing CF₃ group on phenyl, para to the triple bond, afforded the product **4f** in 64% yield (entry 6). Having studied the effect of phenyl ring, we further employed the protocol for alkyne bearing an electron-rich heterocycle, i.e., thiophene, afforded the desired product 4g in 82% yield (entry 7). Alkynes **3h**–**i** having alicyclic and alkyl substituents were found successful for the reaction, and the desired cyclized products **4h**-j were obtained in 70–72% yields (entries 8–10). The propargylphenoxy substituted alkyne 3k was also subjected to this cyclization and we were pleased to obtain cyclized product 4k in 69% yield (entry 11).

After obtaining the successful results with *ortho*-alkynylquinolines **3a**–**k**, we further extended the scope of this reaction on other substrates bearing electron-deficient (**3l**–**n**), neutral (**3o**–**s**) and electron-rich (**3t**) heterocyclic nucleus. Alkynes ethyl 3-oxo-3-(2-(arylethynyl)pyridin-3-yl)propanoate bearing *p*-tolyl and 1,3dimethoxybenzene **3l,m** afforded the desired cyclized product **4l,m** in 72–79% yields (Table 3, entries 1–2). Furthermore, ethyl 3oxo-3-(3-(*p*-tolylethynyl)pyridin-4-yl)propanoate **3n** provided the product **4n** in 73% yield (entry 3).

Further exploring the developed protocol to ethyl 3-oxo-3-(2-(arylethynyl)phenyl)propanoate **3o**–**s**, the desired products **4o**–**s** were obtained in moderate to good yields (Table 3, entries 4–8). The

Table 2

Table 3

Synthesis of naphthalenes, quinolines, and dibenzothiophenes with DKAs functionality^a

^a All reactions were performed with 0.5 mmol of the alkynes 3a-k, AgOTf (10.0 mol %) in CH2Cl2 (2.0 mL) at 25 °C for 3-5 h.

Isolated yields.

methyl and methoxy group present at para of alkynes **3p**-**q**, resulted the cyclized products 4p-q, in 74% and 79% yields, respectively (entries 5–6). The electron-rich thiophene substituted alkyne **3r**, proved favorable for the reaction and afforded desired product 4r in 80% yield (entry 7). The substitution at meta position of the phenyl ring afforded the cyclized product 4s in comparatively lower, i.e., 69% yield (entry 8). Electron-rich alkyne ethyl-3-(3-((4-methoxy phenyl) ethynyl)benzo-[b]thiophen-2-yl)-3-oxopropano

ate **3t** afforded the desired cyclized product **4t** in 75% yield (entry 9). All the synthesized products were fully characterized by the ¹H and ¹³C NMR method and mass spectroscopic data. The regioselective 6-endo-dig cyclization was unambiguously confirmed by Xray crystallographic studies of compounds 4f and 4p (Figs. 2 and 3).

To support the proposed mechanism, reaction of alkyne 3d was performed in CHCl₃ and quenched with D₂O, product 5 was observed (Scheme 2). Similar result was obtained, when we performed the reaction in CDCl₃ and quenched it with D₂O/CD₃OD. The product 4d was obtained when the same reaction was carried out in CDCl₃ and quenched with H₂O.²¹ However, when the reaction was carried out in CDCl₃ with 10.0 equiv of CD₃OD, both the compounds 5 and 6 were obtained in 2:3 ratios. Whereas, the formation of compound **6** occurred because of the presence of D^+ ion in the reaction medium, sourced by CD₃OD. These experiments indicate that H⁺ ion, which replaces Ag⁺ ion, is being accomplished before workup.

^a All reactions were performed with 0.50 mmol of the alkynes 31-t, AgOTf (10.0 mol %) in CH2Cl2 (2.0 mL) at 25 °C for 3-5 h.

Isolated yields.

Fig. 2. X-ray crystallographic ORTEP drawing of compound 4f.

Fig. 3. X-ray crystallographic ORTEP drawing of compound 4p.

a = reaction in $CHCl_3$ and quenched with D_2O/CD_3OD b = reaction in $CDCl_3$ and quenched with D_2O/CD_3OD

 $c = reaction in CDCl_3$ and quenched with H_2O

d = reaction in $CDCl_3$ with 10 equiv of CD_3OD

Scheme 2. Deuterium-labeling experiments.

On the basis of above observations, along with deuterium labeling experiments, an assumed pathway for the formation of cyclized product **4** is illustrated in Scheme 3. Firstly, the AgOTf coordinates to the triple bond of **3** to form a π -complex **T**,¹⁴ which undergoes intramolecular nucleophilic attack by the C2 position of β -keto ester onto alkynyl carbon to form the species **U**.

Scheme 3. Proposed mechanism.

Subsequently, replacement of silver ion by H^+ ion and keto-enol tautomerization of **V** led to desired cyclized product **4**.

3. Conclusions

In summary, a mild and efficient approach for the direct synthesis of medicinally important acridinol, naphthalenol, quinolinol and benzothiophenol bearing 2-carboxylate group have been demonstrated. This milder and feasible silver-catalyzed electrophilic cyclization have been advantageously employed to tolerate high functional group variation, thereby achieving diversity and regioselectivity in good yields, which makes it ideal for the generation of libraries of functionally-substituted scaffolds. The regioselective 6-*endo-dig* formation was confirmed by X-ray crystallographic studies. The deuterium labeling experiments proved to be an additional support for the proposed mechanism.

4. Experimental section

4.1. General method

¹H NMR (300 MHz or 400 MHz) and ¹³C NMR (75 MHz or 100 MHz) spectra were recorded in CDCl₃ or in DMSO as specified and were obtained using Jeol JNM ECX400P (400 MHz) spectrometer and Bruker AV300 (300 MHz) spectrometer. Chemical shifts for protons are reported in parts per million from tetramethylsilane with the residual CHCl₃ resonance as internal reference. Chemical shifts for carbons are reported in ppm from tetramethylsilane and are referenced to the carbon resonance of the solvent. Data are reported as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, dd=doublet of doublet), coupling constants in hertz, and integration. Highresolution mass spectra were recorded on Applied Biosystems QSTAR[®] Elite Hybrid (QqTOF) from Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston-02881, Rhode Island, USA. Crystal structure analvsis was accomplished on Oxford diffraction (Xcaliber S) single crystal X-ray diffractometer. TLC analysis was performed on commercially prepared 60 F254 silica gel plates and visualized by either UV irradiation or by staining with I2. Anhydrous forms of all reagents, such as diethyl ether, hexanes, ethyl acetate, CH₂Cl₂, 2chloroquinoline-3-carbaldehyde, 2-bromonicotinaldehyde, 3bromoisonicotin aldehyde, 2-bromobenzaldehyde, 3-bromobenzo [b] thiophene-2-carbaldehyde, ethyl diazoacetate, terminal alkynes, Et₃N, and the silver salts were used directly as obtained commercially unless otherwise noted.

4.2. General procedure for the niobium-catalyzed formation of the *ortho*-alkynyl- β -keto esters (3a-t)

To a solution of CH₂Cl₂ (10.0 mL), NbCl₅ (10.0 mol %) and *ortho*alkynyl aldehydes (1 mmol), ethyl 2-diazoacetate (1.2 mmol) was added and the reaction mixture was allowed to stir at 25 °C for 12–16 h. The reaction mixture was filtered and diluted with ethyl acetate and washed with brine solution. The combined organic fractions were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was purified by column chromatography on silica gel using ethyl acetate/hexane as the eluent.

4.2.1. Ethyl 3-oxo-3-(2-(phenylethynyl)quinolin-3-yl)propanoate (**3a**). The product was obtained as a brown oil (247.2 mg, 72%); R_f (15% ethyl acetate/hexane) 0.33; the compound was obtained as a mixture of keto and enol forms in the ratio of 2:1, ¹H NMR (400 MHz, CDCl₃) δ : 12.58 (s, 0.4H, OH) (enol), 8.51 (d, *J*=2.9 Hz, 1H, CH_{aromatic}) (keto), 8.17–8.10 (m, 1.4H, CH_{aromatic}) (keto+enol), 7.83–7.70 (m, 2.8H,

CH_{aromatic}) (keto+enol), 7.67–7.63 (m, 2.8H, CH_{aromatic}) (keto+enol), 7.54–7.47 (m, 2.0H, CH_{aromatic}) (keto+enol), 7.35–7.30 (m, 4.4H, CH_{aromatic}) (keto+enol), 6.33 (s, 0.4H, C=CH) (enol), 4.30–4.24 (m, 2.8H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.12 (q, *J*=7.3 Hz, 2H, CH₂CH₃) (keto), 1.30 (t, *J*=7.3 Hz, 1.6H, CH₂CH₃) (enol), 1.13 (t, *J*=7.3 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ : 193.5, 172.7, 171.2, 168.3, 166.9, 163.6, 148.7, 147.9, 147.0, 139.9, 139.7, 138.1, 136.5, 136.3, 132.8, 132.2, 132.1, 131.3, 129.6, 129.63, 129.55, 129.35, 128.8, 128.76, 128.67, 128.3, 128.25, 128.17, 128.0, 127.1, 127.29, 127.22, 126.1, 121.84, 121.79, 124.4, 106.0, 94.3, 93.7, 93.1, 88.47, 88.41, 88.0, 61.4, 61.0, 60.4, 48.3, 14.1, 13.8; HRMS calcd for C₂₂H₁₈NO₃ ([M+H]⁺) 344.1287; found 344.1296.

4.2.2. Ethyl 3-oxo-3-(2-(p-tolylethynyl)quinolin-3-yl)propanoate (**3b**). The product was obtained as a brown oil (268.0 mg, 75%); R_f (15% ethyl acetate/hexane) 0.31; the compound was obtained as a mixture of keto and enol forms in the ratio of 2:1, ¹H NMR (400 MHz, CDCl₃) δ: 12.62 (s, 0.5H, OH) (enol), 8.60–8.55 (m, 1.5H, CHaromatic) (keto+enol), 8.19-8.00 (m, 3H, CHaromatic) (keto+enol), 7.92-7.78 (m, 4.2H, CHaromatic) (keto+enol), 7.63-7.52 (m, 6H, CH_{aromatic}) (keto+enol), 7.40–7.21 (m, 6.2H, CH_{aromatic}) (keto+enol), 6.41 (s, 0.5H, C=CH) (enol), 4.38-4.31 (m, 3H, C=OCH₂C= O+CH₂CH₃) (keto+enol), 4.18 (q, J=7.3 Hz, 2H, CH₂CH₃) (keto), 2.68 (s, 4.5H, PhCH₃) (keto+enol), 1.38 (t, J=7.3 Hz, 1.7H, CH₂CH₃) (enol), 1.21 (t, J=7.3 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ : 194.8, 173.1, 171.6, 162.4, 161.4, 150.9, 149.7, 143.5, 143.0, 134.9, 134.2, 131.8, 130.8, 130.0, 129.2, 127.9, 127.1, 126.5, 126.0, 125.8, 124.8, 122.3, 121.8, 118.6, 95.5, 94.6, 91.8, 86.3, 86.1, 61.2, 60.2, 60.7, 21.4, 16.3. 15.9: HRMS calcd for C₂₃H₂₀NO₃ (M⁺) 357.1365: found 357.1366.

4.2.3. Ethyl 3-(2-((4-ethylphenyl)ethynyl)quinolin-3-yl)-3-oxopropanoate (3c). The product was obtained as a brown oil (278.4 mg, 75%); *R_f* (15% ethyl acetate/hexane) 0.31; the compound was obtained as a mixture of keto and enol forms in the ratio of 1.3:1, ¹H NMR (300 MHz, CDCl₃) δ : 12.53 (s, 0.7H, OH) (enol), 7.85–7.79 (m, 1.7H, CH_{aromatic}) (keto+enol), 7.66–7.59 (m, 1.7H, CH_{aromatic}) (keto+enol), 7.55–7.49 (m, 4.4H, CH_{aromatic}) (keto-+enol), 7.48-7.41 (m, 2.7H, CH_{aromatic}) (keto+enol), 7.40-7.20 (m, 4.1H, CH_{aromatic}) (keto+enol), 6.26 (s, 0.7H, C=CH) (enol), 4.36–4.29 (m, 3.4H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.19 (q, J=7.2 Hz, 2H, CH₂CH₃) (keto), 2.69 (q, J=7.2 Hz, 3.7H, CH₂CH₃) (keto+enol), 1.38 (t, J=7.3 Hz, 2.2H, CH₂CH₃) (enol), 1.30-1.20 (m, 8.6H, CH₂CH₃) (keto); ¹³C NMR (75 MHz, CDCl₃) δ: 194.9, 173.2, 170.4, 167.6, 145.6, 145.1, 139.2, 135.2, 133.9, 133.6, 131.8, 131.6, 131.5, 129.9, 129.2, 128.28, 128.13, 128.07, 127.95, 122.1, 121.4, 120.2, 119.7, 96.2, 95.2, 92.2, 87.7, 87.3, 61.3, 60.3, 48.6, 28.9, 15.3, 14.3, 14.0; HRMS calcd for C₂₄H₂₂NO₃ ([M+H]⁺) 372.1600; found 372.1576.

4.2.4. Ethyl 3-(2-((4-methoxyphenyl)ethynyl) quinolin-3-yl)-3-oxopropanoate (3d). The product was obtained as a brown oil (280.0 mg, 75%); *R_f* (15% ethyl acetate/hexane) 0.25; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1, ¹H NMR (400 MHz, CDCl₃) δ: 12.54 (s, 0.4H, OH) (enol), 8.52 (d, J=5.8 Hz, 1H, CH_{aromatic}) (keto), 8.08–8.06 (m, 1.4H, CH_{aromatic}) (keto+enol), 7.84–7.70 (m, 2.8H, CH_{aromatic}) (keto+enol), 7.59–7.58 (m, 2.7H, CH_{aromatic}) (keto+enol), 7.53–7.48 (m, 1.4H, CH_{aromatic}) (keto+enol), 7.19 (s, 0.4H, CH_{aromatic}) (enol), 6.86–6.82 (m, 2.8H, CH_{aromatic}) (keto+enol), 6.34 (s, 0.4H, C=CH) (enol), 4.30-4.25 (m, 2.8H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.11 (q, J=7.3 Hz, 2H, CH₂CH₃) (keto), 3.77 (s, 4.4H, PhOCH₃) (keto+enol), 1.38 (t, J=6.6 Hz, 1.4H, CH₂CH₃) (enol), 1.13 (t, J=7.3 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ: 193.9, 172.9, 168.5, 167.2, 160.8, 160.6, 148.9, 147.9, 138.2, 133.95, 133.92, 133.3, 128.92, 128.83, 128.3, 127.9, 127.7, 126.2, 125.9, 114.2, 114.0, 113.5, 93.2, 87.3, 61.5, 60.5, 55.3, 48.5, 14.3, 14.0; HRMS calcd for $C_{23}H_{19}NO_4$ (M⁺) 373.1314; found 373.1314.

4.2.5. Ethyl 3-(2-(biphenyl-4-ylethynyl)quinolin-3-yl)-3-oxopropanoate (3e). The product was obtained as a brown oil (293.6 mg. 70%): R_f (15% ethyl acetate/hexane) 0.28: the compound was obtained as a mixture of keto and enol forms in the ratio of 2:1. ¹H NMR (400 MHz, CDCl₃) δ : 12.55 (s. 0.5H, OH) (enol), 8.54–8.48 (m. 1.5H, CH_{aromatic}) (keto+enol), 8.10-8.00 (m, 3.1H, CH_{aromatic}) (keto+enol), 7.86–7.64 (m, 4.8H, CH_{aromatic}) (keto+enol), 7.62–7.49 (m, 8.3H, CH_{aromatic}) (keto+enol), 7.35–7.28 (m, 8.0H, CH_{aromatic}) (keto+enol), 6.31 (s, 0.5H, C=CH) (enol), 4.29-4.24 (m, 2.8H, C= OCH₂C=O+CH₂CH₃) (keto+enol), 4.10 (q, J=7.3 Hz, 2H, CH₂CH₃) (keto), 1.30 (t, J=7.3 Hz, 1.6H, CH₂CH₃) (enol), 1.12 (t, J=7.3 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ: 193.9, 173.4, 171.5, 167.7, 149.8, 148.5, 144.3, 140.8, 139.6, 136.7, 135.2, 132.5, 130.1, 129.8, 129.20, 129.08, 128.7, 128.29, 128.26, 128.06, 128.01, 126.31, 126.12, 125.88, 125.72, 125.4, 125.0, 124.2, 123.9, 123.4, 121.2, 118.6, 96.2, 95.0, 92.1, 86.1, 85.8, 61.4, 61.2, 47.5, 13.2, 13.0; HRMS calcd for C₂₈H₂₂NO₃ ([M+H]⁺) 420.1600; found 420.1598.

4.2.6. Ethyl 3-oxo-3-(2-((4-(trifluoromethyl)phenyl) ethynyl)quino*lin-3-yl*)*propanoate* (**3***f*). The product was obtained as a brown oil (284.1, 69%); *R*_f(15% ethyl acetate/hexane) 0.28; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1, ¹H NMR (400 MHz, CDCl₃) δ: 12.63 (s, 0.4H, OH) (enol), 8.61 (d, *J*=6.6 Hz, 1H, CH_{aromatic}) (Keto), 8.53–8.37 (m, 0.4H, CH_{aromatic}) (enol), 8.23-8.10 (m, 1.9H, CH_{aromatic}) (keto+enol), 7.95-7.87 (m, 2.9H, CH_{aromatic}) (keto+enol), 7.86–7.78 (m, 2.8H, CH_{aromatic}) (keto+enol), 7.69-7.58 (m, 4.6H, CH_{aromatic}) (keto+enol), 6.29 (s, 0.4H, C=CH) (enol), 4.37–4.30 (m, 2.9H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.17 (q, J=7.3 Hz, 2H, CH₂CH₃) (keto), 1.38 (t, J=7.3 Hz, 2.0H, CH₂CH₃) (enol), 1.20 (t, J=7.3 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ: 194.2, 173.4, 171.1, 163.1, 162.4, 150.9, 149.3, 146.6, 144.8, 141.7, 140.2, 135.8, 134.7, 134.3, 132.1, 131.0, 129.13, 129.09, 128.5, 127.7, 126.16, 126.14, 125.6, 124.51, 124.47, 124.43, 122.9, 122.5, 120.3, 119.3, 118.8, 96.2, 94.9, 91.6, 87.8, 87.3, 61.4, 61.2, 48.4, 13.7, 12.7; HRMS calcd for C₂₃H₁₇F₃NO₃ ([M+H]⁺) 412.1161; found 412.1156.

4.2.7. Ethyl 3-oxo-3-(2-(thiophen-3-ylethynyl) quinolin-3-yl)propanoate (3g). The product was obtained as a brown oil (255.0 mg, 73%); Rf (15% ethyl acetate/hexane) 0.33; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1 ¹H NMR (400 MHz, CDCl₃) δ: 12.50 (s, 0.4H, OH) (enol), 7.81–7.76 (m, 1.4H, *CH*_{aromatic}) (keto+enol), 7.62–7.55 (m, 2.8H, *CH*_{aromatic}) (keto+enol), 7.51–7.47 (m, 1.4H, CH_{aromatic}) (keto+enol), 7.43–7.37 (m, 2.8H, CH_{aromatic}) (keto+enol), 7.33-7.30 (m, 1.5H, CH_{aromatic}) (keto+enol), 7.24-7.21 (m, 1.8H, CH_{aromatic}) (keto+enol), 6.18 (s, 0.4H, C=CH) (enol), 4.27 (q, J=7.3 Hz, 0.8H, CH₂CH₃) (enol), 4.25 (s, 2H, C=OCH₂C=O) (keto), 4.17 (q, J=7.3 Hz, 2H, CH₂CH₃) (keto), 1.34 (t, J=7.3 Hz, 1.2H, CH₂CH₃) (enol), 1.20 (t, J=7.3 Hz, 3H, CH₂CH₃) (keto); 13 C NMR (100 MHz, CDCl₃) δ : 194.1, 171.5, 169.6, 163.7, 162.6, 150.8, 149.6, 146.4, 143.1, 141.8, 140.8, 139.8, 137.1, 135.4, 134.2, 131.9, 130.7, 129.16, 129.07, 128.1, 127.6, 127.3, 127.0, 126.3, 126.0, 125.9, 122.3, 118.7, 95.1, 94.6, 92.8, 85.4, 84.9, 61.0, 60.8, 48.1, 14.1, 13.9; HRMS calcd for C₂₀H₁₅NO₃S (M⁺) 349.0773; found 349.0773.

4.2.8. Ethyl 3-(2-(cyclohexylethynyl)quinolin-3-yl)-3-oxopropanoate (**3h**). The product was obtained as a brown oil (258.6 mg, 74%); R_f (15% ethyl acetate/hexane) 0.31; the compound was obtained as a mixture of keto and enol forms in the ratio of 1.8:1, ¹H NMR (400 MHz, CDCl₃) δ : 12.50 (s, 0.5H, OH) (enol), 8.76–8.64 (m, 1.6H, CH_{aromatic}) (keto+enol), 8.13–8.09 (m, 1.6H, CH_{aromatic}) (keto+enol), 7.54–7.52 (m, 1.8H, CH_{aromatic}) (keto+enol), 7.38–7.17 (m, 4.2H, CH_{aromatic}) (keto+enol), 6.35 (s, 0.5H, C=CH) (enol), 4.34–4.29 (m, 3H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.17 (q, *J*=7.3 Hz, 2H,

CH₂CH₃) (keto), 3.55–3.50 (m, 1.3H, CH) (keto+enol), 2.05–2.02 (m, 2.2H, CH₂) (keto+enol), 1.93–1.90 (m, 2H, CH₂) (keto+enol), 1.82–1.79 (m, 1.3H, CH₂) (keto+enol), 1.65–1.56 (m, 2.2H, CH₂) (keto+enol), 1.42–1.25 (m, 7.8H, CH₂+CH₂CH₃) (keto+enol), 1.24–1.18 (m, 4.1H, CH₂+CH₂CH₃) (keto+enol); ¹³C NMR (100 MHz, CDCl₃) δ : 194.4, 172.6, 172.3, 166.9, 166.6, 149.8, 133.8, 128.3, 126.3, 126.0, 125.6, 125.2, 124.7, 121.8, 121.5, 119.1, 118.8, 108.8, 100.6, 99.4, 99.2, 92.1, 61.2, 61.0, 32.2, 29.7, 25.8, 24.7, 13.9, 13.7; HRMS calcd for C₂₂H₂₃NO₃ (M⁺) 349.1678; found 349.1678.

4.2.9. Ethyl 3-(2-(cyclopentylethynyl)quinolin-3-yl)-3-oxopropanoate (3i). The product was obtained as a brown oil (238.1 mg, 71%); R_f (15% ethyl acetate/hexane) 0.31; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1, ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)\delta$: 12.58 (s, 0.4H, 0H) (enol), 8.51 (d, J=4.2 Hz,0.4H, CH_{aromatic}), 8.07–8.03 (m, 1.4H, CH_{aromatic}) (keto+enol), 7.91 (s, 1H, CH_{aromatic}) (Keto), 7.84–7.64 (m, 3.5H, CH_{aromatic}) (keto+enol), 7.54-7.46 (m, 1.8H, CH_{aromatic}) (keto+enol), 7.28-7.25 (m, 1.4H, CH_{aromatic}) (keto+enol), 6.81 (s, 0.4H, C=CH) (enol), 4.32-4.25 (m, 2.8H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.17 (q, J=7.3 Hz, 2H, CH₂CH₃) (enol), 3.87–3.79 (m, 1.3H, CH) (keto+enol), 2.05–1.95 (m, 3H, CH₂)(keto+enol), 1.80–1.77 (m, 6H, CH₂)(keto+enol), 1.67–1.62 (m, 3H, CH₂+CH₂CH₃) (keto+enol), 1.23–1.18 (m, 6.5H) (keto+enol, CH₂+CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ: 193.5, 172.3, 171.8, 160.5, 159.2, 141.9, 133.7, 132.9, 128.3, 127.6, 126.8, 124.7, 121.5, 118.8, 108.8, 102.9, 100.7, 99.4, 98.4, 70.7, 61.9, 61.8, 33.4, 30.8, 24.9, 14.1, 13.9; HRMS calcd for C₂₁H₂₁NO₃ (M⁺) 335.1521; found 335.1521.

4.2.10. Ethyl 3-(2-(hex-1-vnvl)auinolin-3-vl)-3-oxo propanoate (3i). The product was obtained as a brown oil (239.3 mg, 74%); R_f (15% ethyl acetate/hexane) 0.31; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1, ¹H NMR (400 MHz, CDCl₃) δ : 12.60 (s, 0.4H, OH) (enol), 8.58-8.27 (m, 1.3H, CH_{aromatic}) (keto+enol), 8.25-8.09 (m, 2.9H, CH_{aromatic}) (keto+enol), 8.04-7.90 (m, 3.7H, CH_{ar-} omatic) (keto+enol), 7.76–7.68 (m, 2.2H, CH_{aromatic}) (keto+enol), 7.51–7.42 (m, 0.5H, CH_{aromatic}) (keto+enol), 6.29 (s, 0.4H, C=CH) (enol), 4.31-4.18 (m, 3H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 3.98-3.93 (m, 2H, CH₂CH₃) (keto), 2.58–2.44 (m, 3.4H, CH₂) (keto+enol), 1.76–1.60 (m, 6.6H, CH₂) (keto+enol), 1.76–160 (m, 6.6H, CH₂) (keto+enol), 1.58–1.42 (m, 2.4H, CH₂) (keto+enol), 1.35–1.10 (m, 5H, CH₂+CH₂CH₃) (keto+enol), 1.00–0.92 (m, 4.9H, CH₂+CH₂CH₃) (keto+enol); ¹³C NMR (100 MHz, CDCl₃) δ: 194.8, 173.2, 171.6, 168.0, 159.6, 141.8, 133.8, 129.5, 128.3, 127.1, 126.0, 124.8, 121.5, 119.3, 118.8, 108.9, 103.1, 102.8, 102.20, 102.12, 92.1, 71.0, 61.9, 61.0, 30.4, 21.9, 144.1, 13.9, 13.6; HRMS calcd for C₂₀H₂₂NO₃ ([M+H]⁺) 324.1600; found 324.1599.

4.2.11. Ethyl 3-oxo-3-(2-(3-phenoxyprop-1-ynyl) quinolin-3-yl) propanoate (3k). The product was obtained as a brown oil (257.6 mg, 69%); *R*_f (15% ethyl acetate/hexane) 0.25; the compound was obtained as a mixture of keto and enol forms in the ratio of 1.6:1, ¹H NMR (400 MHz, CDCl₃) δ : 13.26 (s, 0.7H, OH) (enol), 8.18-8.08 (m, 1.4H, CH_{aromatic}) (keto+enol), 8.02-7.77 (m, 4.6H) (keto+enol, CH_{aromatic}), 7.71–7.38 (m, 4.7H, CH_{aromatic}) (keto+enol), 7.24-7.20 (m, 1.6H, CH_{aromatic}) (keto+enol), 6.99-6.89 (m, 4.1H, CH_{aromatic}) (keto+enol), 6.19 (s, 0.7H, C=CH) (enol), 5.41 (s, 3.2H, PhOCH₂) (keto+enol), 4.39 (q, *J*=7.3 Hz, 2H, CH₂CH₃) (keto), 4.20-4.06 (m, 5.2H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 1.29 (t, J=7.3 Hz, 2.6H, CH₂CH₃) (enol), 1.23–1.11 (m, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ: 194.6, 171.8, 169.6, 167.3, 160.7, 159.7, 143.5, 140.7, 139.1, 133.2, 132.2, 132.9, 128.2, 126.6, 125.4, 125.3, 125.2, 124.78, 124.57, 123.3, 122.7, 122.4, 120.9, 119.8, 119.4, 113.8, 95.7, 82.1, 82.0, 72.4, 72.3, 61.6, 61.0, 47.6, 14.2, 13.9; HRMS calcd for C₂₃H₂₀NO₄ ([M+H]⁺) 374.1393; found 374.1389.

4.2.12. *Ethyl* 3-oxo-3-(2-(*p*-tolylethynyl)pyridin-3-yl)propanoate (**3**). The product was obtained as light brown oil (224.3 mg, 73%);

*R*_f (15% ethyl acetate/hexane) 0.21; the compound was obtained as a mixture of keto and enol forms in the ratio of 1.6:1, ¹H NMR (400 MHz, CDCl₃) δ: 12.51 (s, 0.6H, OH) (enol), 8.76–8.65 (m, 1.6H, CH_{aromatic}) (keto+enol), 8.12–8.10 (m, 1.6H, CH_{aromatic}) (keto+enol), 7.55–7.42 (m, 3.3H, CH_{aromatic}) (keto+enol), 7.39–7.31 (m, 1.6H, CH_{aromatic}) (keto+enol), 7.26–7.17 (m, 3.6H, CH_{aromatic}) (keto+enol), 6.36 (s, 0.6H, C=CH) (enol), 4.34–4.29 (m, 3.2H, C= OCH₂C=O+CH₂CH₃) (keto+enol), 4.17 (q, *J*=7.3 Hz, 2H, CH₂CH₃) (keto), 2.39 (s, 4.9H, PhCH₃) (keto+enol), 1.37 (t, *J*=7.3 Hz, 1.9H, CH₂CH₃) (enol), 1.20 (t, *J*=7.3 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ: 194.0, 172.9, 168.1, 167.1, 152.6, 150.9, 141.1, 140.2, 139.8, 137.0, 135.8, 135.5, 132.0, 131.7, 129.3, 129.2, 122.6, 122.3, 122.0, 118.9, 118.3, 96.0, 94.9, 93.1, 87.4, 87.0, 61.5, 60.6, 48.4, 21.6, 14.3, 13.9; HRMS calcd for C₁₉H₁₇NO₃ (M⁺) 307.1208; found 307.1208.

4.2.13. Ethyl 3-(2-((3,5-dimethoxyphenyl)ethynyl) pyridin-3-yl)-3oxopropanoate (3m). The product was obtained as light brown oil (257.9 mg, 73%); Rf (15% ethyl acetate/hexane) 0.18; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1, ¹H NMR (400 MHz, CDCl₃) δ : 12.50 (s, 0.4H, OH) (enol), 7.81-7.76 (m, 1.4H, CHaromatic) (keto+enol), 7.62-7.55 (m, 2.8H, *CH*_{aromatic}) (keto+enol), 7.51–7.47 (m, 1.4H, *CH*_{aromatic}) (keto+enol), 7.43–7.37 (m, 2.8H, CH_{aromatic}) (keto+enol), 7.33–7.30 (m, 1.5H, CH_{aromatic}) (keto+enol), 7.24-7.21 (m, 1.8H, CH_{aromatic}) (keto+enol), 6.18 (s, 0.6H, C=CH) (enol), 4.27 (q, J=7.3 Hz, 0.8H, CH₂CH₃) (enol), 4.25 (s, 2H, C=OCH₂C=O) (keto), 4.17 (q, J=7.3 Hz, 2H, CH₂CH₃) (keto), 3.85 (s, 8.6H, PhOCH₃) (keto+enol), 1.34 (t, I=7.3 Hz, 1.2H, CH₂CH₃) (enol), 1.20 (t, J=7.3 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ : 194.4, 174.3, 171.6, 168.7, 159.7, 158.8, 150.8, 149.6, 143.0, 135.3, 134.2, 129.3, 129.13, 129.01, 125.8, 119.3, 118.6, 113.8, 113.0, 96.2, 94.9, 91.6, 85.2, 84.8, 61.2, 60.7, 55.3, 48.7, 13.8, 13.2; HRMS calcd for C₂₀H₁₉NO₅ ([M]⁺) 353.1263; found 353.1264.

4.2.14. Ethyl 3-oxo-3-(3-(p-tolylethynyl)pyridin-4-yl)propanoate (**3n**). The product was obtained as light brown oil (215.1 mg, 70%); $R_f(15\% \text{ ethyl acetate/hexane}) 0.22$; the compound was obtained as a mixture of keto and enol forms in the ratio of 1.7:1, ¹H NMR (400 MHz, CDCl₃) δ: 12.50 (s, 0.6H, OH) (enol), 8.13–7.90 (m, 1.7H, CH_{aromatic}) (keto+enol), 7.80-7.73 (m, 1.5H, CH_{aromatic}) (keto-+enol), 7.57-7.51 (m, 3.6H, CH_{aromatic}) (keto+enol), 7.37-7.30 (m, 1.6H, CH_{aromatic}) (keto+enol), 7.22–7.17 (m, 3.3H, CH_{aromatic}) (keto+enol), 6.36 (s, 0.6H, C=CH) (enol), 4.35-4.29 (m, 3.2H, C= OCH₂C=O+CH₂CH₃) (keto+enol), 4.17 (q, J=7.3 Hz, 2H, CH₂CH₃) (keto), 2.39 (s, 5.2H, PhCH₃) (keto+enol), 1.37 (t, J=7.3 Hz, 1.7H, CH₂CH₃) (enol), 1.20 (t, J=7.3 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ: 194.2, 173.0, 167.9, 166.9, 152.6, 151.2, 141.2, 140.1, 139.8, 137.0, 136.0, 135.5, 132.0, 131.9, 131.7, 129.3, 129.2, 122.6, 122.4, 121.8, 118.9, 118.3, 95.9, 94.6, 92.9, 87.6, 87.2, 61.5, 60.5, 48.4, 21.6, 14.3, 13.9; HRMS calcd for $C_{19}H_{18}NO_3$ ([M+H]⁺) 308.1287; found 308.1291.

4.2.15. *Ethyl* 3-oxo-3-(2-(*phenylethynyl*)*phenyl*) *propanoate* (**3o**). The product was obtained as a brown oil (207.5 mg, 71%); R_f (10% ethyl acetate/hexane) 0.35; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1, ¹H NMR (300 MHz, CDCl₃) δ : 12.53 (s, 0.5H, OH) (enol), 7.75–7.69 (m, 1.4H, CH_{aromatic}) (keto+enol), 7.57–7.53 (m, 1.2H, CH_{aromatic}) (keto+enol), 7.50–7.41 (m, 4.3H, CH_{aromatic}) (keto+enol), 7.37–7.26 (m, 6.2H, CH_{aromatic}) (keto+enol), 6.12 (s, 0.4H, C=CH) (enol), 4.25–4.18 (m, 2.8H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.08 (q, *J*=7.2 Hz, 2H, CH₂CH₃) (keto), 1.27 (t, *J*=7.2 Hz, 1.4H, CH₂CH₃) (enol), 1.12 (t, *J*=7.2 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (75 MHz, CDCl₃) δ : 194.8, 173.1, 170.4, 167.5, 139.3, 135.4, 134.0, 131.8, 131.61, 131.53, 129.9, 129.1, 128.9, 128.60, 128.46, 128.35, 128.1, 123.0, 122.5, 121.8, 121.1, 97.7, 94.8, 92.3, 88.3, 87.8, 61.3,

60.3, 48.5, 14.3, 14.0; HRMS calcd for $C_{19}H_{16}O_3\,(M^+)$ 292.1099; found 292.1088.

4.2.16. Ethyl 3-oxo-3-(2-(p-tolylethynyl)phenyl) propanoate (3p). The product was obtained as a brown oil (223.6 mg, 73%); R_f (10% ethyl acetate/hexane) 0.33; the compound was obtained as a mixture of keto and enol forms in the ratio of 3.3:1. ¹H NMR (300 MHz, CDCl₃) δ: 12.50 (s. 0.3H, OH) (enol), 7.82–7.76 (m. 1.3H, CHaromatic) (keto+enol), 7.63-7.59 (m, 1.3H, CHaromatic) (keto-+enol), 7.52-7.37 (m, 5.1H, CH_{aromatic}) (keto+enol), 7.19-7.15 (m, 2.5H, CH_{aromatic}) (keto+enol), 6.22 (s, 0.3H, C=CH) (enol), 4.30-4.26 (m, 2.8H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.17 (q, J=7.2 Hz, 2H, CH₂CH₃) (keto), 2.38 (s, 3.8H, PhCH₃) (keto+enol), 1.35 (t, J=7.2 Hz, 1.4H, CH₂CH₃) (enol), 1.20 (t, J=7.2 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (75 MHz, CDCl₃) δ: 194.9, 173.1, 170.4, 167.6, 139.3, 136.8, 133.9, 133.6, 131.9, 131.52, 131.43, 129.9, 129.25, 129.17, 128.27, 128.13, 122.1, 121.3, 120.0, 119.6, 96.1, 95.1, 92.2, 87.7, 87.7, 87.3, 61.3, 60.3, 48.6, 21.6, 14.4, 14.0; HRMS calcd for C₂₀H₁₈O₃ (M⁺) 306.1256; found 306.1255.

4.2.17. Ethyl 3-(2-((4-methoxyphenyl)ethynyl) phenyl)-3-oxopropanoate (3q). The product was obtained as a brown oil (238.5 mg, 74%); $R_f(10\%$ ethyl acetate/hexane) 0.25; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1, ¹H NMR (300 MHz, CDCl₃) δ: 12.50 (s, 0.4H, OH) (enol), 7.82-7.79 (m, 1.3H, CH_{aromatic}) (keto+enol), 7.62-7.58 (m, 1.4H, CH_{aromatic}) (keto+enol), 7.50–7.47 (m, 4.3H, CH_{aromatic}) (keto+enol), 7.42-7.36 (m, 2H, CH_{aromatic}) (keto+enol), 6.91-6.86 (m, 3.2H, CH_{aromatic}) (keto+enol), 6.22 (s, 0.4H, C=CH) (enol), 4.31–4.26 (m. 2.8H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.17 (q, J=7.2 Hz, 2H, CH₂CH₃) (keto), 3.84 (s, 4.5H, PhOCH₃) (keto+enol), 1.35 (t, *I*=7.2 Hz, 1.1H, CH₂CH₃) (enol), 1.18 (t, *I*=7.2 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (75 MHz, CDCl₃) δ: 194.9, 173.2, 170.5, 167.6, 160.2, 159.2, 139.1, 133.8, 133.4, 133.15, 133.01, 131.8, 129.9, 129.1, 128.1, 127.9, 122.3, 114.6, 114.12, 114.01, 96.1, 95.1, 92.1, 87.2, 86.8, 61.2, 60.3, 55.3, 48.6, 14.3, 14.0; HRMS calcd for C₂₀H₁₈O₄ (M⁺) 322.1205; found 322.1207.

4.2.18. Ethyl 3-oxo-3-(2-(thiophen-3-ylethynyl) phenyl)propanoate (**3r**). The product was obtained as a brown oil (226.7 mg, 76%); R_f (10% ethyl acetate/hexane) 0.33; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1, ¹H NMR (400 MHz, CDCl₃) δ: 12.50 (s, 0.4H, OH) (enol), 8.59 (d, J=7.2 Hz, 1H, CH_{aromatic}) (keto), 8.14 (t, J=7.2 Hz, 1H, CH_{aromatic}) (keto), 7.92-7.72 (m, 3.2H, CHaromatic) (keto+enol), 7.66-7.61 (m, 5H, CH_{aromatic}) (keto+enol), 7.26 (s, 1.6H, CH_{aromatic}) (keto+enol), 6.94-6.90 (m, 3.9H, CH_{aromatic}) (keto+enol), 6.41 (s, 0.4H, C=CH) (enol), 4.37–4.33 (m, 3.0H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 4.18 (q, J=7.3 Hz, 2H, CH₂CH₃) (keto), 1.38 (t, J=7.3 Hz, 1.5H, CH₂CH₃) (enol), 1.20 (t, J=7.3 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (100 MHz, CDCl₃) δ: 194.7, 173.1, 170.4, 167.5, 139.1, 135.2, 133.9, 133.4, 131.8, 129.9, 125.6, 129.16, 128.96, 128.34, 128.21, 128.13, 125.6, 125.4, 122.1, 121.9, 121.6, 121.1, 92.1, 91.1, 90.2, 87.8, 87.4, 61.3, 60.3, 48.5, 14.3, 13.9; HRMS calcd for C₁₇H₁₄O₃S (M⁺) 298.0664; found 298.0668.

4.2.19. Ethyl 3-oxo-3-(2-(*m*-tolylethynyl)phenyl) propanoate (**3s**). The product was obtained as a brown oil (220.5 mg, 72%); R_f (10% ethyl acetate/hexane) 0.31; the compound was obtained as a mixture of keto and enol forms in the ratio of 1.8:1, ¹H NMR (300 MHz, CDCl₃) δ : 12.53 (s, 0.5H, OH) (enol), 7.82–7.77 (m, 1.4H, CH_{aromatic}) (keto+enol), 7.64–7.59 (m, 1.5H, CH_{aromatic}) (keto+enol), 7.50–7.48 (m, 1H, CH_{aromatic}) (keto), 7.44–7.36 (m, 4.8H, CH_{aromatic}) (keto+enol), 7.29–7.22 (m, 1.8H, CH_{aromatic}) (keto+enol), 7.20–7.15 (m, 1.5H, CH_{aromatic}) (keto+enol), 6.22 (s, 0.5H, C=CH) (enol), 4.33–4.26 (m, 2.9H, C=OCH₂C=O+CH₂CH₃)

(keto+enol), 4.16 (q, *J*=7.2 Hz, 2H, *CH*₂CH₃) (keto), 2.36 (s, 4.5H, PhCH₃) (keto+enol), 1.35 (t, *J*=7.2 Hz, 1.8H, CH₂CH₃) (enol), 1.20 (t, *J*=7.2 Hz, 3H, CH₂CH₃) (keto); ¹³C NMR (75 MHz, CDCl₃) δ : 194.9, 173.2, 170.4, 167.5, 139.3, 138.2, 135.3, 134.0, 133.7, 132.13, 132.09, 131.9, 129.95, 129.89, 129.5, 129.2, 128.9, 128.73, 128.63, 128.38, 128.26, 128.16, 122.9, 122.4, 122.0, 121.2, 96.1, 95.1, 92.2, 87.9, 61.3, 60.3, 48.6, 21.2, 14.3, 14.0; HRMS calcd for C₂₀H₁₈O₃ (M⁺) 306.1256; found 306.1259.

4.2.20. Ethyl 3-(3-((4-methoxyphenyl)ethynyl) benzo[b]thiophen-2yl)-3-oxopropanoate (3t). The product was obtained as a yellow semi solid (295.2 mg, 78%); R_f (10% ethyl acetate/hexane) 0.18; the compound was obtained as a mixture of keto and enol forms in the ratio of 2.5:1, ¹H NMR (400 MHz, CDCl₃) δ : 13.52 (s, 0.4H, OH) (enol), 8.12–8.07 (m, 0.9H, CH_{aromatic}) (keto+enol), 7.86–7.76 (m, 1.2H, CH_{aromatic}) (keto+enol), 7.62–7.59 (m, 2.3H, CH_{aromatic}) (keto+enol), 7.54–7.45 (m, 3.3H, CH_{aromatic}) (keto+enol), 6.96-6.88 (m, 2.8H, CH_{aromatic}) (keto+enol), 4.26-4.17 (m, 5.4H, C=OCH₂C=O+CH₂CH₃) (keto+enol), 3.86 (s, 3H, PhOCH₃) (keto), 3.83 (s, 0.8H, PhOCH₃) (enol), 1.29 (t, J=7.2 Hz, 3H, CH₂CH₃) (keto), 1.20 (t, J=7.2 Hz, 1H, CH₂CH₃) (enol); ¹³C NMR (100 MHz, CDCl₃) *δ*: 187.1, 169.7, 167.4, 160.9, 143.5, 140.5, 140.4, 133.5, 133.1, 128.3, 125.41, 125.33, 125.20, 124.6, 123.3, 122.8, 122.1, 114.3, 114.0, 113.8, 101.5, 81.8, 68.2, 61.5, 61.0, 55.4, 47.6, 39.4, 14.14, 13.99; HRMS calcd for C₂₂H₁₈O₄S (M⁺) 378.0926; found 378.0924.

4.3. General procedure for the silver-catalyzed formation of the 2-carboxylate-acridinols, quinolinols, naphthlenols, and benzothiophenol (4a-t)

To a solution of CH₂Cl₂ (2 mL), and AgOTf (10 mol %), *ortho*alkynyl- β -keto esters (**3a**–**t**) (0.5 mmol) were added and the reaction mixture was allowed to stir at 25 °C for 3–5 h. The completion of reaction was monitored by TLC. The reaction mixture was filtered and diluted with ethyl acetate and washed with brine solution. The combined organic fractions were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was purified by column chromatography on silica gel using ethyl acetate/hexane as the eluent.

4.3.1. *Ethyl* 1-hydroxy-3-phenylacridine-2-carboxylate (**4a**). The product was obtained as brown crystals in hexane/CH₂Cl₂ (128.7 mg, 75%); mp 140–144 °C; R_f (10% ethyl acetate/hexane) 0.46; ¹H NMR (400 MHz, CDCl₃) δ : 12.67 (s, 1H, OH), 9.30 (s, 1H, CH_{aromatic}), 8.12 (d, J=8.8 Hz, 1H, CH_{aromatic}), 8.02 (d, J=8.8 Hz, 1H, CH_{aromatic}), 7.77 (t, J=7.3 Hz, 1H, CH_{aromatic}), 7.52–7.48 (m, 2H, CH₂CH₃), 0.73 (t, J=6.6 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.5, 162.6, 150.9, 149.6, 143.4, 142.9, 134.2, 131.9, 129.1, 128.2, 127.6, 126.8, 126.0, 125.9, 122.4, 118.7, 104.5, 61.2, 12.9; HRMS calcd for C₂₂H₁₈NO₃ ([M+H]⁺) 344.1287; found 344.1285. IR ν (cm⁻¹) (liquid film): 2920, 2850, 1654, 1514, 1463, 1401, 1375, 1324, 1260, 1161, 1097, 1019, 800.

4.3.2. Ethyl 1-hydroxy-3-p-tolylacridine-2-carboxylate (**4b**). The product was obtained as light yellow crystalline solid from hexane/ CH₂Cl₂ (141.2 mg, 79%); mp 155–157 °C; R_f (10% ethyl acetate/ hexane) 0.41; ¹H NMR (400 MHz, CDCl₃) δ : 12.19 (s, 1H, OH), 9.32 (S, 1H, CH_{aromatic}), 8.20 (d, J=6.88 Hz, 1H, CH_{aromatic}), 8.00 (d, J=8.2 Hz, 1H, CH_{aromatic}), 7.81–7.77 (M, 1H, CH_{aromatic}), 7.56 (M, 1H, CH_{aromatic}), 7.53–7.49 (M, 1H, CH_{aromatic}), 7.19 (d, J=8.7 Hz, 2H, CH_{aromatic}), 7.13 (d, J=6.9 Hz, 2H, CH_{aromatic}), 4.02 (q, J=6.4 Hz, 2H, CH₂CH₃), 2.35 (s, 3H, PhCH₃), 0.75 (t, J=7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.5, 162.4, 149.8, 148.4, 144.5, 139.6, 136.7, 135.2, 132.5, 129.2, 128.3, 128.1, 126.1, 125.8, 121.5, 118.6, 104.9, 61.4, 21.8, 13.0; HRMS calcd $C_{23}H_{20}NO_3$ (M⁺) 357.1365; found 357.1366. IR ν (cm⁻¹) (liquid film): 3075, 2981, 2927, 2855, 1633, 1619, 1561, 1513, 1495, 1444, 1374, 1263, 1068, 960, 822, 703, 677, 624.

4.3.3. *Ethyl* 3-(4-*ethylphenyl*)-1-*hydroxyacridine-2-carboxylate* (**4c**). The product was obtained as brown crystals in hexane/ CH₂Cl₂ (144.7 mg, 78%); mp 138–141 °C; *R*_f (10% ethyl acetate/ hexane) 0.43; ¹H NMR (400 MHz, CDCl₃) δ : 12.60 (s, 1H, OH), 9.29 (s, 1H, *CH*_{aromatic}), 8.12 (d, *J*=8.8 Hz, 1H, *CH*_{aromatic}), 8.00 (d, *J*=8.1 Hz, 1H, *CH*_{aromatic}), 7.78–7.74 (m, 1H, *CH*_{aromatic}), 7.52–7.49 (m, 2H, *CH*_{aromatic}), 7.22 (d, *J*=8.1 Hz, 2H, *CH*_{aromatic}), 7.15 (d, *J*=7.0 Hz, 2H, *CH*₂CH₃), 1.22 (t, *J*=7.3 Hz, 3H, CH₂CH₃), 0.73 (t, *J*=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.6, 162.5, 150.9, 149.7, 143.5, 143.0, 140.0, 134.2, 131.8, 129.2, 128.2, 127.1, 126.0, 125.8, 122.3, 118.7, 104.7, 61.2, 28.6, 15.9, 12.9; HRMS calcd for C₂₄H₂₂NO₃ ([M+H]⁺) 372.1600; found 372.1589. IR ν (cm⁻¹) (liquid film): 2925, 2853, 1617, 1515, 1440, 1396, 1338, 1263, 1180, 1100, 963, 807, 747.

4.3.4. Ethyl 1-hydroxy-3-(4-methoxyphenyl)acridine-2-carboxylate (**4d**). The product was obtained as brown crystals in hexane/ CH₂Cl₂ (154.9 mg, 83%); mp 170–172 °C; R_f (10% ethyl acetate/ hexane) 0.23; ¹H NMR (400 MHz, CDCl₃) δ : 12.61 (s, 1H, OH), 9.28 (s, 1H, CH_{aromatic}), 8.11 (d, J=8.8 Hz, 1H, CH_{aromatic}), 7.99 (d, J=8.0 Hz, 1H, CH_{aromatic}), 7.76 (t, J=8.1 Hz, 1H, CH_{aromatic}), 7.50–7.46 (m, 2H, CH_{aromatic}), 7.23 (d, J=8.8 Hz, 2H, CH_{aromatic}), 6.87 (d, J=8.8 Hz, 2H, CH_{aromatic}), 4.02 (q, J=7.3 Hz, 2H, CH₂CH₃), 3.80 (s, 3H, PhOCH₃), 0.81 (t, J=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.6, 162.5, 158.8, 150.8, 149.6, 143.1, 135.3, 134.2, 131.9, 129.31, 129.13, 129.01, 125.96, 125.81, 122.2, 118.6, 113.0, 104.7, 61.3, 55.3, 13.2; HRMS calcd C₂₃H₂₀NO₄ ([M+H]⁺) 374.1393; found 374.1395. IR ν (cm⁻¹) (liquid film): 2924, 2853, 1617, 1512, 1441, 1374, 1339, 1232, 1264, 1181, 1101, 1019, 961, 810, 748, 698.

4.3.4.1. Procedure for the silver-catalyzed formation of compound (**5**+**6**). To a solution of CDCl₃ (2 mL), and AgOTf (10 mol %), ethyl 3-(2-((4-methoxyphenyl)ethynyl)quinolin-3-yl)-3-oxopropanoate (3d) (0.5 mmol) was added followed by 10 equiv of CD₃OD and reaction mixture was allowed to stir at 25 °C for 5 h and the resulting solution was filtered and washed with D₂O and extracted with ethyl acetate $(3 \times 10 \text{ mL})$. The combined organic fractions was dried over anhydrous Na2SO4 and concentrated under vacuum to yield the crude product. The crude product was purified by column chromatography on silica gel using ethyl acetate/hexane as the eluent. The product was obtained as brown crystals in hexane/CH₂Cl₂; mp 175–176 °C; R_f (10% ethyl acetate/ hexane) 0.24; ¹H NMR (400 MHz, CDCl₃) δ: 9.36 (s, 1H, CH_{aromatic}), 8.22 (d, J=8.4 Hz, 1H, CH_{aromatic}), 8.05 (d, J=8.1 Hz, 1H, CH_{aromatic}), 7.83 (t, J=7.3 Hz, 1H, CHaromatic), 7.60 (s, 0.4H, CHaromatic), 7.55 (t, J=7.3 Hz, 1H, CH_{aromatic}), 7.28 (d, J=8.0 Hz, 2H, CH_{aromatic}), 6.82 (d, J=8.8 Hz, 2H, CH_{aromatic}), 4.08 (q, J=6.6 Hz, 2H, CH₂CH₃), 3.85 (s, 3H, PhOCH₃), 0.86 (t, J=7.3 Hz, 3H, CH₂CH₃).

4.3.5. *Ethyl* 3-(*biphenyl*-4-*yl*)-1-*hydroxyacridine*-2-*carboxylate* (**4e**). The product was obtained as brown crystals in hexane/ CH₂Cl₂ (159.4 mg, 76%); mp 173–175 °C; *R*_f (10% ethyl acetate/ hexane) 0.30; ¹H NMR (400 MHz, CDCl₃) δ : 12.69 (s, 1H, OH), 9.31 (s, 1H, CH_{aromatic}), 8.13 (d, *J*=8.8 Hz, 1H, CH_{aromatic}), 8.00 (d, *J*=8.8 Hz, 1H, CH_{aromatic}), 7.79–7.75 (m, 1H, CH_{aromatic}), 7.60–7.56 (m, 5H, CH_{aromatic}), 7.49 (t, *J*=7.3 Hz, 1H, CH_{aromatic}), 7.42–7.37 (m, 4H, CH_{aromatic}), 7.30 (t, *J*=7.3 Hz, 1H, CH_{aromatic}), 4.01 (q, *J*=7.3 Hz, 2H, CH₂CH₃), 0.74 (t, *J*=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.5, 162.7, 149.6, 143.0, 141.9, 140.8, 139.8, 134.3, 131.9, 129.16, 129.07, 128.8, 128.6, 127.3, 127.0, 126.3, 126.0, 125.9, 122.3, 118.7, 104.5, 61.0, 14.1; HRMS calcd for C₂₈H₂₁NO₃ (M⁺) 419.1521; found 419.1521. IR ν (cm⁻¹) (liquid film): 2923, 2852, 1615, 1373, 1269, 1102, 1019, 845, 754, 694.

4.3.6. Ethyl 1-hydroxy-3-(4-(trifluoromethyl) phenyl)acridine-2carboxvlate (4f). The product was obtained as vellow crystals in hexane/CH₂Cl₂ (131.7 mg, 64%); mp 173–175 °C; R_f (10% ethyl acetate/hexane) 0.37; ¹H NMR (400 MHz, CDCl₃) δ: 12.89 (s, 1H, OH), 9.33 (s, 1H, CH_{aromatic}), 8.17 (d, J=8.8 Hz, 1H, CH_{aromatic}), 8.03 (d, J=8.1 Hz, 1H, CH_{aromatic}), 7.85-7.81 (m, 1H, CH_{aromatic}), 7.66 (d, J=8.0 Hz, 2H, CH_{aromatic}), 7.58–7.54 (m, 1H, CH_{aromatic}), 7.52 (s, 1H, CH_{aromatic}), 7.48 (d, *J*=8.0 Hz, 2H, CH_{aromatic}), 4.05 (q, *J*=7.3 Hz, 2H, CH₂CH₃), 0.77 (t, *J*=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) *δ*: 171.1, 163.1, 150.9, 149.3, 146.6, 141.7, 134.3, 132.1, 129.13, 129.09, 128.5, 126.2, 126.1, 124.51, 124.47, 124.43, 122.5, 118.8, 103.7, 61.4, 12.8; HRMS calcd for C_{2.3}H₁₆F₃NO₃ (M⁺) 411.1082; found 411.1082. IR v (cm⁻¹) (KBr): 2924, 1653, 1615, 1513, 1371, 1337, 1311, 1240, 1101, 962, 877, 748, 588, 536. Crystallographic data for 4f have been deposited with the Cambridge Crystallographic Data Centre. CCDC 864805, contain all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; fax: (+44)1223-336-033; or email: deposit@ccdc.cam.ac.uk.

4.3.7. *Ethyl* 1-hydroxy-3-(thiophen-3-yl)acridine-2-carboxylate (**4g**). The product was obtained as brown crystals in hexane/ CH₂Cl₂ (143.2 mg, 82%); mp 147–150 °C; *R*_f (10% ethyl acetate/ hexane) 0.46; ¹H NMR (400 MHz, CDCl₃) δ : 12.69 (s, 1H, OH), 9.28 (s, 1H, CH_{aromatic}), 8.11 (d, *J*=8.8 Hz, 1H, CH_{aromatic}), 7.99 (d, *J*=8.1 Hz, 1H, CH_{aromatic}), 7.76 (t, *J*=7.3 Hz, 1H, CH_{aromatic}), 7.56 (s, 1H, CH_{aromatic}), 7.49 (t, *J*=7.3 Hz, 1H, CH_{aromatic}), 7.24–7.21 (m, 2H, CH_{aromatic}), 7.02 (d, *J*=5.9 Hz, 1H, CH_{aromatic}) 4.07 (q, *J*=7.3 Hz, 2H, CH₂CH₃), 0.91 (t, *J*=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.5, 162.6, 150.9, 149.6, 142.9, 138.0, 134.2, 131.9, 129.17, 129.12, 128.98, 126.07, 125.96, 124.1, 122.5, 121.5, 118.8, 104.5, 61.4, 13.2; HRMS calcd for C₂₀H₁₅NO₃S (M⁺) 349.0773; found 349.0779. IR ν (cm⁻¹) (liquid film): 3060, 2920, 2850, 2658, 1723, 1614, 1574, 1514, 1372, 1251, 1131, 1016, 857, 757, 691, 660.

4.3.8. Ethyl 3-cyclohexyl-1-hydroxyacridine-2-carboxylate (**4h**). The product was obtained as green needle crystals in hexane/CH₂Cl₂ (122.3 mg, 70%); mp 80–85 °C; R_f (10% ethyl acetate/hexane) 0.44; ¹H NMR (400 MHz, CDCl₃) δ : 13.06 (s, 1H, OH), 9.31 (s, 1H, CH_{aromatic}), 8.15 (d, *J*=8.8 Hz, 1H, CH_{aromatic}), 8.04 (d, *J*=8.1 Hz, 1H, CH_{aromatic}), 7.84–7.80 (m, 1H, CH_{aromatic}), 7.62 (s, 1H, CH_{aromatic}), 7.55–7.51 (m, 1H, CH_{aromatic}), 4.53 (q, *J*=6.6 Hz, 2H, CH₂CH₃), 3.57–3.49 (m, 1H, CH₂), 1.56–1.40 (m, 5H, CH₂), 1.36–1.24 (m, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 172.3, 164.4, 142.4, 139.1, 136.1, 132.8, 130.9, 129.5, 128.8, 128.0, 127.1, 125.5, 118.4, 106.1, 62.0, 48.0, 34.3, 29.7, 25.0, 14.4. HRMS calcd for C₂₂H₂₃NO₃ (M⁺) 349.1678; found 349.1675. IR ν (cm⁻¹) (liquid film): 2957, 2922, 2852, 1731, 1634, 1608, 1515, 1402, 1379, 1326, 1179, 1112, 1016, 956, 853, 832, 772, 617.

4.3.9. Ethyl 3-cyclopentyl-1-hydroxyacridine-2-carboxylate (**4i**). The product was obtained as green needle crystals in hexane/CH₂Cl₂ (120.7 mg, 72%); mp 87–88 °C; R_f (10% ethyl acetate/hexane) 0.44; ¹H NMR (400 MHz, CDCl₃) δ : 12.86 (s, 1H, OH), 9.23 (s, 1H, CH_{aromatic}), 8.11 (d, J=8.7 Hz, 1H, CH_{aromatic}), 7.94 (d, J=8.1 Hz, 1H, CH_{aromatic}), 7.74 (t, J=7.7 Hz, 1H, CH_{aromatic}), 7.55 (s, 1H, CH_{aromatic}), 7.44 (t, J=7.3 Hz, 1H, CH_{aromatic}), 4.44 (q, J=7.3 Hz, 2H, CH₂CH₃), 3.46–3.41 (m, 1H, CH), 1.95–1.92 (m, 2H, CH₂), 1.84–1.81 (m, 2H, CH₂), 1.73–1.70 (m, 1H, CH₂), 1.48–1.22 (m, 6H, CH₂+CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 172.3, 162.9, 150.1

147.8, 139.5, 134.3, 131.8, 129.7, 129.2, 128.8, 125.5, 117.3, 105.5, 103.4, 61.2, 43.8, 34.2, 25.0, 13.9; HRMS calcd for $C_{21}H_{22}NO_3$ ([M+H]⁺) 336.1600; found 336.1589. IR ν (cm⁻¹) (liquid film): 2961, 2924, 2855, 1716, 1633, 1615, 1558, 1511, 1463, 1337, 1374, 1262, 1099, 1019, 861, 844, 796, 750, 628.

4.3.10. Ethyl 3-butyl-1-hydroxyacridine-2-carboxylate (**4***j*). The product was obtained as greenish yellow needle crystals in hexane/ CH₂Cl₂ (113.2 mg, 70%); mp 100–103 °C; *Rf* (10% ethyl acetate/ hexane) 0.38; ¹H NMR (400 MHz, CDCl₃) δ : 13.33 (s, 1H, OH), 9.31 (s, 1H, CH_{aromatic}), 8.16 (d, *J*=8.8 Hz, 1H, CH_{aromatic}), 8.03 (d, *J*=8.1 Hz, 1H, CH_{aromatic}), 7.84–7.80 (m, 1H, CH_{aromatic}), 7.53 (t, *J*=7.3 Hz, 1H, CH_{aromatic}), 7.49 (s, 1H, CH_{aromatic}), 4.52 (q, *J*=7.3 Hz, 2H, CH₂CH₃), 3.12 (t, *J*=7.3 Hz, 2H, CH₂), 1.70–1.62 (m, 2H, CH₂), 1.50–1.41 (m, 5H, CH₂+CH₂CH₃), 0.96 (t, *J*=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 172.4, 164.0, 150.8, 150.0, 144.3, 134.4, 131.8, 129.2, 128.9, 125.8, 125.5, 121.1, 118.5, 104.3, 61.9, 37.1, 33.7, 22.8, 14.10, 14.06; HRMS calcd for C₂₀H₂₂NO₃ ([M+H]⁺) 324.1600; found 324.1598. IR ν (cm⁻¹) (liquid film): 2952, 2924, 2858, 1630, 1615, 1458, 1371, 1338, 1264, 1107, 818, 744.

4.3.11. Ethyl 1-hydroxy-3-(phenoxymethyl)acridine-2-carboxylate (**4k**). The product was obtained as green semi solid (128.8 mg, 69%); R_f (10% ethyl acetate/hexane) 0.25; ¹H NMR (400 MHz, CDCl₃) δ : 13.32 (s, 1H, OH), 9.37 (s, 1H, CH_{aromatic}), 8.21 (d, J=8.8 Hz, 1H, CH_{aromatic}), 8.07 (d, J=8.8 Hz, 1H, CH_{aromatic}), 7.96 (s, 1H, CH_{aromatic}), 7.85 (t, J=7.3 Hz, 1H, CH_{aromatic}), 7.57 (t, J=7.7 Hz, 1H, CH_{aromatic}), 7.33–7.29 (m, 2H, CH_{aromatic}), 7.03–6.96 (m, 3H, CH_{aromatic}), 5.48 (s, 2H, CH₂OPh), 4.04 (q, J=7.3 Hz, 2H, CH₂CH₃), 1.36 (t, J=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.8, 169.7, 164.2, 158.7, 143.2, 140.0, 137.8, 135.4, 134.6, 132.2, 129.5, 129.1, 126.1, 120.9, 119.5, 119.0, 114.7, 102.8, 68.2, 61.0, 14.1; HRMS calcd for C₂₃H₁₉NO4 (M⁺) 373.1314; found 373.1314. IR ν (cm⁻¹) (KBr): 2984, 2931, 1655, 1631, 1617, 1229, 1509, 1371, 1327, 1280, 1161, 1116, 849, 754, 637.

4.3.12. Ethyl 5-hydroxy-7-p-tolylquinoline-6-carboxylate (**4**). The product was obtained as brown needle crystals in hexane/CH₂Cl₂ (121.4 mg, 79%); mp 107–110 °C; R_f (10% ethyl acetate/hexane) 0.25; ¹H NMR (400 MHz, CDCl₃) δ : 12.19 (s, 1H, OH), 8.98 (dd, *J*=1.5, 4.4 Hz, 1H, CH_{aromatic}), 8.72–8.70 (m, 1H, CH_{aromatic}), 7.48 (s, 1H, CH_{aromatic}), 7.44–7.40 (m, 1H, CH_{aromatic}), 7.23–7.18 (m, 4H, CH_{aromatic}), 4.03 (q, *J*=7.3 Hz, 2H, CH₂CH₃), 2.36 (s. 3H, PhCH₃), 0.81 (t, *J*=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.4, 160.8, 153.5, 149.9, 143.3, 139.8, 136.5, 132.4, 128.26, 128.16, 122.5, 120.6, 119.2, 106.8, 61.3, 21.2, 13.0; HRMS calcd for C₁₉H₁₇NO₃ (M⁺) 307.1208; found 307.1208. IR ν (cm⁻¹) (liquid film): 2926, 1645, 1515, 1374, 1321, 1258, 1155, 1094, 1020, 799, 614.

4.3.13. Ethyl 7-(3,5-dimethoxyphenyl)-5-hydroxy quinoline-6carboxylate (**4m**). The product was obtained as light yellow crystals in hexane/CH₂Cl₂ (127.2 mg, 72%); mp 260–265 °C; R_f (10% ethyl acetate/hexane) 0.10; ¹H NMR (400 MHz, CDCl₃) δ : 12.16 (s, 1H, OH), 8.92 (dd, *J*=1.4, 2.2 Hz, 1H, CH_{aromatic}), 8.65 (dd, *J*=1.4, 8.8 Hz, 1H, CH_{aromatic}), 7.44 (s, 1H, CH_{aromatic}), 7.39–7.35 (m, 1H, CH_{aromatic}), 6.43–6.37 (m, 3H, CH_{aromatic}), 4.04 (q, *J*=7.3 Hz, 2H, CH₂CH₃), 3.74 (s, 6H, PhOCH₃), 1.18 (t, *J*=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.2, 160.8, 160.1, 153.5, 149.8, 144.6, 143.1, 138.5, 132.5, 122.1, 120.8, 119.4, 106.7, 99.2, 61.3, 60.4, 55.4, 14.1; HRMS calcd for C₂₀H₁₉NO₅ (M⁺) 353.1263; found 353.1268. IR ν (cm⁻¹) (liquid film): 2922, 2852, 1636, 1401, 1326, 1280, 1242, 1179, 1111, 1016, 832, 722.

4.3.14. Ethyl 5-hydroxy-7-p-tolylisoquinoline-6-carboxylate (**4n**). The product was obtained as yellow needle crystals in hexane/CH₂Cl₂ (112.2 mg, 73%); 110–112 mp °C; R_f (10% ethyl acetate/hexane) 0.28; ¹H NMR (400 MHz, CDCl₃) δ : 12.22 (s, 1H, OH), 7.97 (d,

J=2.9 Hz, 1H, *CH*_{aromatic}), 7.70 (d, *J*=8.0 Hz, 1H, *CH*_{aromatic}), 7.44–7.41 (m, 2H, *CH*_{aromatic}), 7.24–7.18 (m, 4H, *CH*_{aromatic}), 4.06 (q, *J*=7.3 Hz, 2H, *CH*₂CH₃), 2.42 (s, 3H, PhCH₃), 0.81 (t, *J*=7.3 Hz, 3H, *CH*₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.5, 160.9, 153.7, 149.9, 143.6, 140.1, 136.7, 131.9, 128.2, 128.1, 122.5, 120.6, 119.2, 106.5, 61.7, 20.6, 11.9; HRMS calcd C₁₉H₁₇NO₃ (M⁺) 307.1208; found 307.1205. IR ν (cm⁻¹) (liquid film): 2925, 2852, 1733, 1630, 1615, 1515, 1445, 1372, 1266, 1243, 1101, 1020, 963, 831, 749.

4.3.15. Ethyl 1-hydroxy-3-phenyl-2-naphthoate (**40**). The product was obtained as light yellow semi solid (102.3 mg, 70%); R_f (5% ethyl acetate/hexane) 0.78; ¹H NMR (400 MHz, CDCl₃) δ : 12.27 (s, 1H, OH), 8.17 (d, *J*=8.8 Hz, 1H, CH_{aromatic}), 8.00 (d, *J*=8.8 Hz, 1H, CH_{aromatic}), 7.78 (t, *J*=8.0 Hz, 1H, CH_{aromatic}), 7.50 (t, *J*=7.3 Hz, 1H, CH_{aromatic}), 7.36–7.29 (m, 5H, CH_{aromatic}), 7.19 (s, 1H, CH_{aromatic}), 3,98 (q, *J*=7.3 Hz, 2H, CH₂CH₃), 0.72 (t, *J*=6.6 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.8, 161.1, 140.6, 139.4, 136.1, 135.5, 129.7, 128.3, 128.1, 127.3, 125.6, 123.94, 123.89, 121.2, 106.1, 61.0, 13.0; HRMS calcd C₁₉H₁₆O₃ (M⁺) 292.1099; found 292.1089. IR ν (cm⁻¹) (liquid film): 2923, 2852, 1630, 1457, 1258, 1018, 751.

4.3.16. Ethyl 1-hydroxy-3-p-tolyl-2-naphthoate (4p). The product was obtained as white crystals in hexane/CH₂Cl₂ (113.3 mg, 74%); mp 114–116 °C; R_f (5% ethyl acetate/hexane) 0.72; ¹H NMR (300 MHz, CDCl₃) δ: 12.21 (s, 1H, OH), 8.41 (d, J=7.8 Hz, 1H, CH_{ar-} omatic), 7.72 (d, J=7.2 Hz, 1H, CHaromatic), 7.60-7.58 (m, 1H, CHaromatic), 7.54-7.49 (m, 2H, CHaromatic), 7.36-7.19 (m, 4H, CHaromatic), 4.04 (q, J=6.9 Hz, 2H, CH₂CH₃), 2.41 (s, 3H, PhCH₃), 0.79 (t, J=7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ: 171.8, 161.1, 140.6, 139.4, 136.1, 135.5, 131.8, 129.6, 128.8, 128.1, 127.3, 125.6, 123.9, 121.1, 106.1, 61.0, 21.1, 13.0; HRMS calcd C₂₀H₁₈O₃ (M⁺) 306.1256; found 306.1251. IR ν (cm⁻¹) (liquid film): 2924, 2854, 1731, 1660, 1651, 1608, 1514, 1373, 1305, 1261, 1108, 1020, 831, 805, 733. Crystallographic data for 4p have been deposited with the Cambridge Crystallographic Data Centre. CCDC 847471, contain all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; fax: (+44)1223-336-033; or email: deposit@ccdc.cam.ac.uk.

4.3.17. Ethyl 1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate (**4q**). The product was obtained as white crystals in hexane/CH₂Cl₂ (127.3 mg, 79%); mp 127–129 °C; R_f (5% ethyl acetate/hexane) 0.52; ¹H NMR (300 MHz, CDCl₃) δ : 12.16 (s, 1H, OH), 8.33 (d, *J*=8.1 Hz, 1H, CH_{aromatic}), 7.64 (d, *J*=7.8 Hz, 1H, CH_{aromatic}), 7.53 (t, *J*=6.9 Hz, 2H, CH_{aromatic}), 7.46–7.41 (m, 1H, CH_{aromatic}), 7.18–7.14 (m, 2H, CH_{aromatic}), 6.84 (d, *J*=8.4 Hz, 2H, CH_{aromatic}), 3.98 (q, *J*=7.2 Hz, 2H, CH₂CH₃), 3.79 (s, 3H, PhOCH₃), 0.77 (t, *J*=7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ : 170.8, 160.2, 157.5, 137.9, 135.1, 134.4, 128.6, 128.4, 126.2, 124.6, 122.8, 120.2, 111.9, 105.1, 60.0, 54.4, 12.2; HRMS calcd C₂₀H₁₈O₄ (M⁺) 322.1205; found 322.1205. IR ν (cm⁻¹) (liquid film): 2924, 2851, 1629, 1401, 1326, 1280, 1242, 1179, 1111, 1016, 822, 772.

4.3.18. Ethyl 1-hydroxy-3-(thiophen-3-yl)-2-naphthoate (**4r**). The product was obtained as yellow crystals in hexane/CH₂Cl₂ (119.3 mg, 80%); mp 90–94 °C; R_f (5% ethyl acetate/hexane) 0.76; ¹H NMR (400 MHz, CDCl₃) δ : 12.25 (s, 1H, OH), 8.34 (d, *J*=8.1 Hz, 1H, CH_{aromatic}), 7.64 (d, *J*=8.1 Hz, 1H, CH_{aromatic}), 7.55–7.51 (m, 1H, CH_{aromatic}), 7.46–7.42 (m, 1H, CH_{aromatic}), 7.21–7.19 (m, 1H, CH_{aromatic}), 7.17 (s, 1H, CH_{aromatic}), 7.11–7.09 (m, 1H, CH_{aromatic}), 6.96 (d, *J*=5.9 Hz, 1H, CH_{aromatic}), 4.04 (q, *J*=7.3 Hz, 2H, CH₂CH₃), 0.89 (t, *J*=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.7, 161.3, 143.6, 135.5, 133.9, 129.7, 129.3, 127.2, 125.8, 124.2, 123.93, 123.81, 121.4, 120.9, 106.0, 61.1, 13.1; HRMS calcd C₁₇H₁₄O₃S ([M – H]⁺)

297.0650; found 297.0625. IR ν (cm⁻¹) (liquid film): 3109, 2923, 2853, 1636, 1441, 1402, 1369, 1274, 1168, 1102, 1013, 834, 807, 770, 670.

4.3.19. *Ethyl* 1-hydroxy-3-*m*-tolyl-2-naphthoate (**4s**). The product was obtained as white needle crystals in hexane/CH₂Cl₂ (105.7 mg, 69%); mp 109–111 °C; R_f (5% ethyl acetate/hexane) 0.74; ¹H NMR (400 MHz, CDCl₃) δ : 12.24 (s, 1H, OH), 8.42 (d, J=8.1 Hz, 1H, CH_{aromatic}), 7.72 (d, J=8.1 Hz, 1H, CH_{aromatic}), 7.60 (t, J=6.6 Hz, 1H, CH_{aromatic}), 7.51 (t, J=7.3 Hz, 1H, CH_{aromatic}), 7.27–7.23 (m, 2H, CH_{aromatic}), 7.15–7.09 (m, 3H, CH_{aromatic}), 4.03 (q, J=7.3 Hz, 2H, CH₂CH₃), 2.36 (s, 3H, PhCH₃), 0.79 (t, J=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.9, 161.2, 143.4, 139.5, 137.0, 135.4, 129.7, 129.2, 127.4, 127.3, 127.1, 125.7, 125.5, 123.9, 121.1, 106.0, 60.9, 21.4, 13.0; HRMS calcd for C₂₀H₁₈O₃ (M⁺) 306.1256; found 306.1248. IR ν (cm⁻¹) (KBr): 2926, 1618, 1508, 1374, 1232, 1101, 1018, 958, 823, 785, 749, 613.

4.3.20. Ethyl 4-hydroxy-2-(4-methoxyphenyl)dibenzo[b,d]thiophene-3-carboxylate (**4t**). The product was obtained as yellow crystals in hexane/CH₂Cl₂ (141.9 mg, 75%); mp 122–125 °C; R_f (5% ethyl acetate/hexane) 0.41; ¹H NMR (400 MHz, CDCl₃) δ : 11.66 (s, 1H, OH), 8.02 (d, J=8.0 Hz, 1H, CH_{aromatic}), 7.84 (d, J=8.1 Hz, 1H, CH_{aromatic}), 7.48 (s, 1H, CH_{aromatic}), 7.44–7.41 (m, 1H, CH_{aromatic}), 7.40–7.36 (m, 1H, CH_{aromatic}), 7.19–7.16 (m, 2H, CH_{aromatic}), 6.86 (d, J=8.8 Hz, 2H, CH_{aromatic}), 3.99 (q, J=7.3 Hz, 2H, CH₂CH₃), 3.80 (s, 3H, PhOCH₃), 0.79 (t, J=7.3 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.3, 158.7, 157.4, 141.7, 140.9, 139.6, 135.9, 135.2, 129.6, 127.8, 126.2, 124.6, 123.2, 122.6, 115.8, 113.0, 108.7, 61.2, 55.4, 13.2; HRMS calcd C₂₂H₁₈O₄S (M⁺) 378.0926; found 378.0925. IR ν (cm⁻¹) (liquid film): 2953, 2853, 1731, 1651, 1608, 1463, 1394, 1372, 1304, 1260, 1175, 1018, 945, 831, 805, 783.

Acknowledgements

We gratefully acknowledge the Department of Science and Technology, New Delhi, India and University of Delhi for financial support. The University Science Instrumentation Centre, University of Delhi, is also gratefully acknowledged for NMR and XRD facilities. S.P.S. is thankful to the Council of Scientific and Industrial Research, New Delhi, India, for a fellowship.

Supplementary data

Supplementary data (¹H and ¹³C NMR spectra, HRMS, IR) associated with this article can be found. Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.tet.2012.08.068. These data include MOL files and InChIKeys of the most important compounds described in this article.

References and notes

 (a) Walsh, D. P.; Chang, Y. T. Chem. Rev. 2006, 106, 2476–2530; (b) Schreiber, S. L. Science 2000, 287, 1964–1969; (c) Ma, L.; Wang, X.; Yu, W.; Han, B. Chem. Commun. 2011, 11333–11335; (d) Sun, J.; Xia, E.-Y.; Wu, Q.; Yan, C.-G. ACS Comb. Sci. 2011, 13, 421–426; (e) Wang, Z.-Q.; Zhang, W.-W.; Gong, L.-B.; Tang, R.-Y.; Yang, X.-H.; Liu, Y.; Li, J.-H. Angew. Chem., Int. Ed. 2011, 50, 8968–8973; (f) Cao, H.; Jiang, H.-F.; Huang, H.-W.; Zhao, J.-W. Org. Biomol. Chem. 2011, 9, 7313–7317; (g) Yavari, I.; Sirouspour, M.; Souri, S. Mol. Diversity 2011, 15, 451–456; (h) Boominathan, M.; Nagaraj, M.; Muthusubramanian, S.; Krishnakumar, R. V. Tetrahedron 2011, 67, 6057–6064; (i) Yamamoto, Y.; Noda, M.; Ohno, M.; Eguchi, S. J. Org. Chem. 1997, 62, 1292–1298; (j) Patil, N. T.; Yamamoto, Y. J. Org. Chem. 2004, 69, 6478–6481; (k) Inga, C. Tetrahedron Lett. 2009, 50, 2570–2572; (l) Ackermann, L. Org. Lett. 2005, 7, 439–442; (m) Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 2488–2490; (n) Worlikar, S. A.; Kesharwani, T.; Yao, T.; Larock, R. C. J. Org. Chem. 2007, 72, 1347–1353; (o) Yao, T.; Campo, M. A.; Larock, R. C. Org. Lett. 2004, 6, 2677–2680; (p) Yao, T.; Larock, R. C. J. Org. Chem. 2007, 72, 1347–1353; (o) Hu, Y. Angew. Chem. 2005, 70, 1432–1437; (q) Zhao, L.; Xie, F.; Cheng, G.; Hu, Y. Angew. Chem., Int. Ed. 2009, 48, 6520–6523.

- (a) Weibel, J. M.; Blanc, A.; Pale, P. Chem. Rev. 2008, 108, 3149–3173; (b) Corral, M. A.; Dorado, M. M.; Garcia, I. R. Chem. Rev. 2008, 108, 3174–3198; (c) Yu, X.; Ye, S.; Wu, J. Adv. Synth. Catal. 2010, 352, 2050–2056; (d) Ding, Q.; Wu, J. Org. Lett. 2007, 9, 4959–4962; (e) Chen, Z.; Yang, X.; Wu, J. Chem. Commun. 2009, 3469–3471; (f) Godet, T.; Vaxelaire, C.; Michel, C.; Milet, A.; Belmont, P. Chem.—Eur. J. 2007, 13, 5632–5641; (g) Godet, T.; Bosson, J.; Belmont, P. Synlett 2005, 2786–2790; (h) Parker, E.; Leconte, N.; Godet, T.; Belmont, P. Chem. Commun. 2011, 343–345; (i) Belmont, P.; Parker, E. Eur. J. Org. Chem. 2009, 6075–6089.
- (a) Oppegard, L. M.; Ougolkov, A. V.; Luchini, D. N.; Schoon, R. A.; Goodell, J. R.; Kaur, H.; Billadeau, D. D.; Ferguson, D. M.; Hiasa, H. Eur. J. Pharmacol. 2009, 602, 223–229; (b) Goodell, J. R.; Ougolkov, A. V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D. D.; Ferguson, D. M. J. Med. Chem. 2008, 51, 179–182; (c) Kapuriya, N.; Kapuriya, K.; Zhang, X.; Chou, T. C.; Kakadiya, R.; Wu, Y. T.; Tsai, T. H.; Chen, Y. T.; Lee, T. C.; Shah, A.; Naliapara, Y.; Su, T. L. Bioorg. Med. Chem. 2008, 16, 5413–5423; (d) Nelson, E. M.; Tewey, K. M.; Liu, L. F. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 1361–1365.
- (a) Pinskaya, M.; Romanova, E.; Volkov, E.; Deprez, E.; Leh, H.; Brochon, J.-C.; Mouscadet, J.-F.; Gottikh, M. *Biochemistry* **2004**, *43*, 8735–8743; (b) El-Sabbagh, O. I.; Rady, H. M. *Eur. J. Med. Chem.* **2009**, *44*, 3680–3686.
- (a) Wainwright, M. J. Antimicrob. Chemother. 2001, 47, 1–13; (b) Kavitha, H. P. Asian J. Chem. 2004, 16, 1191–1193; (c) Patel, C. L.; Parekh, H. J. Indian Chem. Soc. 1988, 65, 282–284.
- (a) Giorgio, C. D.; Shimi, K.; Boyer, G.; Delmas, F.; Galy, J. P. Eur. J. Med. Chem. 2007, 42, 1277–1284; (b) Chauhan, P. M. S.; Srivastava, S. K. Curr. Med. Chem. 2001, 8, 1535–1542; (c) Fattorusso, C.; Campiani, G.; Kukreja, G.; Persico, M.; Butini, S.; Romano, M. P.; Altarelli, M.; Ros, S.; Brindisi, M.; Savini, L.; Novellino, E.; Nacci, V.; Fattorusso, E.; Parapini, S.; Basilico, N.; Taramelli, D.; Yardley, V.; Croft, S.; Borriello, M.; Gemma, S. J. Med. Chem. 2008, 51, 1333–1343.
- Patel, N. A.; Sruthi, S. C.; Patel, R. D.; Patel, M. P. Phosphorus, Sulfur, Silicon Relat. Elem. 2008, 183, 2191–2203.
- Dolphin, G. T.; Chierici, S.; Ouberai, M.; Dumy, P.; Garcia, J. ChemBioChem 2008, 9, 952–963.
- 9. Lee, Y.; Hyun, S.; Kim, H. J.; Yu, J. Angew. Chem., Int. Ed. 2008, 47, 134-137.
- Zhuang, L.; Wai, J. S.; Embrey, M. W.; Fisher, T. E.; Egbertson, M. S.; Payne, L. S.; Guare, J. P.; Vacca, J. P.; Hazuda, D. J.; Felock, P. J.; Wolfe, A. L.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.; Schleif, W. A.; Gabryelski, L. J.; Leonard, Y. M.; Lynch, J. J.; Michelson, S. R.; Young, S. D. J. Med. Chem. 2003, 46, 453–456.
- Chen, C.-H.; Lin, Y.-W.; Kakadiya, R.; Kumar, A.; Chen, Y.-T.; Lee, T.-C.; Su, T.-L. Tetrahedron 2011, 67, 5883–5893.
- (a) Acheson, R. M. An Introduction to the Chemistry of Heterocyclic Compounds, 3rd ed.; Wiley-Interscience: New York, NY, 1976; (b) Sourdon, V.; Mazoyer, S.; Pique, V.; Galy, J. Molecules 2001, 6, 673–682.
- (a) Belmont, P.; Belhadj, T. Org. Lett. 2005, 7, 1793–1795; (b) Tiano, M.; Belmont, P. J. Org. Chem. 2008, 73, 4101–4109.
- 14. Godet, T.; Belmont, P. Synlett 2008, 2513-2517.
- 15. Rogness, D. C.; Larock, R. C. J. Org. Chem. 2010, 75, 2289-2295.
- (a) Bos, R.; Barnett, N. W.; Dyson, G. A.; Russell, R. A. Anal. Chim. Acta 2002, 454, 147–155; (b) Gowda, R. R.; Chakraborty, D.; Ramkumar, V. Inorg. Chim. Acta 2011, 372, 88–93; (c) Kapples, K. J.; Shutske, G. M.; Bores, G. M.; Huger, F. P. Bioorg. Med. Chem. Lett. 1993, 3, 2789–2792; (d) Patel, H. S.; Oza, K. K. E -J Chem. 2009, 6, 371–376; (e) Prashad, M.; Lu, Y.; Repic, O. J. Org. Chem. 2004, 69, 584–586.
- (a) Verma, A. K.; Shukla, S. P.; Singh, J.; Rustagi, V. J. Org. Chem. 2011, 76, 5670–5684; (b) Rustagi, V.; Aggarwal, T.; Verma, A. K. Green Chem. 2011, 13, 1640–1643; (c) Verma, A. K.; Jha, R. R.; Sankar, V. K.; Aggarwal, T.; Singh, R. P.; Chandra, R. Eur. J. Org. Chem. 2011, 6998–7010; (d) Aggarwal, T.; Imam, M.; Kaushik, N. K.; Chauhan, V. S.; Verma, A. K. ACS Comb. Sci. 2011, 13, 530–536; (e) Verma, A. K.; Joshi, M.; Singh, V. P. Org. Lett. 2011, 7, 1630–1633; (f) Verma, A. K.; Rustagi, V.; Aggarwal, T.; Singh, A. P. J. Org. Chem. 2010, 75, 7691–7703; (g) Verma, A. K.; Kesharwani, T.; Singh, J.; Tandon, V.; Larock, R. C. Angew. Chem., Int. Ed. 2009, 48, 1138–1143.
- 18. Yadav, J. S.; Subba Reddy, B. V.; Eeshwaraiah, B.; Reddy, P. N. *Tetrahedron* **2005**, 61, 875–878.
- 19. Ciufolini, M. A.; Weiss, T. J. Tetrahedron Lett. 1994, 35, 1127-1130.
- 20. Belmont, P.; Andrez, J.-C.; Allan, C. S. M. Tetrahedron Lett. 2004, 45, 2783-2786.
- 21. Ghavtadze, N.; Fröhlich, R.; Würthwein, E.-U. Eur. J. Org. Chem. 2010, 1787–1797.