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ABSTRACT: Treatment of bis(pyrazolyl)borate ligand supported [(CF3)2Bp]Cu(NCMe) with 1,2,3-trisubstituted cyclopropenes
produced thermally stable copper(I) η2-cyclopropene complexes amenable to detailed solution and solid-state analysis. The
[(CF3)2Bp]Cu(NCMe) also catalyzed [2 + 1]-cycloaddition chemistry of terminal and internal alkynes with ethyl diazoacetate
affording cyclopropenes, including those used as ligands in this work. The tris(pyrazolyl)borate [(CF3)2Tp]Cu(NCMe) is a
competent catalyst for this process as well. The treatment of [(CF3)2Tp]Cu with ethyl 2,3-diethylcycloprop-2-enecarboxylate
substrate gave an O-bonded rather than a η2-cyclopropene copper complex.

Cyclopropenes are highly strained, small carbocyclic
alkenes with a long history.1 They have been investigated

extensively during past decades and found to be impactful in
multiple fields ranging from organic synthesis,2−5 materials
chemistry,4,6,7 horticulture,8,9 biochemistry, and natural prod-
uct chemistry to the bioorthogonal labeling reactions.10,11 For
example, cyclopropenes are energy packed organic synthones
(with strain energy of over 200 kJ mol−1)12 that undergo
reactions such as addition, substitution, isomerization, and
metatheses often not seen in the related nonstrained olefins.2−4

1-Methyl cyclopropene is an economically important ethylene
antagonist utilized widely to prolong the shelf life of fruits,
vegetables, and cut flowers.8,9 Cyclopropenes are popular mini-
tags in chemical biology to label biomolecules in live
cells.10,13,14

In comparison to the diverse uses of cyclopropenes,
synthetic routes to cyclopropenes are relatively limited. The
metal-catalyzed [2 + 1] cycloaddition of diazoalkanes with
alkyne substrates is perhaps the most promising and leading
route. Catalysts based on metals such as rhodium,15−17

copper,18−23 silver,23,24 cobalt,25 and a few others26−28 are
useful for this purpose with even heme proteins and metal foils
entering the fray in the search for better catalysts.23,29 Metals
also play a key role in cyclopropene utilizations as a synthone
in organic chemistry, which either proceed with the
preservation or opening of the three-membered carbocyclic
ring.3,5,30 Although the commonly invoked intermediates in
quite a few of these metal-mediated processes are metal-
cyclopropene complexes,2,3 many of them are too reactive for
direct investigations, and therefore reliable structural or
spectroscopic information have been extremely limited.3,5,30

Most notably, despite the multiple roles copper plays in
cyclopropene chemistry from the synthesis,5,18−23,31 ring
opening chemistry,3,32−35 and carbometalations,30,36 to being
the target of ethylene antagonists (because of the ethylene
binding copper-cofactor in plants),8,37,38 there are no
structurally authenticated η2-cyclopropene complexes of
copper to date.39 Herein we report the isolation and complete

characterization of three copper(I) η2-cyclopropene complexes,
as well as a useful copper-mediated route to cyclopropenes.
Treatment of [(CF3)2Bp]Cu(NCMe) (1)40 with cyclo-

propene Cyp-2 in dichloromethane at room temperature led to
the displacement of acetonitrile ligand from copper and the
formation of copper η2-cyclopropene complex [(CF3)2Bp]Cu-
(Cyp-2) in 82% isolated yield (Scheme 1 and Supporting
Information). It is a colorless, thermally stable solid that can be
handled in air for short periods without decomposition. The
room-temperature 13C{1H} NMR spectrum of [(CF3)2Bp]-
Cu(Cyp-2) in CDCl3 shows a peak at δ 91.1 ppm
corresponding to the carbons of the copper bound olefinic
moiety of cyclopropene ligand, which is an upfield shift (Δδ of
15.4 ppm; Δδ = δ free ligand − δ metal complex) compared
with the corresponding resonance of the free ligand Cyp-2 (δ
106.5 ppm, Table S1). The early transition metal η2-
cyclopropene complexes such as Cp*Mo(CO)2(2,3-Ph2-2-
cyclopropene-1-carboxylate),41 [Me2Tp]Nb(cyclo-C3H4)-
(NC5H5)(MeCCMe)42 and W(3,3-Ph2‑cyclopropene)-
Cl2(NPh)[P(OMe)3]2

43 with stronger metal−cyclopropene
bonds display their metal-bound cyclopropene carbon
chemical shifts at significantly greater upfield regions: δ
71.91, 58.64 ppm; δ 74.5, 68.4 ppm; and δ 64.8 ppm,
respectively. The carbonyl carbon signal of [(CF3)2Bp]Cu-
(Cyp-2) also shows a small but noticeable 4 ppm shift relative
to that of the free ligand Cyp-2.
We have also synthesized two other copper(I) cyclopropene

complexes using a similar route (Scheme 1). The [(CF3)2Bp]-
Cu(Cyp-3) and [(CF3)2Bp]Cu(Cyp-4) has been obtained in
94% and 80% yields from a reaction between 1 and the
corresponding Cyp-3 and Cyp-4 in dichloromethane. Com-
pounds [(CF3)2Bp]Cu(Cyp-3) and [(CF3)2Bp]Cu(Cyp-4)
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also show notable upfield shifts of the olefinic carbon
resonances (Δδ of 21.4 and 30.2 ppm, respectively, Table
S1) relative to those of the free ligands Cyp-3 and Cyp-4,
indicating the presence of copper-olefin interactions in
solution.
Copper(I) cyclopropene complexes [(CF3)2Bp]Cu(Cyp-2),

[(CF3)2Bp]Cu(Cyp-3), and [(CF3)2Bp]Cu(Cyp-4) have been
characterized by X-ray crystallography (Figure 1). Selected
bond distances and angles are summarized in Table 1.
Molecular structures show that the cyclopropene ligands are
bonded to copper atoms in η2-fashion. Interestingly, the
carbonyl group of the CO2Et moiety also coordinates to
copper, albeit weakly as evident from the relatively long Cu−O
bond distances (2.2625(10)−2.2983(7) Å) compared with
typical Cu−O(ester) separations of ∼2.00 Å (Table S2)39 as
well as 1.954 Å of [(CF3)2Tp]Cu(Cyp-2) noted below, and
nearly trigonal planar copper sites with the sum of angles
(excluding oxygen) at copper of ∼354−356° compared to
360° and 328° for ideal trigonal planar and tetrahedron
arrangements, respectively. The copper-bound CC distances
(1.3481(12), 1.3583(18), and 1.3659(11) Å) display a

significant lengthening relative to typical CC distances of
free cyclopropenes (e.g., 1.296 Å for parent cyclopropene44

and 1.2968(12) Å for Cyp-3 (see Supporting Information for
the crystal structure)). The olefinic carbon centers of copper
coordinated cyclopropene ligands in [(CF3)2Bp]Cu(Cyp-2),
[(CF3)2Bp]Cu(Cyp-3), and [(CF3)2Bp]Cu(Cyp-4) show clear
pyramidalizations with the sum of the angles of 340−343° at
olefinic carbons (not involving copper).
There are no copper cyclopropene η2-complexes for

comparisons. However, a search of CSD39 revealed that
structural data are available for a few transition metal η2-
cyclopropenes complexes (See also Table S3),41−43,45−55 and
they all show much longer cyclopropene CC bond distances
(with an average of 1.448 Å for 14 molecules spanning 1.50(1)
Å for a Pt(0) complex (PPh3)2Pt(1,2-Me2-cyclopropene)

45 to
1.407 Å for a Mo(II)41 adduct, Cp*Mo(CO)2(2,3-Ph2-2-
cyclopropene-1-carboxylate)) relative to the corresponding
bond distance in [(CF3)2Bp]Cu(Cyp-2), [(CF3)2Bp]Cu(Cyp-
3), and [(CF3)2Bp]Cu(Cyp-4) of 1.3481(12), 1.3583(18), and
1.3659(11) Å, respectively. This indicates that compared to
these early transition metal complexes, the σ/π-interaction

Scheme 1. Synthesis of Copper(I) Cyclopropene Complexes

Figure 1. Molecular structures of [(CF3)2Bp]Cu(Cyp-2), [(CF3)2Bp]Cu(Cyp-3), and [(CF3)2Bp]Cu(Cyp-4), from left to right.

Inorganic Chemistry pubs.acs.org/IC Communication

https://dx.doi.org/10.1021/acs.inorgchem.0c02886
Inorg. Chem. XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02886/suppl_file/ic0c02886_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02886/suppl_file/ic0c02886_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02886/suppl_file/ic0c02886_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02886/suppl_file/ic0c02886_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02886/suppl_file/ic0c02886_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02886?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02886?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02886?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02886?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02886?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02886?fig=fig1&ref=pdf
pubs.acs.org/IC?ref=pdf
https://dx.doi.org/10.1021/acs.inorgchem.0c02886?ref=pdf


between d10-copper(I) and cyclopropenes in [(CF3)2Bp]Cu-
(Cyp-2), [(CF3)2Bp]Cu(Cyp-3), and [(CF3)2Bp]Cu(Cyp-4)
are weaker. The cyclopropene interior C−C(H)−C bond
angle involving the bridge-head carbon is an another indicator
of relatively weaker interaction (and greater ring-strain) in the
copper complexes which is at ∼53°, while the corresponding
angle is much larger in the early transition metal complexes
noted above (range from 55 to 59° with an average of 57°),
approaching the typical cyclopropane ring angle of 60° from
the starting 50.4° of free cyclopropene.44 These observations
are not surprising since unlike early transition metals ions,
copper(I) is not a metal known for strong π-backbonding.56

The highly fluorinated supporting ligand on copper makes the
π-backbonding even weaker in these complexes (although it
can enhance the Lewis acidity at Cu and perhaps also the olefin
→ Cu electrostatic interactions). The 13C NMR chemical
shifts described above are also consistent with bond distance
and angle changes. We have also collected Raman and IR data
of the [(CF3)2Bp]Cu(Cyp-2), [(CF3)2Bp]Cu(Cyp-3), and
[(CF3)2Bp]Cu(Cyp-4) complexes (see ESI), but unfortu-
nately, the assignment of cyclopropene CC stretch was
obscured by the presence of aromatic CC and CN
stretching signals in the same region.
Considering the importance of new metal-mediated

synthetic routes to cyclopropenes, we tested the prowess of
1 in cyclopropenation chemistry using internal alkynes and
ethyl diazoacetate (EDA) as the carbene source (Scheme 2).
The Cyp-2, Cyp-3, and Cyp-4 used in the copper coordinating
chemistry (Scheme 1) were of particular interest. At room
temperature, the reaction involving 3 mol % of catalyst 1
(based on EDA) and 1:3 molar ratio of EDA to 3-hexyne
produced Cyp-2 in 61% isolated and 71% NMR yield, while
the remaining EDA ended up as diethyl fumarate and maleate
(Table S4). Quite interestingly, the copper cyclopropene
complex [(CF3)2Bp]Cu(Cyp-2) can also function as a catalyst

remarkably well affording Cyp-2 in over 90% yield. It suggests
that [(CF3)2Bp]Cu(Cyp-2) could play a direct role in
cyclopropenation catalytic cycle or as a resting state. These
cyclopropene product yields are respectable compared with the
yields observed with other copper catalyzed cyclopropenations
(see Table S5). Diarylated and disilyl substituted Cyp-3 and
Cyp-4, as well as several other cyclopropenes with an alkyl-aryl
substituent combination or with longer alkyl substituents (e.g.,
Cyp-6) can also be obtained using 1 as the catalyst and the
appropriate alkyne substrate. The isolated yield of cyclo-
propene Cyp-4, however, was poor but still better than the
18% yield of the CuBr-mediated route to the closely related
Cyp-4 analogue.57

We then tested the cyclopropenation of terminal alkynes, 1-
hexyne and 1-octyne, using the same process utilized with
internal alkynes to obtain Cyp-7 and Cyp-8. Although the
isolated product yields were disappointing initially, analyses of
crude reaction mixtures revealed high product yields. It
became clear that the issue was the copper-mediated

Table 1. Selected Bond Distances (Å) and Angles (deg) of Copper(I) Complexes [(CF3)2Bp]Cu(Cyp-2), [(CF3)2Bp]Cu(Cyp-
3), [(CF3)2Bp]Cu(Cyp-4) and [(CF3)2Tp]Cu(Cyp-2)

a

Parameter [(CF3)2Bp]Cu(Cyp-2) [(CF3)2Bp]Cu(Cyp-3) [(CF3)2Bp]Cu(Cyp-4) [(CF3)2Tp]Cu(Cyp-2)
a

CC 1.3481(12) 1.3583(18) 1.3659(11) 1.269(4)
1.286(4)

Cu−C 2.0303(9) 2.0266(13) 2.0306(8)
2.0185(8) 2.0187(13) 2.0311(8)

Cu−O 2.2983(7) 2.2625(10) 2.2818(6) 1.956(4)
1.951(2)

Cu−N 2.0036(7) 1.9964(11) 2.0263(7) 2.074(2)
2.050(2)
2.108(2)

2.0051(7) 1.9917(11) 2.0056(7) 2.054(2)
2.047(2)
2.116(2)

C−C(H)−C (interior cyclopropene) 52.66(5) 53.12(8) 52.97(5) 49.35(19)
49.92(18)

Cu−CC−R (dihedral) 123.63 121.07 123,22
123.20 121.73 122.63

Σ angles at Cu omitting O 354.55 356.19 354.48 271.99
271.81

Σ angles at C(=C) (not involving Cu) 342.79 340.33 339.91 360.00
359.98

342.49 342.99 340.94 359.91
360.00

aData for second molecules in the asymmetric unit in italics

Scheme 2. [(CF3)2Bp]Cu(NCMe)-Catalyzed
Cyclopropenation of Alkynes with Ethyl Diazoacetate
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decomposition of terminal cyclopropene products during the
concentration and workup of the reaction mixture rather than
with the cyclopropenation step. In fact, a reaction of
[(CF3)2Bp]Cu(NCMe) with independently prepared Cyp-7
and Cyp-8 in CH2Cl2 indicated the decomposition of these
cyclopropenes to yet unidentified products, even above −50
°C. Copper-mediated cyclopropene ring-opening as well as
carbometalation chemistry is well-known, and the products
depend on the nature of the copper source.30,32−36 Thus, on
the basis of these observations, we improved the procedure by
using a slightly larger ratio of alkyne:EDA followed by
treatment with H2S to deactivate the catalyst before the
workup of the reaction mixture, which led to Cyp-7 and Cyp-8
in 56% and 37% isolated yields, respectively.
Challenges with the cyclopropenation process of terminal

alkynes using [(CF3)2Bp]Cu(NCMe) prompted us to test the
more sterically demanding tris(pyrazolyl)borate catalyst
[(CF3)2Tp]Cu(NCMe).58 Gratifyingly, it produced Cyp-8 in
excellent, 93% yield. It could be that the resulting Cyp-8 is less
prone to decomposition by [(CF3)2Tp]Cu(NCMe) due to the
steric crowding at the copper. Interestingly, the cyclo-
propenation of the internal alkyne, 3-hexyne by [(CF3)2Tp]-
Cu(NCMe) was somewhat less effective relative [(CF3)2Bp]-
Cu(NCMe) under the same conditions (NMR yields of Cyp-
2: 61% and 71% respectively for the two catalysts), perhaps
because of the steric effects. Nevertheless, the differential
reactivity is a useful observation and provides opportunities for
further catalyst optimizations.
Next, we investigated the coordination chemistry of

[(CF3)2Tp]Cu with cyclopropenes. The in situ generated
[(CF3)2Tp]Cu with Cyp-2 afforded a 1:1 cyclopropene
complex of copper(I), [(CF3)2Tp]Cu(Cyp-2) in 59% yield
(Scheme 1). The 13C{1H} NMR data of [(CF3)2Tp]Cu(Cyp-
2) exhibited only a small change in olefinic carbon resonance
(1.6 ppm, Table S1), in contrast to [(CF3)2Bp]Cu(Cyp-2),
indicating less involvement of the olefinic moiety in the adduct
formation. Indeed, the X-ray crystal structure of [(CF3)2Tp]-
Cu(Cyp-2) revealed it to be a solely O-bonded Cyp-2 via the
ester group rather than an η2-cyclopropene complex (Figure
2). A comparison of metrical parameters of [(CF3)2Tp]Cu-
(Cyp-2) to [(CF3)2Bp]Cu(Cyp-2) summarized in Table 1
nicely illustrates the effect of Cu(I) on the cyclopropene CC
bond, C−C(H)−C angle, as well as the differences between

weak and strong CO···Cu bonds involving the ester moiety,
in the two systems. The CO stretch of [(CF3)2Tp]Cu(Cyp-
2) in IR displays a 76 cm−1 reduction from that of the free
Cyp-2 due to this latter O···Cu interaction, while the
corresponding lowering in [(CF3)2Bp]Cu(Cyp-2) is only 34
cm−1 (see ESI). The [(CF3)2Bp]Cu(Cyp-3) and [(CF3)2Bp]-
Cu(Cyp-4) also show a reduction in C=O stretch by 23 and 28
cm−1, respectively, relative to the corresponding value in their
free cyclopropenes.

[ ] ‐ + ‐

[ ] ‐ + ‐ =F K

2

2

(CF ) Bp Cu(3 hexyne) Cyp

(CF ) Bp Cu(Cyp ) 3 hexyne 0.12

3 2

3 2 c

(1)

[ ] ‐ + ‐

[ ] ‐ + ‐ =F K

2

2

(CF ) Bp Cu(Cyp ) 3 hexyne

(CF ) Bp Cu(3 hexyne) Cyp 9.1

3 2

3 2 c

(2)

[ ] + ‐

[ ] ‐ + =F K

2

2

(CF ) Bp Cu(NCMe) Cyp

(CF ) Bp Cu(Cyp ) MeCN 11.0

3 2

3 2 c

(3)

Considering that copper-catalyzed cyclopropenation of
alkynes producing cyclopropenes likely involve several ligand
exchanges, we also assessed the relative binding affinities of
MeCN, Cyp-2 and 3-hexyne with [(CF3)2Bp]Cu using isolable
compounds. Details of [(CF3)2Tp]Cu(3-hexyne) are given in
the Supporting Information. The relative equilibrium concen-
trations were measured using NMR spectroscopy at various
temperatures. The equilibrium constants Kc for eq 1 and the
control experiment noted in eq 2 (to ensure equilibrium was
achieved under reverse conditions) are 0.12 and 9.1,
respectively, at 243 K, which are consistent for a system in
equilibrium for the forward and reverse directions. The data
indicate that the alkyne preferentially binds to copper(I) over
the cyclopropene, despite the predisposition of strained
alkenes for metal ion coordination. Both the precursor alkyne
and product cyclopropene also have a greater affinity to
[(CF3)2Bp]Cu fragment than acetonitrile. For example, Kc for
eq 3 is 11.0 at 243 K.
In summary, we have isolated for the first time, a group of

copper η2-cyclopropene complexes using a highly fluorinated,
bis(pyrazolyl)borate auxiliary ligand, and a Cu−O bonded
linkage isomer using a bulkier tris(pyrazolyl)borate ligand
support, and characterized them using multiple methods
including X-ray crystallography. The cyclopropenes used in
this work as well as several others were also obtained in
reasonable to excellent yields by the copper catalyzed
cyclopropenation process involving the same ligand supports.
We are currently probing these interesting complexes more
deeply and the chemistry of cyclopropenes with other
important metal ions.
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Figure 2. Molecular structure of tris(pyrazolyl)borate ligand
supported [(CF3)2Tp]Cu(Cyp-2).
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