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SUMMARY

Melanins are a broad class of darkly pigmented
macromolecules formed by oxidative polymerization
of phenolic monomers. In fungi, melanins are known
virulence factors that contribute to pathogenicity.
Their biosynthesis generally involves polymerization
of 1,8-dihydroxynaphthalene via a 1,3,6,8-tetrahy-
droxynaphthalene (THN) precursor assembled by
multidomain, nonreducing polyketide synthases.
Convergent routes to THN have evolved in fungi.
Parallel heptaketide and hexaketide pathways exist
that utilize conventional C-terminal thioesterase/
Claisen cyclase domains and separate side-chain
deacylases. Here, in vitro characterization of Pks1
from Colletotrichum lagenarium establishes a true
THN synthase with a bifunctional thioesterase (TE)
catalyzing both cyclization and deacetylation of an
enzyme-bound hexaketide substrate. Chimeric TE
domains were generated by swapping lid regions of
active sites between classes of melanin TEs to gain
insight into this unprecedented catalysis of carbon–
carbon bond making and breaking by an a/b-hydro-
lase fold enzyme.

INTRODUCTION

Fungal infections afflict millions of people and cause crop losses

in the billions of dollars each year (Gladieux et al., 2011). Many

human pathogenic fungi are dematiaceous yeasts that produce

dark cell-wall pigments called melanins and are among the most

resistant to current antifungal treatments (Nosanchuk and Casa-

devall, 2006). Melanin is linked to fungal virulence in a variety of

hosts. Human pathogens with melanized cell walls are more

resistant to damage from the host immune response, promoting,

for example, resistance to phagocytosis (Thywißen et al., 2011)

and reactive oxygen species (Cunha et al., 2010) mustered in

self-defense by macrophages. Inhibition of melanin production

has been proposed as an effective route to controlling fungal

infections in susceptible immune-compromised populations

(Liu and Nizet, 2009). In phytopathogenic fungi, melanin biosyn-

thetic enzymes are validated targets for fungicides, which are

widely used to prevent crop damage (Wheeler and Klich,
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1995). Understanding the fundamental principles of melanogen-

esis may enable development of new antifungals to combat

infections.

The major pathway for melanin biosynthesis in fungi is through

polymerization of polyketide-derived 1,8-dihydroxynaphthalene

(DHN, 1) monomers into dark brown or black cell-wall pigments.

Melanins are highly insoluble, and thus are resistant to structural

characterization, but have electrochemical and mechanical

properties that help exert their protective or virulent functions

(Jacobson, 2000). The pivotal intermediate of the biosynthetic

pathways is 1,3,6,8-tetrahydroxynaphthalene (THN, 2), which

undergoes two rounds of enzymatic reduction and dehydration

to 1. The THN skeleton is synthesized by multidomain, nonre-

ducing iterative polyketide synthases (NR-PKSs). In some cases,

melanin genes are clustered at one genetic locus, but they can

also be dispersed throughout the genome (Woo et al., 2010).

Although nonessential, melanin pigments are important for

survival and longevity. In many opportunistic plant and human

pathogenic fungi, color-block mutants are significantly less or

not infective (Bell and Wheeler, 1986; Langfelder et al., 2003).

Colletotrichum lagenarium (syn. Colletotrichum orbiculare) is

a dematiaceous fungus that infects members of the cucumber

family and causes anthracnose disease (Tsuji et al., 2003).

Melanin structurally stabilizes the cell wall, facilitating turgor

pressure to build up in specialized infectious bodies called

appressoria and is essential for host penetration (Pihet et al.,

2009; Takano et al., 1997). Treatment of C. lagenarium with the

melanin inhibitor tricyclazole (which targets THN reductase)

induces an albino phenotype, causes flaviolin (3, the autoxida-

tion product of THN) to accumulate, and prevents infiltration of

the plant dermis (Kubo et al., 1985).

The importance of THN (2) is highlighted by the existence of

convergent biosynthetic routes to this common metabolite in

different fungi, as outlined in Figure 1. In Aspergillus fumigatus,

heptaketide YWA1 (4) is the hemiketal of the direct product of

the Alb1 NR-PKS (Watanabe et al., 2000). The acetoacetyl

side chain is removed by a separate serine hydrolase, Ayg1p,

to yield THN (Tsai et al., 2001). In an alternative pathway,

WdPks1 from zoopathogenic Wangiella (Exophiala) dermatitidis

synthesizes a hexaketide, 2-acetyl-1,3,6,8-tetrahydroxynaph-

thalene (ATHN, 5), and the acetyl side chain is likewise removed

by WdYg1p, an Ayg1p homolog (Wheeler et al., 2008). A handful

of examples of naphtho-g-pyrone synthases have been bio-

chemically characterized in other fungi with wA from Aspergillus

nidulans being a paradigm example. wA synthesizes YWA1,

which is thought to be polymerized directly into melanin-related
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Figure 1. Convergent Biosynthetic Routes to the THN (2) Interme-

diate in Fungal DHN (1) Melanin Biosynthesis by NR-PKSs with

Tandem ACP Domains

Pyrones (6 and 7) are released from heptaketide and hexaketide pathways

as shunt metabolites. Pathways blocked at the THN reductase, for example,

by treatment with tricyclazole, accumulate flaviolin (3), the autoxidation

product of 2.
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conidial green pigment, circumventing the THN intermediate

(Watanabe et al., 1999). These fungal pathways are distinct

from bacterial type III THN synthases, such as RppA from

Streptomyces griseus, where five malonyl units are condensed

to directly form the pentaketide as a precursor in hexa-

hydroxyperylenequinone melanin biosynthesis (Funa et al.,

2002, 2005).

Fungal NR-PKSs are a family of multidomain enzymes that

generate substituted aromatic natural products. Structural diver-
1526 Chemistry & Biology 19, 1525–1534, December 21, 2012 ª2012
sity is achieved through ‘‘programmed’’ selection of starter unit,

polyketide chain length, regiospecificity of backbone cycliza-

tion(s), and mode of product release. Enormous progress has

been made in the last decade to understand the catalytic func-

tion of the six canonical domains that comprise these enzymes

and how they orchestrate polyketide assembly (Crawford and

Townsend, 2010). The b-ketoacyl synthase (KS), malonyl-CoA:

acyl-carrier protein transacylase (MAT), and acyl-carrier protein

(ACP) were functionally identified by their similarity to domains

from fatty acid metabolism. Like fatty acid biosynthesis, each

round of iterative extension introduces a single C2-unit through

decarboxylative thio-Claisen condensation of malonyl with the

extending chain. Intermediates are tethered as terminal thioest-

ers of a 4’-phosphopantetheinyl moiety attached to the ACP. The

N-terminal domain, dubbed the starter unit: acyl-carrier protein

transacylase (SAT), initiates synthesis with a prescribed starter

unit, typically acetyl from the acyl-CoA (Crawford et al., 2006,

2008b). The product template (PT) domain catalyzes regiospe-

cific cyclization and aromatization of the nascent ACP-bound

b-keto chain (Crawford et al., 2009; Li et al., 2010). In melanin-

type NR-PKSs connectivity between the C2 and C7 backbone

carbons produces a monocyclic intermediate, as shown in Fig-

ure 1. The C terminus constitutes a thioesterase (TE) domain

responsible for product release. The Claisen/Dieckmann cyclase

class of TE domains (TE/CLC), which catalyzes C–C bond forma-

tion in contrast to the classical hydrolytic release of fatty acids,

was originally identified in the wA naphthopyrone synthase

from A. nidulans (Fujii et al., 2001). Further insight into this class

of TEs was advanced through determination of the crystal

structure of a dissected TE/CLCmonodomain from the norsolor-

inic acid anthrone synthase, PksA, from Aspergillus parasiticus

(Korman et al., 2010). Inactivating mutation or deletion of TE/

CLC domains generally results in spontaneous O-C cyclization

to release full-length pyrone shunt products (Crawford and

Townsend, 2010).

Historically, metabolites originating from NR-PKSs fit

this model of polyketide assembly; however, Pks1 from

C. lagenarium appeared to be an outlier. THN (2) was identified

as the major product from cultures of Pks1 heterologously ex-

pressed in Aspergillus oryzae (Fujii et al., 1999). Application of
14C-labeled acetyl or malonyl substrates showed no apparent

incorporation of an acetyl starter unit and that pentaketide 2

was produced solely from malonyl units (Fujii et al., 2000).

When the TE domain was inactivated, hexaketide pyrone 7

was produced instead, paralleling the synthetic logic since

shown by other NR-PKS systems (Crawford et al., 2008a; Zhang

et al., 2008). Furthermore, expression of a chimera that spliced

Pks1 to the C terminus of the wA gene at the PT-ACP junction

resulted in isolation of the nonnative hexaketide Claisen cyclase

product, ATHN (5) (Watanabe and Ebizuka, 2002). Based on the

prevailing understanding of PKS catalysis at the time of this

publication, the ability to select for the pentaketide chain length

was ascribed to a special function of the Pks1 TE domain.

Subsequent experiments with NR-PKS family members,

however, support the view that chain length is determined by

the KS domain, making this ‘‘TE chain length control’’ theory

untenable for Pks1 (Crawford and Townsend, 2010).

In corresponding studies, Ayg1p was identified as the

side-chain hydrolase that removes acetoacetyl from YWA1 in
Elsevier Ltd All rights reserved



Figure 2. Overview of Syntheses forMelanin

Standards

(A) Synthesis of C12-pyrone 7.

(B) Synthesis of THN (2), flaviolin (3), and ATHN (5).

See also Figure S1 for HPLC separation of stan-

dards.
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A. fumigatus (Tsai et al., 2001). A BlastP search of the sequenced

A. oryzae genome (Machida et al., 2005) for proteins similar to

Ayg1p revealed a potential functional complement in this heter-

ologous host, the transcription of which was supported under

standard laboratory conditions by detection of an expressed

sequence tag (AoEST6890) from a conidial cDNA library (Akao

et al., 2007). Furthermore, the purified Pks1 SAT monodomain

was found to selectively transfer acetyl in disparity with

labeled-precursor incorporation experiments (Crawford et al.,

2008b). Taking into account these results and the precedence

of fungal NR-PKSs catalyzing chain extension prior to cyclization

in the PT and TE domains, we hypothesized that C. lagenarium

(and heterologous host A. oryzae) contained an enzyme with

Ayg1p-like activity and that hexaketide ATHN (5) was the direct

product of Pks1 (Crawford et al., 2008b). Such a hexaketide

precursor was originally proposed by Bardshiri and Simpson

(1983) when feeding experiments with labeled acetate failed to

reveal a ‘‘starter-unit effect’’ for melanin intermediates isolated

from Phialaphora lagerbergii. However, the supposition of an

Ayg1p-like activity in A. oryzae was undermined when heterolo-

gous expression of the melanin PKS from W. dermatitidis

(WdPks1) in this host accumulated ATHN (Wheeler et al.,

2008), not THN as had been observed for expression of Pks1

under similar conditions. These observations led us to suspect

that something elsewas occurring.We chose, therefore, to study

Pks1 in vitro to establish the biochemical rationale for THN

production in C. lagenarium.

RESULTS

Synthesis of Standards
To proceed with this study, synthetic standards of melanin

biosynthetic intermediates and shuntmetabolites were prepared

to confidently identify the products of in vitro Pks1 reactions.

Most of the synthetic methods utilized were standard proce-
Chemistry & Biology 19, 1525–1534, December 21, 2012 ª
dures, as detailed in Figure 2 and the

Supplemental Experimental Procedures

(available online). The synthesis of ATHN

(5, Figure 2) initially proved troublesome

but was efficiently achieved by way of

double O-acylation/Fries rearrangements

to generate the asymmetric pentasubsti-

tuted phenyl ester 8.

Methoxymethyl protection of the ester

9 followed by coupling with the Weinreb

amide 10 gave the ketone 11. Enolate

cyclization, removal of the silyl group,

and oxidation led to the desired hexake-

tide pyrone 7 after removal of themethox-

ymethyl groups. Dibenzyl protection of

the ester 12 followed by Friedel-Crafts
acylation afforded the acetophenone 13. Treatment with

methoxide in methanol yielded dibenzyl THN (14), which was

deprotected by hydrogenolysis immediately before use for

high-pressure liquid chromatography (HPLC) analysis of

THN (2) or readily oxidized in air to flaviolin (3). The double

O-acylation/Fries rearrangements noted above, selectively

afforded the asymmetric pentasubstituted phenyl ester 8.

Di-O-benzyl protection and Dieckmann condensation generated

3-di-O-benzyl ATHN, which following hydrogenolysis gave

ATHN (5).

Protein Deconstruction and Correction of the Pks1
Coding Sequence
To study NR-PKSs in vitro, we have adopted a ‘‘deconstruction’’

approach based on in silico prediction of domain boundaries

to dissect expressible, functional units from target enzymes

(Udwary et al., 2002). This approach offers a versatile method

to assess domains individually or in selected sets, as exemplified

by the four-part reconstitution of A. parasiticus PksA activity to

synthesize norsolorinic acid anthrone, the first committed inter-

mediate in aflatoxin biosynthesis (Crawford et al., 2008a).

Expression plasmids to study melanin biosynthesis by Pks1

from C. lagenarium were patterned on analogous interdomain

cleavage sites used for deconstruction of PksA. Soluble, active

proteins were readily achieved for all constructs, except those

containing the TE domain—a domain typically overexpressed

without difficulty.

The current annotation for Pks1 (GenBank accession

BAA18956) designates two short exons within the N-terminal

SAT domain and a third long exon spanning all domains. The

Pks1 protein sequence was aligned to other characterized NR-

PKSs for comparative analysis. Close inspection revealed that

all catalytic residues and secondary structural elements ap-

peared to be intact. Despite its correct appearance, reassess-

ment of Pks1 gDNA using FGNESH gene prediction software
2012 Elsevier Ltd All rights reserved 1527



Figure 3. Two-Part Multidomain Combina-

tion TE Assay: Pks1DTE Reacted with Either

No, Pks1, or wA TE

Reactions were monitored by UV-vis spectro-

photometry scanning every 10 min from 280–

650 nm. Products were separated by HPLC using

a linear gradient. THN (2) initially accumulates in

the Pks1 TE reaction, indicated by increasing

absorbance at 336 nm, and then spontaneously

oxidizes to flaviolin (3), the major product detected

by HPLC. ATHN (5) likewise spontaneously

oxidizes to 3-AF (15). Diode array spectra were

extracted for the major product peak from each

HPLC chromatogram. See also Figure S2 for

WdPks1 parent TE swap control reactions. See

also Tables S2 and S3.
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(http://linux1.softberry.com/berry.phtml) exposed an alternative

protein sequence in which the final 17 residues of exon 3 were

replaced by a short 14-amino-acid exon 4. Constructs based

on this modified cDNA resulted in soluble expression of the

functional TE domain. Furthermore, transcript analysis of the

region straddling the in-silico-predicted pks1 exon 3-4 junction

confirmed that this revised splicing pattern is observed in

C. lagenarium mRNA, in amendment of the original gene struc-

ture report (Takano et al., 1995). In the first study of Pks1 activity,

the cDNA clone used for heterologous expression in A. oryzae

was based on the original three-exon gene structure but addi-

tionally contained an extra genomic sequence at its 30 terminus

that encompassed the proposed fourth exon (Fujii et al., 1999).

The heterologous host A. oryzae was able to complement native

mRNA splicing to afford the active enzyme. Additional transcript

evidence in support of a revised gene structure was identified in

the melanin PKS (GenBank accession CCF45141) from the

closely related species Colletotrichum higginsianum (Ushimaru

et al., 2010), which has a TE domain that shares 94.4% protein

sequence identity with Pks1. Expressed sequence tags reported

for ChPks1 (CH063_03518, Broad Institute) in theColletotrichum

genome database confirm that the C. higginsianum gene tran-

script contains the same four-exon structure validated here for

C. lagenarium Pks1.
1528 Chemistry & Biology 19, 1525–1534, December 21, 2012 ª2012 Elsevier Ltd All rights re
Domain Swapping Reveals
a Thioesterase with Claisen
Cyclase and Deacetylase Activities
The second advantage of the deconstruc-

tion approach is that individually ex-

pressed domains can be ‘‘mixed and

matched,’’ offering a flexible platform for

domain swapping among different NR-

PKSs. In an initial set of reactions, Pks1

SAT–KS–MAT–PT–ACP–ACP (Pks1DTE)

was combined with either the Pks1 or

wA TE monodomain. Reaction progress

wasmonitoredbyUV-vis spectrophotom-

etry, and products were separated by

reverse-phase HPLC and identified by

comparison to synthetic standards (Fig-

ure 3). The Pks1 TE reaction rapidly accu-

mulated an absorbance peak at 336 nm,
indicative of THN production (not ATHN as predicted if a second

Ayg1p-like enzyme were invoked). THN (2) spontaneously

converts to the reddish-purple oxidation product flaviolin (3),

the major species observed by HPLC. Trace amounts of C12-

pyrone 7 and ATHN (5) were also detected. In contrast, the wA

TE reaction developed a lmax at 411 nm, producing mainly 5 to

mirror the product profile observed previously for the full-length

Pks1–wA chimera expressed in A. oryzae (Watanabe and Ebi-

zuka, 2002). ATHN spontaneously oxidizes to 3-acetyl-flaviolin

(3-AF, 15) over time, albeit at a slower rate than THN oxidation

(Wheeler et al., 2008). The control reaction with no TE gradually

accumulated 7, formed by spontaneous O–C cyclization of the

monocyclic ACP-bound product of the PT domain.

The complementary experiment was conducted using the

deconstructed SAT–KS–MAT and PT–ACP–ACP proteins from

the ATHN synthase WdPks1. When combined with either no

TE, its cognateWdPks1 TE, or Pks1 TE, results closely paralleled

those for the Pks1 parent enzyme reactions and produced C12-

pyrone 7, ATHN (5), and THN (2), respectively (Figure S2, avail-

able online). Both WdPks1 and Pks1, therefore, produce chemi-

cally equivalent monocyclic intermediates, and their TE domains

alone are responsible for the alternative synthetic outcomes.

Taken together, these results verify that Pks1 is a hexaketide

synthase, but with an unprecedented bifunctional TE possessing
served

http://linux1.softberry.com/berry.phtml


Table 1. Pks1 Prefers Acetyl Starter Units

Product Peak

Observed

[M+H]+
Relative

Intensity

Observed

[M+Na]+
Relative

Intensity

3-AF (15) M 249.0390 0.61 271.0207 0.64

M+1 250.0426 1 272.0247 1

ESI-MS detection of 13C-labeled acetyl starter unit incorporation into

ATHN (5) for the Pks1DTE + wA-TE reaction, measured as peak intensi-

ties for the autoxidation product 3-AF (15).

Figure 4. Additional Substrates Tested for Side-Chain Removal by

the Pks1 TE Monodomain

No conversion was detected for any compound.
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both Claisen cyclase and deacetylase activities to release the

truncated pentaketide product THN (2) directly. Pks1 is a true

THN synthase and does not require a second hydrolase for poly-

ketide shortening as has been described for melanin biosyn-

thesis in A. fumigatus (Tsai et al., 2001) and W. dermatitidis

(Wheeler et al., 2008).

Incorporation of 13C-acetyl Starter Units
Loss of acetyl by TE-catalyzed cleavage accounts for the

absence of a ‘‘starter-unit effect’’ in the biosynthesis of THN

from classical precursor labeling studies (Bardshiri and Simp-

son, 1983). To confirm that the starter unit of Pks1 was indeed

acetyl, as indicated by the substrate preference of the excised

SAT domain (Crawford et al., 2008b), incorporation of [1-13C]-

acetate was monitored by mass spectrometry for the Pks1 TE

and wA TE in vitro reactions. As expected, no mass shift was

observed for flaviolin because the starter unit is removed;

however, theM+1 species indicative of labeled acetyl incorpora-

tionwas observed as themajor peak (M:M+1, 0.6:1) for ATHN (5),

detected as 3-AF (15) (Table 1).

The unenriched products presumably contain starter units

arising from decarboxylation of unlabeled malonyl units intro-

duced by the MAT domain and can be a physiologically relevant

source of chain initiators. The ability of Pks1 to access acetyl

starter units from either SAT or MAT domains could improve

the overall catalytic efficiency of this system.

Deacetylase Activity Is Coupled to Claisen Cyclization
ATHN (5) treated with the Pks1 TE monodomain or full-length

protein was not converted to THN (2), signifying that deacetylase

activity was coupled to Claisen cyclization at the active site. The

hexaketide pyrone 7 was also inert to ring opening and Claisen

cyclization by the Pks1 TE. In separate experiments, deacetyla-

tion or deformylation of various monocyclic and bicyclic acetyl-

and aldehyde-containing substrates, pictured in Figure 4, like-

wise failed to occur.

Primary Sequence and Structural Comparisons of
Melanin-Related Thioesterase Domains
We elected to examine in greater detail which features of the

Pks1 TE were important for its extra deacetylase function. The

protein sequence of Pks1 was compared to other NR-PKSs

involved in melanin and conidial pigment biosynthesis. Several

YWA1-producing PKSs have been functionally characterized,

including A. fumigatus Alb1 (Watanabe et al., 2000), A. nidulans

wA (Watanabe et al., 1999), Aspergillus niger FwnA (Chiang

et al., 2011; Jørgensen et al., 2011), and Gibberella zeae Pks12

(Frandsen et al., 2011). WdPks1 from W. dermatitidis is the

sole validated example of an ATHN synthase (Wheeler et al.,
Chemistry & Biology 19, 1525–153
2008). The present study, corroborated in earlier work by

Ebizuka and Fujii (Fujii et al., 2000), confirms that Pks1 is

a THN synthase. Other PKSs included in the sequence analysis

have been linked to pigment biosynthesis through gene disrup-

tion, heterologous expression, or their presence in biosynthetic

gene clusters with confirmed melanin pathway enzymes. The

direct products of these PKSs are largely undefined; however,

phylogenetic analysis demonstrates that TEs of the same known

function group within a clade (Figure 5A). Sequences labeled by

an asterisk were modified to reflect revised mRNA splicing

based on in silico FGNESH predictions, which yielded proteins

more similar to melanin-producing NR-PKSs than their current

annotation. The proposed protein sequence corrections are

provided in Figure S3 and result in minor changes to their C

termini.

A homologymodel of Pks1 TEwas prepared using the recently

determined 1.7 Å crystal structure of the PksA TE domain

(Protein Data Bank [PDB] ID code 3ILS) as the template, which

shares 37% sequence identity and 53% sequence similarity

with the Pks1 TE (Figure 5B) (Korman et al., 2010). In comparison

toPks1, thePksA TEaccepts abicyclic C20 substratewith a hexyl

starter-unit side chain and catalyzes an analogous Claisen cycli-

zation to close the third ring of norsolorinic acid anthrone (Craw-

ford et al., 2008a). The TEs adopt an a/b-hydrolase fold (Nardini

and Dijkstra, 1999) with a flexible lid insert between b6 and b7 of

the canonical structure comprised of a helix-loop-helix motif that

caps an internal binding chamber. Following transesterification

of the PT-cyclized intermediate from ACP to TE, lid closure is

thought to facilitate exclusion of water and side-chain localiza-

tion to favor C-C bond formation catalyzed by a Ser-His-Asp

catalytic triad (Korman et al., 2010). Several lid residues line

the roof of the PksA TE active site and are indicated by blue trian-

gles in the alignment of this region depicted in Figure 5C. Owing

to high sequence and predicted secondary structure similarity

among NR-PKSs, the lid is almost certainly a conserved feature
4, December 21, 2012 ª2012 Elsevier Ltd All rights reserved 1529



Figure 5. Comparative Analyses of TE Domains

(A) Phylogenetic tree of NR-PKSs with confirmed involvement in melanin or conidial pigment biosynthesis. The direct product of the PKS, when known, is

indicated by either a blue square (THN), red circle (ATHN), or green diamond (YWA1). Bootstrap values are shown next to the branch points. See also Table S1.

(B) Homology model of Pks1 TE based on the PksA TE structure PDB ID code ILS3. The lid region used in chimera swaps is colored blue, and the catalytic triad is

shown as balls and sticks colored by element.

(C) Sequence alignment of the lid region with PksA numbering. Hydrophobic residues lining the PksA active site are indicated by blue triangles. Arrows indicate lid

loop (circle) and complete lid (diamond) regions swapped in the chimeras. The black boxes surrounding Pks1 andWdPks1 residues indicate the regions mutated

in helix swaps. See also Figure S3 for the full TE sequence alignment.

(D) Product distribution of three-part TE assay reactions organized by parent TE. Labels indicate percent peak area for each product. Error bars show standard

deviation from duplicate reactions. LL, Lid loop; L, Lid; Cl, C. lagenarium Pks1; wA, A. nidulans wA; Wd, W. dermatitidis WdPks1. See also Tables S2 and S3.
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of this subfamily of TEs. The full-length domain alignment of

PksA with melanin-type TEs is provided in Figure S3.

Lid Swap Chimera Alter TE Activity
Of the residues predicted to line the TE active site, the lid was

identified as a potential region of sequence divergence between

YWA1/ATHN- and THN-producing PKSs. Furthermore, other

a/b-hydrolase family members have proven amenable to lid

variations and in some cases have demonstrated altered

substrate preferences or reactivities (Chen et al., 2009). There-

fore, a series of Pks1 and wA lid chimeras was developed by

swapping the alternative lid sequences from the wA (YWA1-

type), WdPks1 (ATHN-type), and Pks1 (THN-type) proteins.

Three-part Pks1 SAT–KS–MAT + PT–ACP–ACP + TE reactions

accumulated THN in comparable yields to the intact full-length
1530 Chemistry & Biology 19, 1525–1534, December 21, 2012 ª2012
protein. Because the smaller proteins are expressed in greater

yields, these fragments were used to assay the mutant TEs.

Acetyl and malonyl N-acetyl cysteamine (SNAC) thioesters

were used as effective alternative substrates to acyl-CoA mono-

mers. Reactions were monitored by UV-vis spectrophotometric

scanning kinetics for detection of chromophore development

and by HPLC for profiling product distribution. Reduction in de-

acetylase activity was demonstrated by diminished production

of THN (2) in favor of ATHN (5). Decline in Claisen cyclase activity

was indicated by accumulation of the C12-pyrone 7. Other

metabolites were not observed above trace amounts. Product

distributions of the lid chimera are summarized in Figure 5D

and represent the average of duplicate reactions. THN (2), which

elutes as a broad peak around 14 minutes, and its oxidation

product flaviolin (3) were summed to give the total deacetylated
Elsevier Ltd All rights reserved



Figure 6. Proposed Mechanisms for Product Partitioning in WdPks1

and Pks1 TEs, which Synthesize ATHN (5) and THN (2), Respectively
The acetyl starter unit is shown in bold.
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product. Likewise, peak areas for ATHN (5) and oxidation

product 3-AF (15) were combined.

Swapping the lid loop (LL) regions among different classes of

TEs had no significant effect on either the kinetics of chromo-

phore formation or product distribution. The loop sequence of

Pks1 is four residues longer than either wA or WdPks1 but was

ruled out here as a factor in deacetylation catalysis. Inclusion

of the LL-flanking aL1 and aL2 helices in the lid chimeras caused

a major shift in the distribution of products. Within the Pks1

parent, theWdPks1 lid efficiently complemented Claisen cyclase

activity but showed a 78% reduction in THN relative to wild-type

with a concomitant increase in ATHN. The Pks1 lid-wA variant

displayed reduced Claisen efficiency (pyrone was the favored

product at 82% total peak area) and complete side-chain reten-

tion (with no THN detected). The inverse experiment, where the

Pks1 lid was integrated into the wA parent, was insufficient to

turn on deacetylase activity and produced virtually no Claisen

products, releasing the pyrone almost exclusively at 98% of

the total.

The Pks1 lid-Wd chimera was inspected more closely

because of its reduced ability to catalyze deacetylation without

any apparent loss in Claisen cyclization. The aL1 and aL2 helices

were individually mutated to the WdPks1 sequence (boxed resi-

dues in Figure 4C), resulting in changes to six amino acids per

helix. Product profiles reflect the importance of aL1 for efficient

removal of the acetyl side chain, which had a distribution virtually

identical to the complete lid swap, whereas aL2 producedmainly

THN (88%).

Next, the hexaketide pathway homolog TE from WdPks1 was

examined to see if side-chain removal could be activated in

a closer functional relative. Surprisingly, some THN was innately

produced by the wild-type WdPks1 TE, accounting for 13% of

the product output. Substitution with the Pks1 lid enhanced

this basal deacetylase activity. Even though significant product

was siphoned into pyrone derailment, the THN peak area

increased 2-fold over native Wd levels, and the ratio of Claisen

products, THN:ATHN, shifted from 1:6 to 2:1 for this variant.

Complementation of Claisen cyclization between wA (YWA1-

type) and WdPks1 (ATHN-type) TEs was also considered. The

wA lid catalyzed C-C bond formation in the WdPks1 TE with

a marginal increase in the shunt O-C population. The Wd lid

partially complemented cyclase function in the wA TE, releasing

a mixture of ATHN (34%) and pyrone (65%).

In some cases generation of the pyrone by TE lid chimera

reactions was much greater than either no TE or Pks1 TE

S2009A loss-of-function mutant controls, where transesterifica-

tion of the monocyclic intermediate from ACP to TE cannot

occur. Spontaneous release of this intermediate from the ACP

was extremely slow, and the enzyme likely wields a protective

role in slowing the favorable O-C cyclization mode. In contrast,

the wA lid-Pks1 chimera, for example—which was deficient in

Claisen cyclase activity but could presumably still accept the

monocyclic substrate—accumulated much higher amounts of

the pyrone. The foundation for this observed phenomenon could

be passive, that is, through reduced protection of the monocy-

clic intermediate while covalently bound to Claisen-deficient

TEs, or active, through TE-conferred catalytic release of the

pyrone. Our experiments did not differentiate between these

alternatives.
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DISCUSSION

No additional catalytic machinery is necessarily required to

cleave the acetyl pendant by Pks1 TE. Whereas the discrete

serine hydrolases from A. fumigatus (Ayg1p) andW. dermatitidis

(WdYg1p) melanin pathways can act on YWA1 and ATHN,

respectively, Pks1 TE showed no conversion of any free

substrate tested for side-chain removal. Lack of activity toward

synthetic ATHN implies that TE acts on the immediate product

of the Claisen cyclase event, perhaps prior to aromatization to

the naphthalene core, where overcoming aromatic stabilization

would hinder side-chain hydrolysis, as depicted in Figure 6. In

lieu of reprotonation to restore the resting state of the catalytic

triad, the serine residue could attack into the side-chain carbonyl

to release THN and acetic acid as products, analogous to b-di-

ketide hydrolases (E.C.3.7.1.X), of which Ayg1p and WdYg1p

are members (Grogan, 2005). The absence of water in the active

site of the closed-lid structure of PksA TE (Korman et al., 2010)

suggests that side-chain attack is direct rather than water medi-

ated by a general base mechanism in Pks1. Although specula-

tive, we hypothesize that product partitioning between ATHN

and THN is kinetically controlled, based on the fact that both

Pks1 TE and WdPks1 TE synthesize both products but in highly

skewed, opposing ratios. According to this model, nucleophilic

attack at C11 would out-compete reprotonation of S2009 to

shift the equilibrium of product formation toward the retro-

Claisen products in Pks1. Enzyme-assisted stabilization of the

prearomatic ‘‘diketide’’ intermediate may further promote this

transformation.

In an alternative mechanism, deacetylation (retro-Claisen) of

the TE-bound monocyclic intermediate may occur prior to

Claisen cyclization (Dieckmann) with the instantly formed enolate

closing directly to THN. We consider this scenario, however,

less likely because a suitable base could not be identified in
4, December 21, 2012 ª2012 Elsevier Ltd All rights reserved 1531
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the homology model of the Pks1 TE in the region where the

side chain is presumed to reside. Structural analyses of

closely related melanin-TEs might illuminate how small changes

in their active-site geometries could contribute to product

partitioning.

Domain-swapping exercises illustrate the interchangeability of

NR-PKS domains among closely related synthases. The wA TE,

which accepts a native C14-ACP-bound substrate, proficiently

catalyzed Claisen cyclization of the Pks1-generated C12 interme-

diate. This promiscuity in side-chain binding indicates that the

precise identity of the terminal acetyl group of the YWA1 TE-

bound precursor is not the sole determinant for orienting the

side chain for Claisen/Dieckmann C–C bond formation in wA.

Furthermore, secondary structural motifs within domains have

proven adaptable to exchange and are useful in deciphering

which protein features are responsible for specific activities

and ultimately natural product programming. Through genera-

tion of TE chimera, we have shown that the lid region, specifically

the aL1 helix, is a factor inmaintaining the active-site topography

of Pks1 TE necessary to catalyze efficient deacetylation, a previ-

ously unknown function for NR-PKS TE domains. Another recent

example where this approach was successfully applied involved

structural swaps between ketoreductase domains from resor-

cylic acid macrolactone synthases, members of the highly

reducing class of fungal iterative PKSs, to understand the ratio-

nale for differential stereochemistries of their product hydroxyls

(Zhou et al., 2012).

Stepwise production of THN via an isolable acyl side-chain

intermediate (YWA1 or ATHN), leads to greater potential for

synthetic diversity. In A. niger, for example, FwnA produces

naphtho-g-pyrones, including YWA1, that can be directly incor-

porated into natural products (like the dimeric aurosperones) or,

through selective use of the Ayg1p homolog OlvA, can be

directed into the DHN melanin pathway (Chiang et al., 2011).

Alternatively, C. lagenarium (and likely many other melanin NR-

PKSs that are closely related) has a bifunctional TE domain

that catalyzes both Claisen cyclization and deacetylation.

Melanin is important for fungal survival and longevity, as well

as virulence in many pathogenic species. Depending on the

selective pressures exerted on different fungal strains, more effi-

cient THN biosynthesis may have evolved in response to envi-

ronmental factors necessitating greater proficiency in cell-wall

pigmentation at the expense of product diversity.

SIGNIFICANCE

Fungal melanins provide survival advantages in harsh envi-

ronments. They are also virulence factors for many patho-

genic fungi, where pigment disruption often renders these

strains noninfective. Similar heptaketide and hexaketide

pathways have been described that utilize separate deace-

tylases to remove the acetoacetyl and acetyl side chains of

their respective bicyclic substrates released by standard

C-terminal thioesterase/Claisen cyclase domains of NR-

PKSs. In vitro biochemical characterization confirms that

Pks1 efficiently synthesizes THN unaided by a second

enzyme, defining an efficient third fungal route to this impor-

tant melanin precursor. Pks1 TE is both a Claisen cyclase

and deacetylase that processes an enzyme-bound monocy-
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clic hexaketide precursor, explaining the absence of an

observable ‘‘starter-unit effect’’ in this system. Domain and

secondary structural element swapping experiments could

provide a valid route to engineering NR-PKS pathways to

expand the biosynthetic potential of these enzymes and in

understanding the molecular foundation of melanogenesis,

where it may aid efforts to discover new, effective antifungal

therapies. The unusual ability of Pks1 TE to catalyze tandem

carbon-carbon bond making and breaking reactions in

a single enzymatic step further expands the diverse array

of reactions known for a/b-hydrolase fold enzymes gener-

ally (Carr and Ollis, 2009) and the repertoire of activities

exemplified by fungal TE domains in particular.
EXPERIMENTAL PROCEDURES

Synthesis of Melanin Standards

All synthetic details are provided in the Supplemental Experimental

Procedures.

C. Orbiculare cDNA Analysis

C. orbiculare NRRL28842 was cultured in potato-sucrose liquid medium sup-

plemented with 0.2% yeast extract, and mycelia were transferred to 1.2 M

sucrose for 20 hr as previously described to rapidly induce transcription of

melanin biosynthetic pathway genes (Okamoto et al., 2001; Takano et al.,

1995). Mycelia were harvested by vacuum filtration over Miracloth (EMD

Millipore, Billerica, MA, USA), frozen in liquid N2, and stored at �80�C until

use. Total RNA was harvested from mycelia ground in liquid N2 using an

RNeasy Plant Mini Kit (QIAGEN, Valencia, CA, USA) as recommended by the

manufacturer with the on-column DNase digestion step. First-strand cDNA

was prepared from 1 mg total RNA and random hexamer primer (IDT, Coralville,

IA, USA) using M-MLV reverse transcriptase (Promega, Madison, WI, USA) in

a 20 ml volume. A reaction lacking reverse transcriptasewas used as a negative

control. The cDNA synthesis reaction was used directly as a template for

amplification of the region spanning the proposed exon 4 in pks1 using primer

set Pks1e4check-5.1 50-GAAGGCGAGACAGTCCAAAG-30 and Pks1e4check-

3.1 50-TAAGAGTGTGCATGATCTCGC-30. PCRs contained 2 ml cDNA,

200 mM deoxynucleoside triphosphates, 0.4 mM each primer, 3% dimethyl

sulfoxide, and 2.5 units OneTaq DNA Polymerase (New England BioLabs,

Ipswich, MA, USA) in manufacturer-provided buffer in 50 ml volume. A touch-

down PCR method was employed. The thermocycler conditions were 94�C
0:15 (melt), 60�C to 52�C 0:30 (1�C/cycle incremental temperature drop,

anneal), and 68�C 1:20 (extend) for eight cycles; the annealing temperature

was maintained at 52�C for an additional 20 cycles. Total RNA and PCR-

amplified cDNA were analyzed by agarose gel electrophoresis. The cDNA

amplicon was subcloned into pCRII-TOPO using a TOPO TA Cloning Kit

(Invitrogen, Grand Island, NY, USA), and purified plasmids from four colonies

were individually sequenced to confirm the revised splicing prediction. The

cDNA inserts were aligned in Sequencher v4.0 (Gene Codes Corporation,

Ann Arbor, MI, USA), and the contig is provided in the Supplemental Experi-

mental Procedures.

Cloning and Expression

DNA manipulations were carried out using standard methods (Sambrook and

Russell, 2001). wA and Pks1 fragments were amplified from A. nidulans

RLMH67 and C. orbiculare (syn. C. lagenarium) NRRL 28842 gDNA, respec-

tively. TheW. dermatitidis TE coding sequence DNAwas purchased fromGen-

Script (Piscataway, NJ, USA). Point mutants and lid chimeras were generated

by overlap extension PCR using wild-type TE constructs as template DNA.

Subsequently, additional WdPks1 fragments were amplified from

W. dermatitidis UT8656 gDNA. Further cloning details are summarized in the

Supplemental Experimental Procedures (Tables S2 and S3). Recombinant

proteins were heterologously expressed fromBL21(DE3) in Luria-Bertani broth

medium and purified by Ni2+-affinity chromatography as previously described

using standard methods (Crawford et al., 2008a).
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In Vitro Reactions

Reactions were carried out at room temperature with 10 mM protein (each) in

reaction buffer (100 mM K/PO4 pH 7.0 and 1 mM tris[2-carboxyethyl]phos-

phine [TCEP]) and were initiated by the addition of a substrate mix containing

acetyl and malonyl as the CoA or SNAC thioesters. Reactions were monitored

by UV-vis spectrophotometry using scanning kinetics from 280–650 nm on

a Cary 50 instrument (Varian Inc., Walnut Creek, CA, USA). Products were ex-

tracted into ethyl acetate or filtered through a 10kMWCOMicrocon centrifugal

filter device (Millipore, Billerica, MA, USA) for HPLC analysis. Products (100 ml

injections) were separated by reverse-phase HPLC (Agilent 1200, Santa Clara,

CA, USA) using a bisolvent linear gradient over a Prodigy ODS3 column (4.63

250 mm, 5 mm, Phenomenex, Torrence, CA, USA). Solvent A: H2O + 0.1%

formic acid; Solvent B: acetonitrile + 0.1% formic acid; 5% to 80% B over

30 minutes with a flow rate of 1 ml/minute.

In initial TE swaps, Pks1DTE was combined with either no TE, Pks1 TE, or

wA TE with 0.5 mM acetyl-CoA and 2 mM malonyl-CoA substrates. After

4 hr, reactions were filtered through Microcon centrifugal filter devices and

analyzed by HPLC. Full-length Pks1 and three-part (SAT–KS–MAT + PT–

ACP–ACP + TE) combinations were likewise tested.

Wild-type, point mutant, and lid-chimera TEs were assayed in three-part

multidomain combinations with Pks1 SAT–KS–MAT and PT–ACP–ACP using

0.25 mM acetyl-SNAC and 1 mM malonyl-SNAC substrates in reaction buffer

additionally containing 10% glycerol. Reactions were monitored by UV-vis

spectrophotometry for 2 hr and filtered through Microcon centrifugal filter

devices. Products were separated by HPLC, and the resulting chromatograms

(A254 nm) integrated to calculate peak areas. Control reactions with WdPks1

SAT–KS–MAT and PT–ACP–ACP were similarly conducted.

Deacetylase/Deformylase Assay

ATHN (5), C12-pyrone 7, and a variety of other acetyl and aldehyde side-chain

compounds (Figure 5, 0.5 mM) were separately incubated with the Pks1 TE or

S2009A mutant control (10 mM) overnight. Reactions were filtered through

Microcon centrifugal filter devices and analyzed by HPLC. ATHN (5) was

also tested as a substrate for full-length Pks1.

Starter Unit Incorporation Assay

Three-part in vitro reactions containing Pks1 SAT–KS–MAT, Pks1 PT–ACP–

ACP, and either Pks1 TE or wA TE were initiated with 1 mM [1-13C]-acetyl-

SNAC and 1 mM malonyl-SNAC. Following overnight incubation, 500 ml reac-

tionswere quenchedwith 10 ml HCl and extracted twicewith 1ml ethyl acetate.

Pooled extracts were evaporated to dryness and dissolved in 250 ml 50%

aqueous acetonitrile. Products were analyzed by HR-ESI-LCMS on a

Shimadzu LC-IT-TOF over a Luna C18(2) analytical column (2.0 3 150 mm,

3 mm, Phenomenex) using a linear gradient of 20% to 80% B over 30 minutes

with a flow rate of 0.2 ml/minute. Positive ion peak intensities were compared

for the M and M+1 peaks using LCMS Solutions v3.50 software (Shimadzu,

Columbia, MD, USA).

Homology Model of Pks1 TE

A homology model for the Pks1 TE domain was generated with the loopmodel

algorithm of MODELER within the Accelrys Discovery Studio Suite v2.1

(Accelrys Inc., San Diego, CA, USA). The PksA TE domain (PDB ID code

3ILS) was set as the template structure. Themodel was built based on ClustalX

alignments of 37 NR-PKS TE sequences, and overhangs were cut from the

sequences.

Sequence Analyses

A list of validated NR-PKSs involved in melanin and conidial pigment bio-

synthesis was compiled (Table S1). Analyses were conducted in MEGA5

(Tamura et al., 2011) and involved 29 proteins. Sequence alignment was

completed with ClustalX2 using default settings. The gDNA from potentially

mismatched protein sequences was submitted to FGNESH gene prediction

software (http://linux1.softberry.com/berry.phtml) to consider alterations to

splicing patterns. In cases in which better sequence similarity to other NR-

PKSs was achieved by revised splicing, these sequences were included in

lieu of the current annotation. The evolutionary history was inferred using

the neighbor-joining method and a bootstrap consensus tree was composed

from 1,000 replicates. All ambiguous positions were removed for each
Chemistry & Biology 19, 1525–153
sequence pair. Evolutionary distances were computed using the Poisson

correction method.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and three tables and can

be found with this article online at http://dx.doi.org/10.1016/j.chembiol.2012.

10.002.
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