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Abstract
Two triphenylamine chalcone derivatives 1 and 2 were synthesized through the Vilsmeier-Haack reaction and Claisen-Schmidt
condensation reaction. Through ultraviolet absorption spectroscopy and fluorescence emission spectroscopy experiments, it was
confirmed that these two compounds exhibited good aggregation-induced emission (AIE) behavior in ethanol/water mixtures.
The solvent effect test showed with the increase of the orientation polarizability of the solvent, the Stokes shift in the solvent of
compound 1 and compound 2 shows a linear change trend. Through solid state fluorescence test and universal density function
theory (DFT), the existence of π-π stacking interaction in the solid state of the compound has been studied, resulting in weak
fluorescence emission. pH has no effect on the fluorescence intensity of the aggregate state of excited state intramolecular proton
transfer (ESIPT) molecules in an acidic environment, but greatly weakens its fluorescence intensity in an alkaline environment.
Cyclic voltammetry (CV) test shows that compound 1 was more prone to oxidation reaction than compound 2. The results of
thermal stability test show that the thermal stability of compound 1 was better than that of compound 2, indicating that
triphenylamine chalcone derivatives can improve the thermal stability of compounds by increasing the number of branches.
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Introduction

In recent years, AIEmaterials have beenwidely used in chemical
sensing, biological imaging, organic light-emitting diodes
(OLED) [1–7], etc.Based on a large number of experiments
and theoretical studies, researchers have concluded that restric-
tion of intramolecular rotations (RIR), excited state intramolecu-
lar proton transfer (ESIPT), etc. [8] inhibits theπ-π accumulation
in the molecule to achieve the AIE effect. Due to the widespread
application of molecules based on the ESIPT mechanism of ac-
tion [9–11], the behavior of AIE based on the ESIPTmechanism
has gradually gained attention in the field of natural sciences.

Generally, a molecule with ESIPT characteristics was composed
of a proton donor (such as -OH, -NH2) and a proton acceptor
(such as -N =C, C =O) [12]. Because of its π conjugated frame-
work, the fluorescence emission of 2-hydroxychalcone deriva-
tives was often affected by aggregation-caused quenching
(ACQ). Triphenylamine was a molecule with a central N atom
and three benzene rings connected around it to form a star-
shaped structure. Because of its special structure, it has larger
steric hindrance and higher hole transport rate [13]. In addition,
the structure of triphenylamine was easy to modified. Although
the fluorescence emission efficiency of triphenylamine was not
high, the modified triphenylamine derivatives were used in fluo-
rescent probes [14–16], organic electroluminescent materials and
organic solar cell materials [17, 18] and other aspects have been
widely used.

Recently, triphenylamine derivatives have also been exten-
sively studied on AIE behavior [18–24]. Owing to the unique
helical structure of triphenylamine, partial access of
triphenylamine group to 2-hydroxychalcone can effectively
avoid face-to-face π-π accumulation of molecules, inhibit the
production of ACQ effects, and enhance its fluorescence in the
aggregated state. However, the AIE effect will be affected by
different solvents [25–28], different substituents [29–32], pH
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[33], etc. In view of this, this paper designed and synthesized two
triphenylamine chalcone derivatives with different substituents.
Because of this, two triphenylamine chalcone derivatives

containing different substituents were designed and synthesized,
and their AIE behavior was studied in different solvents and
ethanol/water mixtures.

Fig. 1 Synthesis routes of compounds 1 and 2

Fig. 2 a UV-Vis absorption
spectra of compound 1
under different solvents (c = 1 ×
10− 5 mol/L); b UV-Vis absorp-
tion spectra of compound 2 under.
different solvents (c = 1 × 10−
5 mol/L); c Normalized
fluorescence emission spectra of
compound 1 under different
solvents (c = 1 × 10− 5 mol/L); d
Normalized fluorescence
emission spectra of compound 2
under different solvents (c = 1 ×
10− 5 mol/L)
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Experimental

Materials and Methods

The raw materials required for the experiment such as
t r iphenylamine , phosphorusvoxych lor ide , N,N-
dimethylformamide, 2-hydroxyacetophenone, 2-hydroxy-1-
naphthophenone, sodium hydroxide, ethanol, and chloroform.
1 H and 13 C-NMR spectra were recorded on a Avance 400
spectrometer in CDCl3 with.

TMS as an internal standard. Mass spectrum was recorded on
the Thermo Q-Exactive mass spectrometer. The melting point
was measured on the XRC-1µ melting point instrument. The
ultraviolet absorption was recorded on Cary50. The fluorescence
test was recorded on the FE06CN-IF171(ZB) LD/LM lumines-
cence spectrophotometer. Thermogravimetric analysis (TGA)
was performed on Mettler STARe System thermal analyser un-
der nitrogen flushing at a heating rate of 10 min− 1 with sample
weight of 3–4 mg. Cyclic voltammetry measurements were per-
formed on a CHI660E electrochemical workstation at room tem-
perature with three electrodes cell system in a solution of
Bu4NPF6 (0.1 M) in chloroform at a scanning rate of 100
mVs− 1. Glassy carbon electrode acts as working electrode; plat-
inum electrode used as a counter electrode and SCE (saturated
calomel electrode) electrode as a reference electrode. The scan-
ning electron microscope images of compound 1 and compound
2 in different ratios of ethanol and water as solvents were tested
on Hitachi Regulus 8100 high-resolution cold field emission
electron microscope.

Synthesis of Chalcone Compounds

The synthetic route of compound 1 and compound 2 are shown
in Fig. 1. 4-Diphenylaminobenzaldehyde and 4,4’-
diformyltrianiline were synthesized according to literature [34].
The chalcone compound was synthesized according to literature
[35]. 4,4’-dimethylacyl-trianiline (10 mmol) and 2-
hydroxyacetophenone (20 mmol) were dissolved in 50 ml anhy-
drous ethanol, The reaction temperature was controlled below 7
and slowly add 2ml NaOH(21 M) solution to the reaction sys-
tem. After reaction was stirred for 24 h at 25 , the pure product
was obtained by silica gel columnchromatography. M.p.: 191–
193 . field 48%, 1H NMR (CDCl3, 400 MHz): δH ppm 12.92 (s,
2H), 7.91 (d, J = 4Hz, 3H), 7.87 (s, 1H), 7.57 (d, J = 2Hz, 3H),
7.56 (s, 2 H), 7.54 (s,1 H), 7.48 (t, J = 4 Hz, 2 H), 7.36 (t, J =
4 Hz, 2 H), 7.19 (s, J = 4 Hz, 3 H), 7.14 (s, 2 H), 7.12 (s, 2 H),
7.03 (s, 1 H), 7.01 (s, 1 H), 6.93 (t, J = 4 Hz, 2 H). 13 C NMR
(CDCl3, 100 MHz): δC ppm 193.48, 163.56, 149.38, 146,
144.82, 136.19, 130.09, 129.85, 129.47, 129.10, 126.31,
125.32, 123.31, 120.12, 118.77, 118.60, 118.16. HRMS m/z:
calculated for [M+H]+ 538.20, found 538.20144.

5-Diphenylaminobenzaldehyde (10 mmol) and 2-hydroxy-
1-naphthaleneethanone (10 mmol) were dissolved in 50ml of

absolute ethanol. Then slowly added2ml NaOH (25 M) solu-
tion to the reaction system under ice water, reacted ov-ernight
at room temperature, and then purified by column chromatog-
raphy to obtain compound 2. M.p: 191–193 . field: 53%, 1 H
NMR (CDCl3, 400 MHz): δH ppm 12.60 (s, 1 H), 8.08 (d, J =
4 Hz, 1 H), 7.89 (t, J = 4 Hz, 2 H), 7.79 (d, J = 4 Hz, 1 H),
7.52(t, J = 4 Hz, 1 H), 7.46 (d, J = 4 Hz, 2 H), 7.38 (t, J = 4 Hz,
2 H),7.34 (s, 1 H), 7.30 (t, J = 4 Hz, 4 H), 7.18 (s, 1 H), 7.15 (t,
J = 4 Hz, 4 H), 7.11 (t, J = 4 Hz, 2 H), 7.02 (d, J = 2 Hz, 2 H).
13 C NMR (CDCl3, 100 MHz): δC ppm 194.34, 162.37,
150.39, 146.67, 143.13, 136.33, 131.57, 130.03, 129.54,
129.20, 128.63,127.62, 127.52, 125.61, 125.20, 124.31,
124.22, 123.80,121.29, 119.39, 116.13. HR-MS m/z: calcu-
lated for [M +H]+ 442.18, found 442.18012.

Results and Discussion

Solvent Effect

In order to investigate the influence of different solvents on
the ESIPT behavior of compound 1 and compound 2, the UV-
visible absorption spectrum and fluorescence emission spec-
trum behavior of compound 1 and compound 2 in acetone,
ethanol, dichloromethane, tetrahydrofuran, toluene, and chlo-
roformwere studied. It can be seen from Fig. 2(a) and 2(b) that
the absorption wavelength maximum was shorter in the protic
solvent ethanol. The absorption wavelength was longer in
aprotic solvents. As was shown in Fig. 2(c), the maximum
emission peak of fluorescence spectrum gradually shifted to
long wavelength in toluene, chloroform, tetrahydrofuran,
dichloromethane and acetone. In the Fig. 2(d), this
change is not observed, which may be caused by differ-
ent substituents on the triphenylamine group. To under-
stand the effect of solvent polarity on the optical prop-
erties of substances, the relationship between the orient-
ed polarizability (Δf) and the corresponding Stokes (Δv

Fig. 3 Lippert mataga plot of compounds 1 and 2 in different solvents
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cm− 1) of toluene, chloroform, dichloromethane, tetrahy-
drofuran and ethanol solvents was studied [36]. From
Fig. 3 and Table S1, it can be seen that with the in-
crease of the orientation polarizability of the solvent, the
Stokes shift in the solvent of compound 1 and com-
pound 2 shows a linear change trend [37].

Δv ¼ vabs � vflu ¼ 2Δμ2

hca3
Δf þ constant ð1Þ

Δf ¼ "� 1

2"þ 1
� η2 � 1

2η2 þ 1
ð2Þ

Where, the vabs and vflu are the wavelengths corresponding
to the peak of the absorption and emission spectra, respective-
ly. the h was the Planck constant, the c was the speed of light,
and the a was the cavity radius. Δµwas the difference between
the excited state dipole moment and the ground state dipole
moment. ε and ηwere the dielectric constant and the refractive
index of the solvent, respectively.

AIE Behavior

Chalcone compounds were soluble in ethanol solution and insol-
uble in water. In order to study whether compound 1 and com-
pound 2 have aggregation-induced emission behavior, the UV
absorption spectra and fluorescence emission spectra of chalcone
compounds 1 and 2 in different proportions of ethanol/water
mixtures were studied. As shown in Fig. 4(a), with the increase
of water volume fractions in ethanol/ watermixtures, compounds
1 and 2 showdifferent degrees of decrease of absorption intensity
and horizontal trailing phenomenon. The reason for the decrease
of absorption intensity may be the light scattering of suspension
in aggregate state [38].

Meanwhile, the change of fluorescence intensity caused by
the volume content of different water in ethanol/water mixtures
was determined at an excitationwavelength of 450nm.As shown
in Fig. 4(b), when the volume fraction of water in the ethanol/
water mixtures of Compound 1 was less than 40%, the fluores-
cence intensity was not change substantially. When the volume
fraction of water was higher than 40%, the fluorescence intensity
gradually increases. As shown in Fig. 5, Compound 2 exhibited
similar behavior to compound 1 in ethanol/watermixtures.When

Fig. 4 a UV-Vis absorption
spectra of compounds 1 and 2
under volume fraction (fw) of
different water in ethanol/water
mixtures; b Fluorescence
emission spectra of compound 1
in ethanol/water mixtures with
different volume fractions of
water (fw)

Fig. 5 Fluorescence emission spectra of compound 2 in ethanol/water
mixtures with different volume fractions of water (fw) Fig. 6 Normalized solid state fluorescence diagram of compound 1 and 2
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the volume fractions of water in ethanol/water mixtures was less
than 50%, the fluorescence intensity was very weak. It may be
due to the free rotation of the sigma bond of the benzene ring in
the molecule and the distortion of the charge transfer in the mol-
ecule, which leads to the destruction of the proton transfer in the
excited state [39]. When the volume fractions of water in the
ethanol/water mixtures was higher than 50%, the gradual in-
crease in fluorescence intensity may be due to the carbonyl struc-
ture (-C =O) on the chalcone group and the hydroxyl structure (-
OH) on the benzene ring undergo an excited state intramolecular
proton transfer to form a stable hydrogen bond in aggregate state,
which inhibits free rotation within the molecule and enhances
fluorescence [40, 41]. Meanwhile, the fluorescence emission

behavior of compound 1 and compound 2 in the solid state
was also studied. As was shown in Fig. 6, the emission peaks
of Compound 1 and Compound 2 in the solid state were 610 nm
and 620 nm, respectively.While compounds 1 and 2 had emis-
sion peaks of 550 nm and 541 nm in ethanol solvent, respec-
tively. The fluorescence maximum emission peak in the solid
state has a red shift of 60nm and 79nm, respectively, relative
to the fluorescence maximum emission peak in ethanol sol-
vent. It was caused by the π-π stacking between molecules in
the solid state. As was shown in Fig. 7, Under 365nm UV
light, the solid state emission of compound 1 was weaker than
(E)-3-(4-(diphenylamino)phenyl)-1-(2-hydroxyphenyl)prop-
2-en-1-one reported in literature [42]. This phenomenon was

Fig. 7 Photographs of
compound1 and compound 2
under daylight and 365nm UV
irradiation

Fig. 8 The fluorescence intensity
of compound 1 and compound 2
in ethanol/water mixtures
(fw=90%) changes with pH
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due to the increase of π-conjugated system, which causes the
increase of π-π stacking.

Research on pH Responsiveness

In order to evaluate the effect of pH on the aggregation state of
ESIPT molecules, the pH responsiveness of it was studied in
an ethanol/water mixtures (fw=90%). As was shown in Fig. 8,

when the pH was less than 7, compound 1 and compound 2
were maintained in a stable range, without causing much
change in fluorescence intensity. It was because the chalcone
phenol hydroxyl group was acidic as an acidic proton donor
and was insensitive to pH under acidic conditions.When the
pH was greater than 7, the fluorescence intensity of com-
pounds 1 and 2 decreased significantly with the increase of
pH. It was because the increase of OH− in the solution

Fig. 9 Optimized structure of
compound 1 and compound 2,
HOMO and LUMO electron
cloud distribution

Fig. 10 a UV-Vis absorption
spectra of compounds 1 and 2 in
chloroform solution; b Cyclic
voltammogram of compound 1
and compound 2 in 0.1 M
Bu4NPF6-CHCl3
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deprives the hydrogen protons on the phenolic hydroxyl
group, making it unable to form a stable hydrogen bond,
resulting in low fluorescence intensity in the aggregate state.

Theoretical Calculation

In order to have a comprehensive understanding of com-
pound 1 and compound 2 at the molecular level,
Gaussian09 software was used to optimize the structure
of compounds 1 and 2 with B3LYP/6-31G(d) as the meth-
od and basis set. As was shown in Fig. 9, the electron
cloud of the highest occupied molecular orbital (HOMO)
of compound 1 and compound 2 was mainly distributed in
the triphenylamine part, and the electron cloud of the
lowest unoccupied molecular orbital (LUMO) was mainly
distributed in the corresponding chalcone part. The calcu-
lated energy values of the HOMO and LUMO of com-
pound 1 were − 5.11 eV and − 1.95 eV, respectively. The
energy values of HOMO and LUMO of compound 2 were
− 5.20 eV and − 2.21 eV, respectively. The HOMO-
LUMO energy gap (ΔEg) of compound 1 and compound
2 were 3.16 eV and 2.99 eV, respectively. It can be seen
from the figure that the optimized spatial configuration of
the molecule tends to be planar and fails to effectively
prevent π-π stacking, so the fluorescence emission in
the solid state was weak.

Electrochemical and Optical Properties

The electrochemical behavior of compound 1 and com-
pound 2 was carried out with CHCl3 as the solvent and
tetrabutylammonium hexafluorophosphate as the
supporting electrolyte, the electrochemical window is
from − 1.8 V to 1.8 V, and the scanning speed was
100mV/s [43]. As was shown in Fig. 10(a), compound 1
and compound 2 were dissolved in chloroform solution,
the abscissa of the intersection of the initial line of the
absorption wavelength and the long-range absorption
spectrum measured by the UV-visible spectrometer was
the initial incident wavelength λonset. Then calculated the
energy value of the optical band gap by the formula

Eopt=1240/λonset. The energy values(Eopt) of the optical
band gap of compound 1 and compound 2 were 2.24 eV
and 2.35 eV, respectively, which may be caused by the
dif ferent degree of molecular conjugat ion [44]
(Table 1). As was shown in Fig. 10(b), the formation of
the oxidation peak may be due to the electron donation of
triphenylamine. The initial oxidation potentials of com-
pound 1 and compound 2 were 1.06 V and 1.08 V,
respectively.

The initial oxidation potential of compound 1 was
slightly lower than that of compound 2, indicating that
compound 1 was easier to oxidize than compound 2.
Calculated by the formula EHOMO=-e(Eonset

ox +4.4)(eV),
the potentials of the highest occupied molecular orbitals
of compound 1 and compound 2 were − 5.46 eV and −
5.48 eV, respectively. The potential of the lowest unoc-
cupied molecular orbital of compound and compound 2
was obtained according to the formula ELUMO=EHOMO+
Eopt(eV).

Thermal Stability

In order to study the thermal stability of compound 1 and
compound 2, the two compounds were tested by thermogra-
vimetric analysis. The 10% loss of compound mass was de-
fined as the initial value of the thermal decomposition temper-
ature. As was shown in the Fig. 11, the initial thermal decom-
position temperature (Td) of compound 1 and compound 2
were 410 and 340 , respectively. The initial thermal decom-
position temperature of compound 1 was higher than that of
compound 2, indicating that the derivatives of triphenylamine
chalcone can be increased by the number of branches to im-
prove thermal stability. These test results showed that com-
pound 1 and compound 2 have good thermal stability.

Table 1 Electrochemical properties, optical properties

Chalcone
Compound

CV UV

HOMO/
LUMO
(eV)

Eonset
ox

(V)
λonset
(nm)

Eopt

(eV)

1 -5.46/-3.22 1.06 553 2.24

2 -5.48/-3.13 1.08 528 2.35
Fig. 11 Thermogravimetric analysis of compound 1 and compound 2
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Conclusions

Two triphenylamine chalcone derivatives were synthesized in
this chapter, which showed good AIE behavior in ethanol/
water mixtures, respectively. The Stokes shift of the solvent
shows a linear trend with the increase of the solvent orienta-
tion polarizability. Different pH environments will affect the
fluorescence intensity of the compound in the aggregate state.
Both the solid state fluorescence test and the generalized den-
sity function theory show that the two compounds have π-π
stacking effect in solid state, which makes the fluorescence
emission weak in solid state. Compound 1 is more prone to
oxidation than compound 2, and the thermal stability was
better than compound 2.
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