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Chromophores: Supramolecular Reorganization from a Charge-Transfer

State to a Self-Sorted State
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Gelation[1] of various func-
tional p systems[2] has been ex-
tensively studied due to the
possibility of modulating their
photophysical properties in the
gel state. Donor–acceptor (D–
A) charge-transfer (CT) inter-
actions have been utilized to
generate many elegant supra-
molecular materials, such as ro-
taxanes and catenanes,[3] syn-
thetic ion channels,[4] liquid
crystals,[5] folded oligomers,[6]

polymers,[7] and organogels.[8]

Recently we have demonstrated
self-sorting[9] in a mixed assem-
bly of a bis ACHTUNGTRENNUNG(amide)-functionalized dialkoxynaphthalene
(DAN) donor and a naphthalenediimide (NDI) acceptor
due to synergistic effect of hydrogen bonding and p stack-ACHTUNGTRENNUNGing.[10a] Control experiments indicated that if the number of
methylene groups (n) between the DAN/NDI chromophore
and the amide functionality can be adjusted so that n-NDI=

(n+2)-DAN, then alternate co-stacking of the D–A chro-
mophore could also be achieved. However, in the previously
reported D–A pair (DAN-2 + NDI-0),[10a] although a CT
band was visible in solution, no gelation could be observed,
probably due to highly rigid assembly of NDI chromophor-
e.[10b] Thus to achieve CT gelation we have explored a new
D–A pair DAN-4+ NDI-2 (Scheme 1) in which the rigidity
of the acceptor unit is reduced due to the inclusion of addi-
tional methylene units. In this communication we reveal CT-

interaction-mediated gelation of this D–A pair in a moder-
ately nonpolar solvent tetrachloroethylene (TCE) and also
demonstrate the serendipitous discovery that when the sol-
vent was changed to a less polar methylcyclohexane (MCH),
the CT gel switched over to thermodynamically stable self-
sorted gel within few hours.

Self-assembly of NDI-2+ DAN-4 (1:1, total concentra-
tion=25 mm) was performed in TCE. The compounds were
soluble only at elevated temperature to generate a colorless
solution, which when cooled down to room temperature
produced a deep red gel (Figure 1 a) clearly suggesting alter-
nate co-stacking of the donor and acceptor chromophores.
NDI-2 and DAN-4 individually also showed spontaneous ge-
lation under identical conditions (Figure 1).
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Scheme 1. Structure of various donor and acceptor building blocks.

Figure 1. Left: SEM picture of the CT-gel (1:1 mixture of NDI-2 +

DAN-4) in TCE; Right: Photographs of gels in TCE derived from a)
NDI-2 +DAN-4 (1:1), b) NDI-2, c) DAN-4, d) NDI-2 +DAN-2. Total ge-
lator concentration =25 mm in each case.
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To confirm that distance between the two amide groups in
D and A indeed is critical for the CT interaction, we tested
the gelation of the NDI-2+DAN-2 pair and observed gela-
tion without appearance of any red color (Figure 1 d), sug-
gesting lack of alternate co-stacking. The morphology of the
CT gel was examined by scanning electron microscopic
(SEM) studies that revealed the presence of micrometer
long entangled bundles of fibers (Figure 1, width of smallest
fiber= 62 nm), which is typical of a good gelator. To under-
stand the influence of hydrogen bonding on the self-assem-
bly and gelation we examined the effect of MeOH, a hydro-
gen-bonding competing solvent, on the UV/Vis spectra of
the NDI-2+ DAN-4 mixture (Figure 2).

In TCE there is a broad absorption band (lmax =550 nm)
that is characteristic of CT interactions between the NDI
and DAN chromophores.[6] With an increasing amount of
MeOH, the intensity of the CT band gradually decreased
and finally disappeared at only 7.0 % (v/v) MeOH/TCE
(Figure 2 a). Consequently, when 7.0 % MeOH was added to
the CT gel, the red color disappeared with concomitant
transformation of the gel to homogeneous solution (Fig-
ure 2 b). This clearly indicates that hydrogen bonding is the
most-influential factor for the self-assembly and in its ab-
sence, the CT interaction alone is not adequate for gelation.

We further examined the gelation in an aliphatic hydro-
carbon solvent, MCH, in which hydrogen-bonding interac-
tions are expected to be even stronger and observed sponta-
neous gelation with an intense red color (Figure 3). Howev-
er, much to our surprise, unlike in TCE, in this case the red
color gradually faded away and completely disappeared in
about 5 h to produce a yellowish gel (Figure 3). Consequent-
ly with increasing time the CT band in the UV/Vis spectrum
disappeared with concomitant increase in the base-line in-
tensity (Figure S1a in the Supporting Information), which is
probably due to the increased opaqueness of the switched
gel. To examine the mode of assembly in the modified
yellow gel, we compared the absorption bands appearing
due to n–p* and p–p* transitions in the D–A mixture with
that of the mathematical sum of the aggregated spectra for
the individual D and A chromophores (Figure S1b in the

Supporting Information) and found them to be almost iden-
tical. This simple experiment reveals the self-sorted assem-
bly of the individual chromophores in the modified yellow-
ish gel.

Furthermore we examined the effect of concentration and
temperature on this unprecedented reorganization phenom-
enon in the gel state (Figure 4). The variation of the scatter-
ing intensity[11] at 700 nm was monitored as a function of
time at two different temperatures (Figure 4 a) and gelator
concentrations (Figure 4 b). It can be clearly seen that in
both cases, the scattering intensity increased and then finally
saturated. It is evident that the process is much faster at the
lower concentration and higher temperature. This is expect-
ed as the re-organization of the chromophores from the CT
state to the self-sorted one will be facilitated at lower con-

Figure 2. a) Effect of MeOH on the CT band of NDI-2 +DAN-4 (1:1,
total concentration =5 mm) in TCE. b) Gel (in TCE, conc. 25 mm) to sol
transition in presence of 7 % (v/v) MeOH.

Figure 3. Photograph of the gel (1:1 NDI-2 + DAN-4 in MCH, total con-
centration=10 mm) at various time intervals.

Figure 4. Variation of scattering intensity @ 700 nm in the UV absorption
spectra of the dynamic gel (DAN-4+ NDI-2 (1:1) in MCH) at two differ-
ent temperatures and concentrations. Concentration of gelator =5 mm ;
path-length of cuvette =1 mm.
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centration due to less rigidity of the medium and at higher
temperature due to more available energy.

To rationalize this supramolecular transformation, we ex-
amined the FT-IR spectra of the gel in MCH (Figure 5 a).
The freshly prepared red gel exhibited a broad band due to
the N�H stretching of the amide functionality at 3309 cm�1,

which gradually shifted towards lower values and finally sa-
turated at 3271 cm�1 after 6 h. Note that by this time the red
gel also has been switched over to the yellow one (Figure 3).
It is also interesting to note (Figure 5 a) that the final
stretching frequency of the reorganized gel almost exactly
matches the mathematical sum[12] of the IR spectrum of the
individual donor and acceptor gels (indicated as “sum spec-
trum” in Figure 5 a), which confirms that reorganization
eventually leads to self-sorting.

We also compared the rheological properties of the CT
and self-sorted gels in a stress-amplitude sweep measure-
ment (Figure 5 b). For both samples, the storage modulus
(G’) is initially higher than the loss modulus (G’’), which is
typical of a gel phase.[13] With increasing stress, both G’ and
G’’ remained invariant up to a certain point and then deviat-
ed and crossed each other. This crossover point is consid-
ered as the yield stress (sy) ,which is a measure of the ro-
bustness of the gel. The value of sy for the self-sorted gel
was found to be 30.6 Pa, which is almost 30-fold higher than
that of the CT gel (1.17 Pa); this result supports the findings
of the IR experiment that stronger hydrogen bonding is ach-
ieved due to the reorganization.

To explain stability of the CT gel in TCE, we examined
gelation of the NDI-2 and DAN-4 individually in both TCE
and MCH (Table 1). The critical gelation concentration
(CGC) and gel-melting temperature (Tg) data (Table 1) indi-
cated much stronger gelation for NDI-2 relative to DAN-4.
Poor gelation for the donor is attributed to the relatively
weaker hydrogen-bonding interaction, owing to the en-
hanced flexibility due to the presence of more number of
methylene units[10b,c] between the chromophore and amide
functional groups. The D–D self-assembly is further destabi-
lized by electrostatic repulsion among the electron-rich
DAN chromophores.[6] The gelation data in TCE also re-
vealed almost identical thermal stability and even lower
CGC for NDI-2 gel relative to those of the CT gel. This is
rather surprising, because one would expect the CT interac-
tion to be stronger than A–A p-stacking. Thus to gain fur-
ther insights about the structural nuances of the A–A homo-
aggregates and the charge-transfer (D–A) dual aggregates, a
preliminary quantum chemical investigation was conducted.
The hybrid density functional method, BHLYP was used in
conjunction with 6-31G (d, p) basis sets to optimize the mo-
lecular geometries for NDI-2 and NDI-2+DAN-4
(Figure 6).[14,15] The optimized structure for CT-assembly ex-

Figure 5. a) Selected region of the IR spectra of the CT-gel (NDI-2 +

DAN-4, concentration =10 mm) in MCH as a function of time. b) Rheo-
logical data in MCH for the gel (4.0 wt %) before (triangles) and after re-
organization (circles).

Table 1. Gelation data in TCE and MCH.

NDI-2 DAN-4 NDI-2 +DAN-4 (1:1)

CGC [mM]/TCE 0.75 11.0 3.0
CGC [mM]/MCH 0.91 2.0 –[d]

Tg [8C][a]/TCE 75 31 72
Tg [8C][a]/MCH >105[b] 65 >39[c]

[a] Concentration of the gelator =20 mm. [b] Solvent started boiling
beyond this temperature. [c] Tg varied significantly with time, please see
the Supporting Information (Table S1) for details. [d] The data could not
be retrieved due to dynamic nature of the gel.

Figure 6. Optimized molecular geometries of DAN-4 +NDI-2 (top) and
NDI-2 homo-aggregate (bottom) at BHLYP/6-31G (d, p) level of theory.
Some of the alkyl and phenyl hydrogen atoms are not shown for clarity.
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hibits intermolecular hydrogen bonding between the amide
functionalities of the donor and acceptor chromophores
(each 2.08 �), along with a CT interaction. For assembly of
NDI-2 alone, similar hydrogen-bonding interactions were
observed but with significantly shorter bond lengths(1.99
and 1.96 �). These results clearly suggest that the strength
of the hydrogen-bonding interaction is greater in case of A–
A homoaggregates compared to the D–A alternate stack-
ing.[16]

We assume that it is just a coincidence that the strength
of (stronger hydrogen bonding+ A–A p-stacking) becomes
comparable to that of (weaker hydrogen bonding +D–A CT
interaction) and thus the thermal stability of the two types
of gels (pure NDI-2 and NDI-2+DAN-4) are found to be
almost identical (Table 1). However, it is the poor self-as-
sembly of the donor gel that favours the formation of pure
CT gel[17] instead of acceptor gel, because in that case maxi-
mum number of amide functionalities linked to both D and
A chromophores can be engaged in hydrogen bonding. As
we used 1:1 mixture of D and A chromophores, if a mixture
of CT and A gels is formed, then many of the D molecules
will not take part in aggregate formation, because they
cannot form a stable self-assembled structure on their own
in TCE, as evident from its poor gelation ability (Table 1).

Next we examined the gelation data in MCH, in which re-
organization was observed.[18] The CGC value for DAN-4
was found to be 2 mm (Table 1), which is almost four times
lower than that in TCE (Table 1), and the Tg (20 mm) was
found to be 65 8C, which is more than twice as much as that
in TCE (Table 1). Similarly for NDI-2 also the gelation data
indicates stronger self-assembly compared to that in TCE;
this fact can be attributed to stronger hydrogen-bonding in-
teraction in hydrocarbon solvent. However, in case of D–A
alternate co-stacking we do not anticipate strengthening of
hydrogen bonding to such extent, because solvent polarity
can only alter the electronic parameters but not the geomet-
rical constraint that was observed in their energy minimized
geometry (Figure 6).

This is evident from the observed Tg of the CT gel in
MCH (Table 1, and Table S1 in the Supporting Informa-
tion). It is interesting to note that soon after the formation
of the CT gel, the Tg was found to be 39 8C, which is even
lower than that in TCE (72 8C). This can be attributed to
the dynamic nature of the system, which inhibits precisely
defined self-assembly with long-range order at the early
stage of gelation. However, gradually as the gel switched
over to the stable self-sorted state, the Tg increased signifi-
cantly (Table S1 in the Supporting Information).

It is evident from the forgone discussion that self-sorted
state is prefered over the alternate co-assembly if the stabili-
ty of the individual self-assembled structure is higher, as is
the case in MCH. To examine whether this can also be es-
tablished by structural variation of the chromophores in-
stead of solvent variation we examined gelation of NDI-2
with a different donor DAN-3[10c] (Scheme 1). The rationale
behind choosing the new donor is that we anticipated homo-
aggregates of DAN-3 to be stronger than DAN-4, due to

smaller number of methylene units.[10b] Of course the dis-
tance between the two amide groups in this D–A pair also
was found to be comparable. The CGC and Tg (at 20 mm

concentration) of DAN-3 in TCE were found to be 3.2 mm

and 59 8C, respectively, which indeed proved superior self-
assembly of DAN-3 compared to DAN-4 in TCE. As ex-
pected NDI-2 +DAN-3 (1:1) produced red CT gel in TCE
(total concentration 10 mm), but unlike previous case (NDI-
2+DAN-4 in TCE) after 4 h the color completely disap-
peared suggesting reorganization from CT state to the self-
sorted state (Figure S5 in the Supporting Information).[19]

This observation provides further evidence that if the indi-
vidual self-assembly of both the donor and acceptor chro-
mophores are reasonably strong, eventually the self-sorted
state is achieved even though the kinetically controlled CT
state is initially formed.

In conclusion, we have demonstrated spontaneous self-as-
sembly and gelation in a bis ACHTUNGTRENNUNG(amide)-functionalized donor–
acceptor chromophore mixture by the synergistic effect of
hydrogen bonding and CT interactions/p-stacking. Two dis-
tinctly different modes of assembly (alternate D–A co-as-
sembly versus self-sorting) could be observed depending on
marginal variation in structure of the chromophores and/or
solvent polarity. When the structure of the chromophore
and nature of the solvent provided opportunity for stronger
hydrogen bonding, the system adopted the particular mode
of assembly in which the effect of hydrogen bonding could
be fully realized. Thus the initially formed, kinetically con-
trolled, CT-state (NDI-2+ DAN-4 in MCH, NDI-2+DAN-3
in both MCH and TCE) re-organized to more stable self-
sorted state, as there was no geometrical constraint for hy-
drogen bonding. On the other hand, in a moderately non-ACHTUNGTRENNUNGpolar chlorinated solvent like TCE,[20] as the strength of the
hydrogen-bonding interaction was inherently reduced com-
pared to that in MCH, the CT interaction plays a significant
role in deciding the mode of self-assembly and thus long-
lived CT state was achieved. Of course none of these possi-
bilities arose when the distance between two amide func-
tionalities were very different for the D and A chromophore
and in that case (NDI-2+ DAN-2) self-sorting was always
observed.
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the alternate stack of NDI-2 and DAN-2. This corroborates well
with the experimental observation, that for this D–A pair we always
observed self-sorting and no alternate co-stacking. Alternatively, the
distance in D–D aggregates also display slightly longer intermolecu-
lar hydrogen bond lengths than their A–A counterparts, but general-
ly slightly shorter than the corresponding D–A species (Figure S8 in
the Supporting Information).

[17] To confirm that the observed CT gel in TCE is not contaminated
with individual self-assembly of A and D, we examined the effect of
cooling rate on the CT band of the gel (Figure S2 in the Supporting
Information); no notable differences were observed. This indirectly
supports the hypothesis that only the CT state is formed during ge-
lation. If there were other types of the self-assembly, the relative
mole fractions of various types of structures are expected to vary as
a function of cooling speed. However, we realize that this is only in-
direct evidence and does not completely rule out the possibility of
co-existence of the CT and self-sorted states. More detail studies to
understand these aspects are underway in our laboratory.
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