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The first successful example of olefin cross-metathesis with

chloroalkenes is reported.

Functionalised olefins are important building blocks for

organic synthesis. Catalytic olefin cross-metathesis (CM) is a

convenient route to functionalise olefins from simple alkene

precursors.1 One of the most appealing facets of this transfor-

mation is that a carbon–carbon double bond of one or both

cross-metathesis partners can be substituted by a heteroatom-

containing group Z (Scheme 1).1d

With the advent of highly active catalysts2 1a–1c the range

of functionalised olefins that participate in CM now includes

a,b-unsaturated carbonyl-containing olefins,1a–c acrylonitrile,3

vinylphosphonates,4 vinyl phosphine oxides,5 perfluorinated

alkane containing olefins,6 vinyl sulfones,7 vinyl-azulenes8 and

others.

Therefore, CM complements other C–C coupling methods,

such as Wittig, Horner–Wadsworth–Emmons or Heck reac-

tions.1 However, not all functional groups are compatible with

Ru-based catalysts in CM reactions. In particular, phosphine-

containing catalysts such as 1a have been reported to fail to

mediate CM of vinyl halides.9 This is unfortunate, given that

alkenyl halides are key building blocks in transition-metal-

catalysed syntheses, particularly in various Pd-catalysed cou-

pling reactions.10,11 Johnson et al. studied the fate of complex

2, the product of an initial metathesis cycle in CM of some

alkenyl chlorides. The Authors observed that complex 2 is

formed initially in CM, but undergoes rapid decomposition

into catalytically inactive 3 and 4 (Scheme 2).9a

In a separate experiment it was shown that 2, generated at

�70 1C, underwent PCy3 shift to form 4 upon increasing the

temperature to 0–20 1C. The Authors conclude that rapid

decomposition of 2, not the failure to form 2, accounts for the

failure of attempted CM reactions of vinyl chloride using

catalysts such as 1a
9a and, therefore, that modified catalysts

for olefin metathesis with vinyl halides are needed.9b Inspired

by this excellent mechanistic study, we decided to investigate

the same reaction using complexes 1b–d.12 We expected that

the phosphine-free catalysts will promote the CM of alkenyl

chlorides, instead of undergoing the PCy3-involving decom-

position pathway, described by Johnson et al.9

The CM reaction of 4-methoxystyrene 5a with (E)-1,2-

dichloroethylene (6a) used as a solvent (100 equiv. relative to

5a) at reflux temperature was chosen as a model trans-

formation.z As expected, use of 5 mol% of 1a2a led to rather

low conversion of 5a; GC analysis revealed that CM product

7a was formed in 15% yield, thus indicating only three turn-

overs (Table 1, entry 1). Importantly, we observed that the

addition of CuCl, which is known to sequester PCy3 into an

Scheme 1 Cross-metathesis of functionalized olefins and selected
Ru-precatalysts.

Scheme 2 The fate of chloromethylidene 2 according to Johnson et al.9a

Table 1 Comparative screening of catalysts in CM of 5a

Entry Catalyst (mol%) Yield (%)a TON

1 1a (5) 15 3
2 1a (5)b 32 6
3 1b (5) 24 5
4 1c (5) 54 11
5 1c (1) 21 21
6 1d (5) 24 5

a Yields were determined by GC. b With 5% mol of CuCl.
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insoluble ill-defined complex,3b positively influenced the reac-

tion, leading to formation of 7a in 32% yield (entry 2). The

phosphine-free Hoveyda–Grubbs complex2b 1b exhibited a

similar level of reactivity (entry 3) without any additive. To

our delight, complex 1c,12a the boosted version of Hoveyda’s

catalysts, led to formation of 7a in remarkable 54% yield

(TON = 11, entry 4) when used in 5 mol%. An even higher

turnover number, TON = 21, was achieved when the same

catalyst was used in 1 mol% (entry 5). The newly developed

complex 1d, although quite reactive in other CM reactions,12b

in this particular case was only moderately active (entry 6).

The CM product, 7a, was formed, irrespective of the

catalyst used, as a mixture of (Z) and (E) isomers in the ratio

5 : 1. Recent computational studies on the CM reaction

pathways of 1a with ethylene, (E)-1,2-difluoroethylene and

(E)-1,2-dichloroethylene demonstrated that the metathesis of

halogenated olefins is a kinetically controlled process.13 This

theoretical result is in good agreement with the observed

preference to form thermodynamically less stable product

(Z)-7a (Table 1). Interestingly, application of (Z)-1,2-dichloro-

ethylene (6b)14 led to a distinctly different outcome—the

reaction of 5a with 6b catalysed by 5 mol% of 1c gave 7a in

much lower stereoselectivity (Z : E = 1.08 : 1) and yield

(32%).

Having optimised conditions,15 we attempted to test the

practicability and scope of this reaction (Table 2).y
Utilizing 5 mol% of 1c, introduced in one portion, it was

possible to obtain product 7b in 41% isolated yield (entry 1).

Much better results were obtained by adding 10 mol% of the

catalyst in four equal portions over four hours (entry 2). This

result suggests that the propagating species formed from 1c are

still relatively short-lived, therefore the portion-wise addition

of the (pre)catalyst is optimal. Catalyst 1d, used in a similar

regime also led to a very good result (entry 4). Unexpectedly,15

vinyl sulfides (5d, 5e) were found to be good CM partners,

leading to formation of the corresponding products with

excellent stereoselectivities (entries 5, 6). Nitrogen-substituted

alkene 5f was also found to produce the expected (Z)-alkenyl

chloride 7f (entry 7), although in lower yield (Scheme 3).16

Reaction of 1a with vinyl bromide, studied by Johnson et al.,

was complicated by halogen exchange among Ru complexes;

nevertheless, no productive CM was observed.9a Similarly,

Weinreb and Chao reported a failure in RCM of a diene

containing a bromo-substituted double bond (the same reaction

Table 2 CM between 6a and alkenes 5

Entry Substrate Catalyst (mol%) Time/h Product Yield (%)a

1 1c (5%) 20 41

5b 7b (Z : E = 1.4 : 1)

2 5b 1c (10%)b 20 7b (Z : E = 1.4 : 1) 87
3 1c (15%)c 20 76

5c 7c (Z : E = 1.5 : 1)

4 5a 1d (15%)c 6 7a (Z : E = 5 : 1) 91
5 1d (10%)d 20 85

5d 7d (only Z isomer)

6 1c (5%) 24 35 (66)

5e 7e (only Z isomer)

7 1c (10%)e 20 32 (34)f

5f 7f (only Z isomer)

8 1c (10%)e 20 (52)

5g 7g (Z : E = 2.6 : 1)

a Isolated yields of analytically pure products. In parenthesis are yields determined by GC or 1H NMR. b Catalyst added in 4 equal portions over

4 h. c Catalyst added in 3 equal portions over 3 h. d Catalyst added in 6 equal portions over 6 h. e Catalyst added in 5 equal portions over

5 h. f Substrate 5f was consumed completely during the reaction.
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with a chloro-substituted diene was high-yielding).11d Interest-

ingly, in the reaction between 1,2-dibromoethylene (6c) and 5b

the expected dibromide 7h was formed, albeit in low yield (34%).

Calculations done recently by Fomine et al. show that the Gibbs

free activation energy of the CM reaction of halogen substituted

alkenes is strongly dependent on the volume of halogen sub-

stituents and therefore the steric factor makes the most important

contribution to the outcome of such CM reactions.13

To summarize, we have shown that CM of alkenes with (E)-

1,2-dichloroethylene promoted by phosphine-free catalysts

like 1c leads to formation of the expected chloroalkenes in

acceptable yields while the analogous reaction with 1,2-dibro-

moethylene is more challenging. Fortunately, following the

development of active palladium catalysts, even vinyl chlorides

have become valuable substrates for Pd-couplings.10b

Although not all mechanistic details of this transformation

are fully explained, ongoing work is directed toward further

applications of CM as a mild and selective method for the

synthesis of chlorinated molecules.

KG and CS thank the Foundation for Polish Science

(‘‘Mistrz’’ Programme) for financial support.
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ment was repeated at least twice.
y Representative procedure of CM reaction: to a solution of alkene
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