

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Preparation of heptafluoronaphthyllithiums and -magnesiums: An unexpected difference in the reactivity of isomers C₁₀F₇H and C₁₀F₇Br towards organolithium and organomagnesium compounds

Mikhail M. Shmakov^{a, b}, Vadim V. Bardin^{b, c}, Sergey A. Prikhod'ko^{a, b}. Nicolay Yu Adonin ^{a, b, *}

^a Boreskov Institute of Catalysis, SB RAS, Acad. Lavrentiev Ave. 5, 630090, Novosibirsk, Russian Federation

^b Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russian Federation

^c Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Acad. Lavrentiev Ave. 9, 630090, Novosibirsk, Russian Federation

ARTICLE INFO

Article history: Received 27 February 2019 Received in revised form 7 June 2019 Accepted 8 August 2019 Available online 11 August 2019

Keywords: Heptafluoronaphthalene Bromoheptafluoronaphthalene Metalation Alkyllithium Ethylmagnesium bromide Trimethylsilylheptafluoronaphthalene

1. Introduction

Polyfluoroaromatic derivatives of lithium and magnesium were intensively investigated in 1960-1980s. Preparation and main properties of Ar_FM (M = Li, MgX) are well known, and these reagents are employed in routine synthesis of organic and organometallic compounds [1-3]. Surprisingly, there is only scarce literary information about preparation of the polyfluoronaphthyllithium and magnesium derivatives. The initial communication on the preparation of C₁₀F₇MgCl from C₁₀F₇Cl (isomer mixture) and Mg pre-activated with 1,2-dibromoethane (DBE) in ether followed by hydrolysis to C₁₀F₇H was reported by a Russian team in 1964 [4]. A solution of 1-C₁₀F₇MgBr was prepared the same way from 1-C₁₀F₇Br and after substitution of THF for ether the Grignard reagent was carboxylated with CO₂ to give 1-C₁₀F₇COOH at 50% yield [5]. Reflux of 2-C₁₀F₇Br and magnesium pre-activated with DBE in

E-mail address: adonin@catalysis.ru (N.Y. Adonin).

ABSTRACT

Significant differences in the reactivity of isomeric heptafluoronaphthalenes and bromoheptafluoronaphthalenes towards organolithium and organomagnesium compounds were found. Metalation of polyfluorinated naphthalenes $2-C_{10}F_7X$ (X = H, Br) occurs easily under the action of bases (BuLi, t-BuLi, LDA) as well as EtMgBr (X = Br) in ether. This fact was proven by ¹⁹F NMR spectroscopy and by trapping of $2-C_{10}F_7M$ (M = Li, MgBr, Mg($2-C_{10}F_7$)) with electrophile ClSiMe₃. The interaction of $1-C_{10}F_7Br$ with BuLi or EtMgBr proceeds in a similar way. In contrast to 2-C₁₀F₇H, isomeric 1-C₁₀F₇H is the less acidic substrate and undergoes only the nucleophilic alkyldefluorination when combined with BuLi or t-BuLi.

© 2019 Elsevier B.V. All rights reserved.

ether leads to the formation of 2-C₁₀F₇MgBr and the latter reacts with N-methylformanilide to yield 2-C₁₀F₇CHO (72%) [6]. Metalation of 1-bromo-3,4,5,6,7,8-hexafluoronaphthalene with *i*-PrMgCl in THF at room temperature gives the corresponding polyfluorinated naphthylmagnesium halide and the further reaction with produces 2,2'-dihydryldodecafluoro-1,1'binaphthyl at 86% yield [7]. Respess and Tamborski prepared "organometallic solution" from octafluoronaphthalene and ethylmagnesium bromide in THF using anhydrous CoCl₂ as the catalyst. Hydrolysis of the "organometallic solution" gave 2-H-heptafluoronaphthalene (for convenience, the hydrogen atom is designated as a substituent H) at a moderate yield [8]. The action of BuLi on $2-C_{10}F_7Br$ in hexane at -30 °C followed by treatment of the resulting 2-heptafluoronaphthyllithium with boron trichloride gives tris(heptafluoro-2-naphthyl)boron in 26% yield [9]. Metalation of 2-H-heptafluoronaphthalene with BuLi in ether – hexane at -75 °C was also described [10,11]. Carboxylation of the formed 2-C₁₀F₇Li gives 2-C₁₀F₇COOH (60%), whereas the reaction with bromine leads to 2-C₁₀F₇Br and 2-C₁₀F₇H (5:1). Thermal decomposition of $2-C_{10}F_7$ Li in ether results in hexafluoro-1,2-naphthalyne, the latter being trapped with furan to form 1,4-epoxy-5,6,7,8,9,10-

^{*} Corresponding author. Boreskov Institute of Catalysis, SB RAS, Acad. Lavrentiev Ave. 5, 630090, Novosibirsk, Russian Federation.

hexafluoro-1,4-dihydrophenanthrene. It should be noted that the generation of polyfluoronaphthylmetal derivatives was assumed from their chemical reactions but these intermediates were not observed directly.

The study was aimed at preparation of polyfluorinated naphthyl derivatives of some elements using C₁₀F₇M as nucleophiles. Preliminary experiments showed the satisfactory results with 2heptafluoronaphthyllithium and unexpected difficulties with the 1-naphthyl isomer. This prompted us to investigate the metalation reactions of 1-H-heptafluoronaphthalene (1), 2-H-heptafluoronaphthalene (2), 1-bromoheptafluoronaphthalene (3) and 2bromoheptafluoronaphthalene (4) with butyllithium, t-butyllithium, LDA and ethylmagnesium bromide with the aim of developing a reliable procedure for the generating of the corresponding naphthylmetals.

2. Results and discussion

Although naphthalenes 1, 2, 3 and 4 are known compounds, practical routes to 1-C₁₀F₇H and 1-C₁₀F₇Br are not convenient. There are no literature data about synthesis of naphthalene **1** but only decarboxylation of 1-C₁₀F₇COOH [5]. Individual naphthalenes 1 and 2 were obtained by vacuum rectification of their mixture prepared by hydrolysis of the corresponding organomagnesium compounds obtained from a mixture of isomeric C₁₀F₇Cl (Scheme 1). It should be pointed out that all attempts to separate directly the mixture of C₁₀F₇Cl failed.

It is important to note that the initial mixture consisted of 1-C10F7Cl and 2-C10F7Cl in molar ratio 1:1.5. After hydrolysis, conversions of 1-C₁₀F₇Cl and 2-C₁₀F₇Cl were 84 and 95%, respectively. Perhaps, this is a consequence of the higher metalation rate of the latter isomer. In the past, the predominant formation of 2-C₁₀F₇COOH from C₁₀F₇Cl, Mg and CO₂ was explained by the lower reactivity of 1-C₁₀F₇MgCl towards the electrophile [5] but the lower reactivity of 1-C₁₀F₇Cl towards magnesium also contributes to the process.

To our knowledge, the only reported route to naphthalene **3** is bromination of **1** with Br_2 in the presence of iron filings (20 °C, 2 h) [5]. An attempted reproduction gave **3** contaminated with 1,5dibromohexafluoronaphthalene (up to 15-20%) which could not be removed by recrystallization as well as by sublimation. The desirable compound was obtained by bromination of 1 with bromine in HSO₃Cl (Scheme 2).

Although the formation of C₆F₅MgBr from C₆F₅H and EtMgBr in THF [8,12] was described, both C_6F_5H and isomers $C_{10}F_7H$ do not react with EtMgBr in ether (22 °C, 3–5 h). The stronger Lewis base, butyllithium, metalates 2 in ether-hexane at low temperature and formed 2-C₁₀F₇Li was trapped with chlorotrimethylsilane to yield 2-trimethylsilylheptafluoronaphthalene (5) that coincides with the literature data mentioned above. The similar process occurs in the case of **2** and *t*-BuLi or LDA (Scheme 3).

2-Heptafluoronaphthyllithium was also prepared by metalbromine exchange from 2-bromoheptafluoronaphthalene and BuLi and reacted with ClSiMe₃ giving 5 (Scheme 4).

In contrast to $2-C_{10}F_7H$, the reaction of $1-C_{10}F_7H$ with BuLi

Scheme 2. Preparation of 1-bromoheptafluoronaphthalene.

at $-65 \div -70$ °C and the subsequent treatment with ClSiMe₃ does not give 1-trimethylsilylheptafluoronaphthalene (6). 1-H-3butylhexafluoronaphthalene (7), 1-H-6-butylhexafluoronaphth alene (**8**), 1-H-7-butylhexafluoronaphthalene (**9**), 1-H-3,7dibutylpentafluoronaphthalene (10) and 1 (trace) formed (GSMS, ¹⁹F NMR) instead of **6** (Scheme 5). The same products also are obtained by the reaction of **1** with BuLi at $-80 \degree C$ without addition of ClSiMe₃ but in this case the conversion of **1** is less than that in the previous case because of the lower temperature and shorter deprotonation time (15 min instead of 3 h) before ClSiMe₃ treatment.

Using more basic and less nucleophilic t-BuLi instead of BuLi does not affect the final result and nucleophilic substitution of fluorine atoms remains the only reaction way. According to GCMS and ¹⁹F NMR data the reaction mixture contains **1**, 1-H-*t*-butylhexafluoronaphthalenes 11, 12, and 13, 1-H-di(t-butyl)pentafluoronaphthalenes 14 and 15 along with minor admixtures (presumably, 1-H-tri(*t*-butyl)tetrafluoronaphthalenes) (Scheme 6).

LDA was used as the base to avoid the nucleophilic substitution. However, neither metalation nor nucleophilic substitution occurred (Scheme 7).

These results demonstrate that 1-C₁₀F₇H is far less acidic than its isomer 2-C₁₀F₇H and, therefore, competitive nucleophilic alkyldefluorination of **1** with alkyllithium occurs rather than metalation. This assumption was confirmed by the reaction of **1** with one equivalent of BuLi at lower temperature (-80°C). The reaction yielded the same compounds 7, 8, and 9 at a decreased conversion of **1**. However, the fast formation of $1-C_{10}F_7Li$ followed by substitution in the latter is not excluded because hydrolysis of the reaction mixture would give the same products. Thus, this assumption was used for the explanation of the interaction between 2-C₁₀F₇Br and BuLi [10].

Metalation of Ar_FBr with BuLi is known to proceed much faster than Ar_FH metalation under identical conditions [13]. We conducted the reaction of 1-C₁₀F₇Br with a deficient quantity of BuLi at -80 °C. After hydrolysis of the reaction mixture at this temperature we obtained 1 and 3 whereas the products of nucleophilic alkylation were not detected. This means that the lithium-bromine exchange in $1-C_{10}F_7Br$ at $-80 \degree C$ is the fast process and $1-C_{10}F_7Li$ does not react with BuLi. The second consequence is an exclusion of $1-C_{10}F_7Li$ as a reactive intermediate in Schemes 5 and 6. The formation of $1-C_{10}F_7Li$ is proved by the conversion of **3** to 1trimethylsilylheptafluoronaphtalene (6) via organolithium trapping with ClSiMe₃ (Scheme 8).

Heptafluoronaphthylmagnesiums were prepared in two ways:

conversion > 90%

Scheme 1. Preparation of heptafluoronaphthalenes from chloroheptafluoronaphthalenes.

Base: BuLi, ether-hexanes, -70 °C; t-BuLi, ether-pentanes, -70 °C, LDA, ether-hexanes, -60 °C

Scheme 3. Generation of 2-C₁₀F₇Li from 2 and trapping with CiSiMe₃.

Scheme 4. Generation of 2-C₁₀F₇Li from 4 and trapping with ClSiMe₃.

Scheme 5. Attempted generation of 1-C₁₀F₇Li from 1 and BuLi.

Scheme 6. Attempted generation of 1-C₁₀F₇Li from 1 and *t*-BuLi.

Scheme 7. Failed generation of 1-C₁₀F₇Li from 1 and LDA.

by the reaction of $C_{10}F_7Br$ with magnesium and metal-bromine exchange with EtMgBr. The formation of 2heptafluoronaphthylmagnesium bromide (**16a**), bis(2heptafluoronaphthyl)magnesium (**16b**), **2** and the residual amount of **4** was detected by ¹⁹F NMR when the ethereal solution of 2-bromoheptafluoronaphthalene was refluxed with excess magnesium turnings pre-activated with DBE (0.3 equiv.) for 2 h. The total consumption of **4** was observed in 6 h of refluxing. Changing magnesium turnings to powder did not affect the results of the reaction. Refluxing naphthylmagnesiums **16a** and **16b** with ClSiMe₃ for 2 h did not result in the formation of **5**, and exhaustive silylation was only observed in 7 h.

Alternatively, naphthylmagnesiums **16a** and **16b** were observed after addition of **4** to ethylmagnesium bromide in ether. Because the reaction of **16a** and **16b** with ClSiMe₃ in ether proceeded slowly, we performed it in a mixture of ether and THF. This allowed us to

Scheme 8. Formation of 1-C₁₀F₇Li from 3 and BuLi and reaction with ClSiMe₃.

X = Br (16a), 2-C₁₀F₇ (16b)

Scheme 9. Formation of 2-heptafluoronaphthylmagnesiums 16a and 16b and their conversion to 5.

get the product **5** at 78% yield after stirring at 22 °C for 2 h (Scheme 9).

It is important that the quantity of **2** was always significant despite the precautions against moisture. This extreme hydrolysis may be the reason for "moderate" yields of products obtained *via* nucleophile $2-C_{10}F_7MgX$ [5,6,8]. Meanwhile, penta-fluorophenylmagnesiums had the similar reactivity towards ClSiMe₃ and stirring of C₆F₅MgX with this electrophile in ether at $22^{\circ}C$ for 4 h results in a mixture of C₆F₅MgX, C₆F₅H and C₆F₅SiMe₃, the latter being a minor component.

Similar to the reaction of **4** with Mg, the generation of 1-heptafluoronaphthylmagnesiums from **3** and magnesium in ether required more than 1 equivalent of DBE. Thus, addition of **3** and DBE (0.4 equiv.) to magnesium (1.5 equiv.) in ether, heating at 36–40 °C and subsequent hydrolysis of the solution led to the mixture of **3** and **1** (2:1) due to the incomplete metalation. Alternatively, addition of **3** (1 equiv.) and DBE (1.4 equiv.) to magnesium (3 equiv.) gave small amounts of **3** and **1** and only one 1-heptafluoronaphthylmagnesium derivative (**17b**). In the ¹⁹F NMR spectrum of the latter, there were equally intensive signals at –106.90, –142.2, –146.1, –148.3, –159.3, –161.5 and –161.6 ppm. The spin-spin coupling analysis allowed us to assign the signals to fluorine atoms F², F⁸, F⁴, F⁵, F³, F⁶, and F⁷, respectively.

Another picture was obtained when $\bf 3$ reacted with EtMgBr. In addition to above signals, the 19 F NMR spectrum contained broad

resonances ($\omega_{1/2} \sim 100-110$ Hz) at -106.80 and -143.0 ppm and signals at -145.9 (F⁴), -148.1 (F⁵), -159.2 (F³), -161.4 and -161.6 (F⁶ and F⁷) ppm. Signals of fluorine atoms F⁵, F³, and F⁶ of this naphthylmagnesium (**17a**) interfered with signals of **17b**. Assuming that the signals broadening at -106.80 and -143.0 ppm was due to the exchange with the Grignard reagent, the amount of the latter was reduced to 0.8 equivalent. But this did not affect the width of the signals.

Besides ¹⁹F NMR data, the formation of 1-naphthylmagnesium compounds **17a** and **17b** was proved by their conversion to 1-trimethylsilylheptafluoronaphthalene **6** by the reaction with ClSiMe₃ in THF at 22°C. Similar to 2-heptafluoronaphthylmagnesiums, $1-C_{10}F_7MgX$ (X = Br, $1-C_{10}F_7$) were very sensitive to moisture and manipulations with their solutions often led to partial hydrolysis (Scheme 10).

Metalation of individual bromoheptafluoronaphthalenes with EtMgBr demonstrates the same equilibrium positions $Ar_FMgBr/(Ar_F)_2Mg$ as described above. Thus, the molar ratio of 1-heptafluoronaphthylmagnesium bromide (**17a**) to bis(1-heptafluoronaphthyl)magnesium (**17b**) was 10:1. The molar ratio of 2-heptafluoronaphthylmagnesium bromide (**16a**) to bis(2-heptafluoronaphthyl)magnesium (**16b**) was 10:2 in the range of concentrations 0.12–0.23 M. This fact can be accounted for by a less steric hindrance in **16b** than in **17b** (Scheme 11).

When naphthylmagnesiums 2-C₁₀F₇MgX and (2-C₁₀F₇)₂Mg

X = Br (**17a**), 1-C₁₀F₇ (**17b**)

Scheme 10. Formation of 1-naphthylmagnesiums 17a, 17b from 3 and reaction with ClSiMe₃.

Scheme 11. Formation of heptafluoronaphthylmagnesiums from bromoheptafluoronaphthalenes and EtMgBr.

Scheme 12. Formation of heptafluoronaphthylmagnesiums from bromoheptafluoronaphthalenes and Mg.

were obtained from **4** and Mg, the ratio **16a**:**16b** was 10:5, i.e. the contribution of **16b** increased (Scheme 12). Metalation of **3** with Mg seems to be the extreme case because of the formation of only **17b**. Comparing the equilibrium ratios $Ar_FMgBr/(Ar_F)_2Mg$ obtained by the reaction of Ar_FBr with EtMgBr or with Mg we observed enrichment with (Ar_F)₂Mg for as yet unknown reason. Moreover, this contradicts to expected change of equilibrium because the accompanying reaction of magnesium with DBE leads to the formation of MgBr₂, and the accumulation of the latter should lead to a shift of equilibrium to the left.

The Schlenk equilibrium in the series of C_6F_5MgHal and related arylmagnesiums was studied by the ¹⁹F NMR spectroscopy [14]. C_6F_5MgHal were prepared from aryl halide and magnesium, and symmetric (C_6F_5)₂Mg·OEt₂ was obtained by metathesis of C_6F_5HgMe with Et₂Mg. The equilibrium ratio of C_6F_5MgHal to (C_6F_5)₂Mg in ether was 2.0, 1.0 and 1.4 at Hal = Cl, Br and I, respectively. When we combined solutions of C_6F_5Br and EtMgBr (1:1 mol) at 22°C, the other proportion $C_6F_5MgBr:(C_6F_5)_2Mg = 4:1$ was observed (Scheme 13).

In studying the Schlenk equilibrium (¹⁹F NMR), aryImagnesium bromides Ar_FMgBr were found to predominate in the solution obtained by the reaction of EtMgBr with the equimolar mixture of C_6F_5Br with each of $C_{10}F_7Br$ isomers (Scheme 14). In addition, there were observed signals of $C_{10}F_7MgC_6F_5$. The constitutions of them were outlined from the closed similarity of chemical shifts to those of the related aryImagnesiums $C_{10}F_7MgX$ (X = Br, $C_{10}F_7$) and C_6F_5MgY (Y = Br, C_6F_5) and the equal intensities of the $C_{10}F_7$ and C_6F_5 moieties resonances (Scheme 14).

3. Conclusions

2-H-Heptafluoronaphthalene has the sufficient acidity to form $2-C_{10}F_7Li$ under the action of BuLi, *t*-BuLi and LDA in ether. Acidity of $1-C_{10}F_7H$ is much lower and the above bases are ineffective in the formation of $1-C_{10}F_7Li$. Oppositely, the nucleophilic alkylde-fluorination proceeds even below $-70^{\circ}C$. Both isomers $C_{10}F_7Br$

Scheme 13. Ratio of C₆F₅MgBr and (C₆F₅)₂Mg in ether obtained by different ways.

undergo the bromine-lithium exchange with BuLi in ether to give the corresponding $C_{10}F_7Li$. Successful metalation of $C_{10}F_7Br$ with magnesium in ether requires the use of ≥ 1 equivalent of dibromoethane (the accompanying reaction). Alternatively, metalation of $C_{10}F_7Br$ with EtMgBr occurs easily at 22°C. The equilibrium ratio $Ar_FMgBr/(Ar_F)_2Mg$ ($Ar_F = 1-C_{10}F_7$, $2-C_{10}F_7$, C_6F_5) in ether is 10:(1-2.5) when Ar_FMgX is obtained from Ar_FBr and EtMgBr. The contribution of ($Ar_F)_2Mg$ increases dramatically when Ar_FMgX is obtained from Ar_FBr and magnesium and it achieves 0:10 at $Ar_F = 1-C_{10}F_7$. The rate of chlorine nucleophilic substitution in ClSiMe₃ with $C_{10}F_7MgX$ is low at the room temperature in ether but increases in the presence of THF.

4. Experimental

4.1. General

The NMR spectra were acquired using a Bruker Avance 300 (¹H at 300.13 MHz, ¹⁹F at 282.40 MHz) and an Avance 600 (²⁹Si at 119.26 MHz) spectrometers. The chemical shifts were referenced to TMS (¹H, ²⁹Si) and CCl₃F (¹⁹F, with C_6F_6 as secondary reference (-162.9 ppm)), respectively. The quantitative analysis of reaction mixtures was performed by the 19 F NMR spectroscopy with an internal standard C₆H₅F. GCMS analysis was performed using a Shimadzu GCMS-OP2010 Ultra (with GsBP-1MS column) instrument. High resolution mass spectra were recorded using a Thermo Scientific DFS spectrometer in EI mode (70 eV). Bromine was washed with concentrated H₂SO₄ and distilled. Chlorosulfonic acid was distilled. Ether was refluxed with sodium, distilled and stored over sodium pieces. Chlorotrimethylsilane was refluxed with CaH₂ and distilled. 1,2-Dibromoethane (DBE) was dried with CaCl₂ and distilled. Chloroheptafluoronaphthalenes were produced from C₁₀Cl₈ and KF and isolated by rectification [3]. 2-H-Heptafluoronaphthalene [15] and 2-bromoheptafluoronaphthalene [9] were prepared from 2-hydrazinoheptafluoronaphthalene by described procedures. Diisopropylamine (Acros), 2.5 M BuLi in hexanes (Acros), 1.6 M t-BuLi in pentanes (Acros) were used as supplied. Solution of EtMgBr was prepared from EtBr and magnesium and the concentration was determined by titration with acid.

All manipulations with organomagnesium and organolithium compounds were performed under an atmosphere of dry argon.

4.2. Preparation of heptafluoronaphthalenes

A three-necked flask (50 mL) equipped with a magnetic bar, dropping funnel and reflux condenser topped with T-adapter connected with argon line and bubbler was flushed with argon and charged with magnesium (255 mg, 10.4 mmol) and ether (15 mL). A

Scheme 14. Ratio of perfluoroarylmagnesiums in ether derived from a mixture of bromopentafluorobenzene and bromoheptafluoronaphthalene.

solution of chloroheptafluoronaphthalenes (40% of $1-C_{10}F_7Cl$ and 60% of $2-C_{10}F_7Cl$) (1.45 g, 5.0 mmol) and DBE (0.96 g, 5.1 mmol) in ether (10 mL) was added dropwise within 10 min to keep gentle reflux. The reaction mixture was refluxed with stirring for 4 h, cooled to the room temperature and poured onto ice acidified with HCl. The organic phase was separated, the aqueous phase extracted with ether (20 mL), the merged extract washed with brine and dried with MgSO₄. The solvent was removed on an evaporator to yield a mixture of chloroheptafluoronaphthalenes of $1-C_{10}F_7Cl$ (6%), $2-C_{10}F_7Cl$ (5%), $1-C_{10}F_7H$ (32%) and $2-C_{10}F_7H$ (56%) (1.2 g) (¹⁹F NMR). Heptafluoronaphthalenes $1-C_{10}F_7H$ (bp 122.9–124.1 °C at 60 Torr) and $2-C_{10}F_7H$ (bp 130.5–131.1 °C at 60 Torr) were isolated by fractional vacuum-distilling a mixture collected from several experiments.

4.2.1. 1-H-heptafluoronaphthalene 1

¹H NMR (CDCl₃): $\delta = 7.60$ (dd, ³*J*(H¹, F²) = 8.3 Hz, ⁵*J*(H¹, F⁴) = 8.3 Hz, 1H, H¹). ¹⁹F NMR (CDCl₃): $\delta = -130.2$ (ddddddd, ³*J*(F², H¹) = 9.5 Hz, ³*J*(F², F³) = 20.0 Hz, ⁴*J*(F², F⁴) = 8.2 Hz, ⁷*J*(F², F⁶) = 8.2 Hz, ⁶*J*(F², F⁵) = 5.9 Hz, ⁵*J*(F², F⁸) = 3 Hz, ⁶*J*(F², F⁷) = 2 Hz, 1F, F²), -139.8 (ddddddd, ⁴*J*(F⁴, H¹) = 9.5 Hz, ⁴*J*(F⁴, F⁵) = 52.6 Hz, ³*J*(F⁴, F³) = 16.1 Hz, ⁴*J*(F⁴, F²) = 8.5 Hz, ⁵*J*(F⁴, F⁸) = 4.4 Hz, ⁵*J*(F⁴, F⁶) = 4.4 Hz, ⁶*J*(F⁴, F⁷) = 2 Hz, 1F, F⁴), -147.0 (dddddd, ⁴*J*(F⁵, F⁶) = 17.3 Hz, ⁵*J*(F⁵, F⁸) = 15.5 Hz, ⁶*J*(F⁵, F²) = 5.8 Hz, ⁵*J*(F⁵, F³) = 3.9 Hz, ⁴*J*(F⁵, F⁷) = 2 Hz, 1F, F⁵), -148.2 (ddddd, ³*J*(F⁸, F⁷) = 17.8 Hz, ⁵*J*(F⁸, F⁵) = 15.8 Hz, ⁵*J*(F⁸, F⁴) = 5.7 Hz, ⁶*J*(F⁸, F³) = 3 Hz, ⁵*J*(F⁷, F⁶) = 17.6 Hz, ⁷*J*(F⁷, F³) = 8.6 Hz, ⁶*J*(F⁷, F⁴) = 4.2 Hz, ⁴*J*(F⁷, F⁵) = 2 Hz, 1F, F⁷), -157.0 (dddddd, ³*J*(F⁶, F⁷) = 19.2 Hz, ³*J*(F⁶, F⁵) = 17.1 Hz, ⁷*J*(F⁶, F²) = 8.3 Hz, ⁵*J*(F⁶, F⁴) = 4.9 Hz, ⁶*J*(F⁶, F³) = 2 Hz, ⁴*J*(F⁶, F⁸) = 17.1 Hz, ⁷*J*(F⁶, F⁷) = 8.3 Hz, ⁵*J*(F⁶, F⁶) = 17.4 Hz, ³*J*(F⁶, F⁷) = 19.2 Hz, ³*J*(F⁶, F³) = 2 Hz, ⁴*J*(F⁶, F⁸) = 2 Hz, 1F, F⁶), -157.7 (dddddd, ³*J*(F⁶, F³) = 19.2 Hz, ³*J*(F⁶, F³) = 2 Hz, ⁴*J*(F⁶, F⁸) = 2 Hz, 1F, F⁶), -157.7 (dddddd, ³*J*(F³, F²) = 19.2 Hz, ³*J*(F⁶, F⁶) = 3 Hz, ⁶*J*(F³, F⁸) = 3 Hz, 1F, F³).

4.2.2. 2-H-heptafluoronaphthalene 2

¹H NMR (CDCl₃): $\delta = 7.17$ (ddd, ³*J*(H², F¹) = 10.4 Hz, ³*J*(H², F³) = 10.4 Hz, ⁴*J*(H², F⁴) = 5.9 Hz, 1H, H²). ¹⁹F NMR (CDCl₃): $\delta = -117.4$ (dddddd, ³*J*(F¹, H²) = 10.6 Hz, ⁴*J*(F¹, F⁸) = 64.7 Hz, ⁵*J*(F¹, F¹) = 10.6 Hz, ⁴*J*(F¹, F⁸) = 64.7 Hz, ⁵*J*(F¹), F¹

 $\begin{array}{l} F^4) = 19.0 \ \text{Hz}, \ {}^{6}J(F^1, F^6) = 4.2 \ \text{Hz}, \ {}^{5}J(F^1, F^7) = 4.2 \ \text{Hz}, \ {}^{5}J(F^1, F^5) = 4.2 \ \text{Hz}, \\ 1F, \ F^1), \ -134.8 \ (\text{ddddddd}, \ {}^{3}J(F^3, \ H^2) = 10.4 \ \text{Hz}, \ {}^{3}J(F^3, \ F^4) = 18.9 \ \text{Hz}, \\ {}^{7}J(F^3, \ F^7) = 9.3 \ \text{Hz}, \ {}^{5}J(F^3, \ F^5) = 4.5 \ \text{Hz}, \ {}^{6}J(F^3, \ F^6) = 4.5 \ \text{Hz}, \ {}^{6}J(F^8, \ F^5) = 16.2 \ \text{Hz}, \ {}^{5}J(F^8, \ F^6) = 3.7 \ \text{Hz}, \ 1F, \ F^8), \ -147.0 \ (\text{ddddd}, \ {}^{4}J(F^5, \ F^4) = 4.2 \ \text{Hz}, \ {}^{3}J(F^5, \ F^6) = 17.4 \ \text{Hz}, \ {}^{5}J(F^5, \ F^8) = 15.9 \ \text{Hz}, \ {}^{5}J(F^5, \ F^8) = 15.9 \ \text{Hz}, \ {}^{5}J(F^5, \ F^8) = 18.7 \ \text{Hz}, \ {}^{5}J(F^4, \ F^1) = 17.8 \ \text{Hz}, \ {}^{4}J(F^4, \ H^2) = 5.6 \ \text{Hz}, \ {}^{3}J(F^4, \ F^3) = 18.7 \ \text{Hz}, \ {}^{5}J(F^4, \ F^1) = 17.8 \ \text{Hz}, \ {}^{4}J(F^4, \ H^2) = 5.6 \ \text{Hz}, \ {}^{5}J(F^7, \ F^6) = 19.5 \ \text{Hz}, \ {}^{3}J(F^7, \ F^8) = 17.4 \ \text{Hz}, \ {}^{7}J(F^7, \ F^8) = 17.4$

4.3. Preparation of 1-bromoheptafluoronaphthalene 3

4.3.1. 1-H-heptafluoronaphthalene (2.0 g, 7.87 mmol), iron filings (0.80 g, 14.3 mmol) and bromine (37.3 g, 12 mL, 233 mmol) were stirred at 22 $^\circ$ C for 2 h

The solution was poured onto ice, residual bromine was neutralized with Na₂S₂O₃, the products were extracted with CHCl₃ (2 × 50 mL), the extract was washed with water and dried with MgSO₄. The solvent was distilled off on evaporator and the solid was sublimed (70–90°C at 0.1 Torr). The sublimate (1.76 g) consisted of 1-C₁₀F₇Br (80%) and 1,5-C₁₀Br₂F₆ (20%) (¹⁹F NMR).

4.3.2. 1-H-heptafluoronaphthalene (1.00 g, 3.93 mmol), bromine (0.76 g, 4.75 mmol) and chlorosulfonic acid (6 mL) were stirred at 22 $^\circ$ C for 2 h

The solution was poured onto ice, the products were extracted with CH_2Cl_2 (2 × 10 mL), the extract was washed with 5% Na₂SO₃, with water and dried with MgSO₄. The solvent was distilled off on evaporator and the solid was dried in vacuum-desiccator over Sicapent® to yield 1-C₁₀F₇Br (1.1 g, 84%).

4.3.2.1. 1-Bromoheptafluoronaphthalene **3.** ¹⁹F NMR (ether): $\delta = -116.3$ (dddddd, ³*J*(F², F³) = 22.2 Hz, ⁴*J*(F², F⁴) = 9.2 Hz, ⁵*J*(F², F⁸) = 9.2 Hz, ⁷*J*(F², F⁶) = 8.4 Hz, ⁶*J*(F², F⁵) = 4.4 Hz, ⁶*J*(F², F⁷) = 2.1 Hz 1F, F²), -139.6 (ddddd, ⁴*J*(F⁴, F⁵) = 69.5 Hz, ⁵*J*(F⁴, F⁸) = 5.1 Hz, ³*J*(F⁴, F⁴) = 69.5 Hz, ⁵*J*(F⁴, F⁸) = 5.1 Hz, ³*J*(F⁴, F⁴) = 69.5 Hz, ⁵*J*(F⁴, F⁸) = 5.1 Hz, ³*J*(F⁴, F⁴) = 69.5 Hz, ⁵*J*(F⁴, F⁴) = 5.1 Hz, ³*J*(F⁴) = 5.1 Hz, ⁴*J*(F⁴) = 5.1 Hz, ⁴*J*

4.4. Attempted reaction of C_6F_5H with EtMgBr

The solution of C_6F_5H (142 mg, 0.84 mmol) in ether (1 mL) was treated with 0.42 M EtMgBr (2 mL, 0.84 mmol) at 22 °C for 3 h. No reaction occurred (¹⁹F NMR).

4.5. Attempted reaction of $C_{10}F_7H$ with EtMgBr

The solution of **1** and **2** (1:4) (82 mg, 0.32 mmol) in ether (1 mL) was treated with 0.54 M EtMgBr (1 mL, 0.54 mmol) at 22 $^{\circ}$ C for 5 h. No reaction occurred (¹⁹F NMR).

4.6. Reaction of 2-heptafluoronaphthyllithium with ClSiMe₃

4.6.1. A flame-dried flask equipped with a magnetic bar and septa was charged with **2** (254 mg, 1.00 mmol) and flushed with dry argon

After the addition of ether (25 mL) the solution was cooled to -70 °C (bath) and stirred for 15 min. Then 2.5 M BuLi in hexanes (0.5 mL, 1.25 mmol) was injected slowly and the solution was stirred for 4 h before the injection of ClSiMe₃ (0.200 mL, 1.57 mmol). After 10 min it was warmed up to 20 °C within 20 min and hydrolyzed with 5% HCl (1 mL). The organic phase was separated, the aqueous phase extracted with ether (2 × 3 mL), the merged extract washed with brine and dried with MgSO₄. The ¹⁹F NMR spectrum of the extract showed the formation of **5** (0.80 mmol) that was obtained by removing of volatiles on evaporator.

4.6.2. The reaction was performed by the same manner using 1.6 M t-BuLi in pentanes (1.12 mmol)

The ¹⁹F NMR spectrum of the extract showed the formation of **5** (0.84 mmol). After the solvent evaporation silylnaphthalene **5** was isolated.

4.6.3. A reactor (see above) was charged with ether (10 mL) and diisopropylamine (0.500 mL, 3.57 mmol)

The solution was cooled to -60 °C (bath), stirred for 30 min, and 2.5 M BuLi in hexanes (1.4 mL, 3.5 mmol) was injected slowly and stirred for 30 min. In another flask a solution of **2** (254 mg, 1.00 mmol) in ether (22 mL) was cooled to -60 °C, and the solution of LDA (3.1 mL, 1.1 mmol) was syphoned into it at -60 °C under pressure of dry argon. The reaction mixture was stirred at this temperature for 4 h, treated with chlorotrimethylsilane (0.200 mL, 1.57 mmol), and the reaction mixture was worked up as described above. The ¹⁹F NMR spectrum of the extract showed the formation of **5** (0.94 mmol). After the solvent evaporation silylnaphthalene **5** was isolated.

4.6.4. 2.5 M BuLi in hexanes (0.4 mL, 0.34 mmol) was dissolved in ether (2.5 mL) and injected into cold (-80 °C) solution of $2-C_{10}F_7Br$ (100 mg, 0.30 mmol) in ether (6.5 mL)

The reaction mixture was stirred for 1 h, a solution of chlorotrimethylsilane (0.39 mmol) in 0.25 mL of ether was added. After 20 min cooling bath was removed, the reaction mixture was allowed to warm to 20 °C within 1 h and worked up as described above to yield yellow oil (91 mg) contained 0.24 mmol (80%) of 5 (19 F NMR).

Analytically pure silylnaphthalene **5** was obtained by crystallization from ethanol.

4.6.4.1. 2-Trimethylsilvlheptafluoronaphthalene **5**. ¹H NMR (ether): $\begin{array}{l} \text{1F, } F^6\text{), } -157.6 \text{ (ddddd, } {}^3\text{J}(F^7, F^6) = 18.9 \text{ Hz}, \, {}^3\text{J}(F^7, F^8) = 17.3 \text{ Hz}, \, {}^7\text{J}(F^7, F^3) = 7.5 \text{ Hz}, \, {}^5\text{J}(F^7, F^1) = 4.1 \text{ Hz}, \, {}^4\text{J}(F^7, F^5) = 1.3 \text{ Hz}, \, 1F, \, F^7\text{).} \, \, ^1\text{H} \, \text{NMR} \\ (\text{CCl}_4\text{):} \quad \delta = 0.45 \quad (\text{t}, \, {}^5\text{J}(\text{H}, \, F^{1.3}) = 1.5 \text{ Hz}, \, {}^9\text{H}\text{).} \, \, {}^{19}\text{F} \, \text{ NMR} \, \, (\text{CCl}_4\text{):} \end{array}$ 2](F⁸ $^{4}I(F^{5})$ °/(F⁵ $F^{3} = 4.5 \text{ Hz}, \ 1F, \ F^{5}, \ -151.3 \ (dddd, \ ^{4}J(F^{4}, \ F^{5}) = 57.0 \text{ Hz}, \ F^{3} = 19.8 \text{ Hz}, \ ^{5}J(F^{4}, \ F^{1}) = 19.8 \text{ Hz}, \ ^{5}J(F^{4}, \ F^{6}) = 4.0 \text{ Hz},$ ${}^{3}I(F^{4})$ $I(F^4)$ F^{8}) = 4.0 Hz, 1F, F⁴), -154.4 (m, 1F, F⁶), -157.6 (dddd, ³/(F⁷) ${}^{3}J(F^{7}, F^{8}) = 16.8 \text{ Hz}, {}^{7}J(F^{7}, F^{3}) = 7.4 \text{ Hz},$ ⁵/(F⁷. F^{6}) = 20.0 Hz. F^{1} = 3.7 Hz, 1F, F^{7}). ²⁹Si{H} NMR (CDCl₃): $\delta = -0.92$ (ddd, 4.5, 3.1 and 1.6 Hz). Found, %: C 48.0, H 2.78, F 40.6, C13H9F7Si, Calc. %: C 47.85, H 2.78, F 40.76.

4.7. Reaction of 1-H-heptafluoronaphthalene with BuLi and $ClSiMe_3$

The solution of **1** (254 mg, 1.00 mmol) in ether (25 mL) was cooled to -70 °C (bath) and stirred for 30 min. Then 2.5 M BuLi in hexanes (0.5 mL, 1.25. mmol) was injected slowly. After 4 h at -70 °C chlorotrimethylsilane (0.200 mL, 1.57 mmol) in ether (1 mL) was injected, the solution was stirred for 10 min and warmed up to 20 °C within 20 min. It was treated with 5% HCl (1 mL), the organic phase was separated, the aqueous phase extracted with ether (2 × 3 mL), the merged extract washed with brine (10 mL) and dried with MgSO₄. Evaporation of the volatiles gave yellow oil consisted of **1** (0.04 mmol), 1-H-3-C₄H₉-C₁₀F₆ (0.14 mmol), 1-H-6-C₄H₉-C₁₀F₆ (0.24 mmol), 1-H-7-C₄H₉-C₁₀F₆ (0.38 mmol), and 1-H-3,7-(C₄H₉)₂C₁₀F₅ (0.09 mmol) (GSMS and ¹⁹F NMR).

4.7.1. 1-H-3-butylhexafluoronaphthalene 7

¹⁹F NMR (acetone): $\delta{\delta^*}^1 = -112.3 \{-113.3\}$ (m, 1F, F²), -117.3 {-116.5} (dd, ⁴*J*(F⁴, F⁵) = 61 Hz, ⁴*J*(F⁴, F²) = 8 Hz, 1F, F⁴), -146.3 {-147.2} (ddd, ⁴*J*(F⁵, F⁴) = 61 Hz, ³*J*(F⁵, F⁶) = 16 Hz, ⁵*J*(F⁵, F⁸) = 16 Hz, 1F, F⁵), -148.9 {-149.9} (dd, ⁵*J*(F⁸, F⁵) = 16 Hz, ³*J*(F⁸, F⁷) = 16 Hz, 1F, F⁸), -157.5 {-157.5} (dd, ³*J*(F⁷, F⁶) = 18 Hz, ³*J*(F⁷, F⁸) = 16 Hz, 1F, F⁷), -159.8 {-159.7} (dddd, ³*J*(F⁶, F⁷) = 18 Hz, ³*J*(F⁶, F⁵) = 16 Hz, 7*J*(F⁶, F²) = 7 Hz, ⁴*J*(F⁶, F⁸) = 4 Hz, 1F, F⁶).

4.7.2. 1-H-6-butylhexafluoronaphthalene 8

 ^{19}F NMR (acetone): $\delta\{\delta^{*}\}^1=-123.8$ {-123.7} (dd, $^4J(F^5, F^4)=61$ Hz, $^5J(F^5, F^8)=19$ Hz, 1F, $F^5)$, -131.1 {-131.5} (m, 1F, $F^2)$, -139.5 {-140.0} (dd, $^4J(F^4, F^5)=61$ Hz, $^3J(F^3, F^4)=17$ Hz, 1F, $F^4)$, -140.5 {-139.3} (d, $^3J(F^7, F^8)=18$ Hz, 1F, $F^7)$, -151.7 {-153.4}

 $^{^1~\}delta^*$ is chemical shift calculated according to the incremental scheme.

 $(dd, {}^{3}J(F^{8}, F^{7}) = 18 Hz, {}^{5}J(F^{8}, F^{5}) = 19 Hz, 1F, F^{8}), -160.2 \{-160.4\} (m, 1F, F^{3}).$

4.7.3. 1-H-7-butylhexafluoronaphthalene 9

 ^{19}F NMR (acetone): $\delta\{\delta^*\}^1 = -126.5$ {-124.9} (d, $^3J(F^8, F^7) = 18$ Hz, 1F, $F^8), -132.6$ {-132.9} (m, 1F, $F^2), -141.3$ {-141.5} (m, 1F, $F^4), -141.3$ {-140.1} (m, 1F, $F^6), -151.0$ {-152.2} (ddd, $^4J(F^5, F^4) = 50$ Hz, $^3J(F^5, F^6) = 18$ Hz, $^5J(F^5, F^8) = 18$ Hz, 1F, $F^5), -158.9$ {-159.0} (dd, $^3J(F^3, F^2) = 18$ Hz, $^3J(F^3, F^4) = 18$ Hz, 1F, $F^3).$

4.7.4. 1-H-3,7-dibutylpentafluoronaphthalene 10

¹⁹F NMR (acetone): $\delta\{\delta^*\}^1 = -114.6 \{-116.0\}$ (m, 1F, F²), -118.4 {-117.2} (dd, ⁴*J*(F⁴, F⁵) = 58 Hz, ⁴*J*(F⁴, F²) = 7 Hz, 1F, F⁴), -128.2 {-126.3} (d, ⁵*J*(F⁸, F⁵) = 18 Hz, 1F, F⁸), -143.8 {-142.8} (m, ³*J*(F⁶, F⁵) = 17 Hz, 1F, F⁶), -150.2 {-152.4} (ddd, ⁴*J*(F⁵, F⁴) = 58 Hz, ³*J*(F⁵, F⁶) = 17 Hz, ⁵*J*(F⁵, F⁸) = 18 Hz, 1F, F⁵).

4.8. Reaction of 1-H-heptafluoronaphthalene with t-BuLi and ClSiMe $_3$

The reaction was performed by the same manner using 1.6 M *t*-BuLi in pentanes (1.12 mmol). Evaporation of volatiles gave yellow oil consisted of **1** (0.14 mmol), 1-H-3-*t*-C₄H₉-C₁₀F₆ **11** (0.07 mmol), 1-H-6-*t*-C₄H₉-C₁₀F₆ **12** (0.13 mmol), 1-H-7-*t*-C₄H₉-C₁₀F₆ **13** (0.16 mmol), 1-H-2,6-(*t*-C₄H₉)₂C₁₀F₅ **14** (0.10 mmol), and 1-H-3,7-(*t*-C₄H₉)₂C₁₀F₅ **15** (0.23 mmol) (GSMS, ¹⁹F NMR).

4.8.1. 1-H-3-t-butylhexafluoronaphthalene 11

 ^{19}F NMR (acetone): $\delta\{\delta^*\}^1 = -102.0 \ \{-106.5\} \ (m, 1F, F^2), -108.5 \ \{-108.0\} \ (d, \,\,^4J(F^4, \, F^5) = 75 \ \text{Hz}, \, 1F, \, F^4), \, -144.9 \ \{-144.9\} \ (ddd, \,\,^4J(F^5, \, F^4) = 75 \ \text{Hz}, \,\,^3J(F^5, \, F^6) = 17 \ \text{Hz}, \,\,^5J(F^5, \, F^8) = 17 \ \text{Hz}, \,\, 1F, \,\, F^5), \,\, -149.7 \ \{-149.8\} \ (ddd, \,\,^5J(F^8, \, F^5) = 17 \ \text{Hz}, \,\,^3J(F^8, \, F^7) = 16 \ \text{Hz}, \,\,^4J(F^8, \, F^6) = 4 \ \text{Hz}, \ 1F, \,\, F^8), \, -157.0 \ \{-156.7\} \ (dd, \,\,^3J(F^7, \, F^6) = 19 \ \text{Hz}, \,\,^3J(F^7, \, F^8) = 16 \ \text{Hz}, \,\, 1F, \ F^7), \,\, -159.6 \ \{-159.2\} \ (dddd, \,\,^3J(F^6, \, F^7) = 19 \ \text{Hz}, \,\,\,^3J(F^6, \, F^5) = 17 \ \text{Hz}, \,\,^7J(F^6, \, F^2) = 8 \ \text{Hz}, \,\,^4J(F^6, \, F^8) = 4 \ \text{Hz}, \,\, 1F, \, F^6).$

4.8.2. 1-H-6-t-butylhexafluoronaphthalene 12

 ^{19}F NMR (acetone): $\delta\{\delta^*\}^1 = -115.5$ {-115.2} (dd, $^4J(\text{F}^5, \text{F}^4) = 75$ Hz, $^5J(\text{F}^5, \text{F}^8) = 15$ Hz, 1F, F^5), -130.6 {-130.7} (m, 1F, F^2), -132.7 {-132.5} (m, 1F, F^7), -138.2 {-137.7} (d, $^4J(\text{F}^4, \text{F}^5) = 75$ Hz, 1F, F^4), -151.0 {-151.7} (dd, $^3J(\text{F}^8, \text{F}^7) = 18$ Hz, $^5J(\text{F}^8, \text{F}^5) = 15$ Hz, 1F, F^8), -159.9 {-159.9} (ddddd, $^3J(\text{F}^3, \text{F}^2) = 19$ Hz, $^3J(\text{F}^3, \text{F}^4) = 16$ Hz, $^7J(\text{F}^3, \text{F}^7) = 8$ Hz, $^5J(\text{F}^3, \text{F}^5) = 73$ Hz, $^6J(\text{F}^3, \text{F}^8) = 4$ Hz, 1F, F^3).

4.8.3. 1-H-7-t-butylhexafluoronaphthalene 13

 ^{19}F NMR (acetone): $\delta\{\delta^*\}^1 = -118.1$ {-116.4} (d, $^5J(\text{F}^8, \text{F}^5) = 16$ Hz, 1F, F^8), -132.8 {-132.4} (m, 1F, F^2), -133.7 {-133.3} (m, 1F, \text{F}^6), -141.8 {-141.4} (dd, $^4J(\text{F}^4, \text{F}^5) = 47$ Hz, $^3J(\text{F}^4, \text{F}^3) = 16$ Hz, 1F, F⁴), -150.4 {-150.5} (ddd, $^4J(\text{F}^5, \text{F}^4) = 47$ Hz, $^3J(\text{F}^5, \text{F}^6) = 17$ Hz, $^5J(\text{F}^5, \text{F}^8) = 16$ Hz, 1F, F⁵), -158.5 {-158.2} (dd, $^3J(\text{F}^3, \text{F}^2) = 19$ Hz, $^3J(\text{F}^3, \text{F}^4) = 16$ Hz, 1F, F³).

4.8.4. 1-H-2,6-di(t-butyl)pentafluoronaphthalene 14

 ^{19}F NMR (acetone): $\delta\{\delta^*\}^1 = -116.7$ {-116.8} (dd, $^4J(\text{F}^5, \text{F}^4) = 71$ Hz, $^5J(\text{F}^5, \text{F}^8) = 15$ Hz, 1F, F^5), -136.0 {-136.2} (m, 1F, F^3) (overlaps with F^6 of **15**), -144.0 {-141.2} (dd, $^4J(\text{F}^4, \text{F}^5) = 71$ Hz, $^3J(\text{F}^4, \text{F}^3) = 13$ Hz, 1F, F⁴), -135.4 {-134.7} (d, $^3J(\text{F}^7, \text{F}^8) = 14$ Hz, 1F, F^7), -152.7 {-149.6} (dd, $^3J(\text{F}^7, \text{F}^8) = 17$ Hz, $^5J(\text{F}^5, \text{F}^8) = 15$ Hz, 1F, F⁸).

4.8.5. 1-H-3,7-di(t-butyl)pentafluoronaphthalene 15

 ^{19}F NMR (acetone): $\delta\{\delta^*\}^1 = -104.6 \{-108.7\} (m, 1F, F^2), -110.2 \{-109.6\} (d, {}^4J(F^4, F^5) = 70 \text{ Hz}, 1F, F^4), -120.7 \{-118.0\} (d, {}^4J(F^8, F^6) = 17 \text{ Hz}, 1F, F^8), -136.0 \{-135.5\} (m, 1F, F^6) (overlaps with F^3 of 14), -148.6 \{-148.4\} (ddd, {}^4J(F^5, F^4) = 70 \text{ Hz}, {}^3J(F^5, F^6) = 15 \text{ Hz}, {}^5J(F^5, F^4) = 70 \text{ Hz}, {}^3J(F^5, F^6) = 15 \text{ Hz}, {}^5J(F^5, F^6) = 15 \text{ Hz}, {}^5J(F^5,$

 F^8) = 15 Hz, 1F, F^5).

4.9. Attempted reaction of 1-H-heptafluoronaphthalene with LDA and ClSiMe $_3$

The solution of **1** (254 mg, 1.00 mmol) in ether (21 mL) was cooled to -60 °C and solution of LDA (3.1 mL, 1.1 mmol) (from 0.500 mL (3.57 mmol) of *i*-Pr₂NH and 1.3 mL (3.25 mmol) of 2.5 M BuLi in 8 mL of ether)) was injected slowly to keep temperature -(65 to 55) °C. The reaction mixture was stirred at this temperature for 4 h. Chlorotrimethylsilane (0.200 mL, 1.57 mmol) was injected and then the reaction mixture was worked up as described above. The ¹⁹F NMR spectrum of the extract showed signals of only **1** (0.80 mmol).

4.10. Reaction of 1-H-heptafluoronaphthalene with BuLi

A flame-dried flask equipped with a magnetic bar and septa was charged with **1** (127 mg, 0.50 mmol) and ether (11.5 mL). The solution was cooled to -80 °C (bath) and stirred for 15 min. 2.5 M BuLi in hexanes (0.4 mL) was dissolved in ether (1.6 mL), and 1 mL of this solution (0.50 mmol) was injected slowly into the reactor. The solution was stirred for 15 min and the saturated aqueous solution of water in ether (prepared from 5% HCl and ether, 1:4, v/v) was injected. The reaction mixture was allowed to warm to 22 °C, treated with K₂CO₃ and washed with brine (10 mL). The organic phase was separated, the aqueous phase extracted with ether (2 × 3 mL) and the merged extract dried with MgSO₄. The solvent was evaporated at reduced pressure and the residue was dissolved in acetone. The product consisted of **1** (0.32 mmol), **7** (0.04 mmol), **8** (0.05 mmol) and **9** (0.08 mmol) (GCMS, ¹⁹F NMR).

4.11. Reaction of 1-bromoheptafluoronaphthalene with BuLi

A flame-dried flask equipped with a magnetic bar and septa was charged with **3** (103 mg, 0.30 mmol) and ether (6.5 mL). The solution was cooled to -80 °C (bath) and stirred for 15 min. 2.5 M BuLi in hexanes (0.3 mL) was dissolved in ether (2.5 mL) and 1 mL of the solution (0.27 mmol) was injected slowly into the reactor. The solution was stirred for 15 min and saturated aqueous solution of water in ether (prepared from 5% HCl and ether, 1:4, v/v) was injected. The reaction mixture was allowed to warm to 22 °C treated as above. The product consisted of **1** (0.18 mmol) and **3** (0.07 mmol) (¹⁹F NMR).

4.12. Reaction of 1-bromoheptafluoronaphthalene with BuLi and $ClSiMe_3$

2.5 M BuLi in hexanes (0.4 mL, 1.25 mmol) was diluted with ether (2.8 mL) and injected slowly into cold (-80 °C, bath) solution of **3** (102 mg, 0.30 mmol) in ether (6.5 mL). After 1 h at -80 °C chlorotrimethylsilane (0.10 mL, 2.57 mmol) was injected, solution was stirred 15–20 min and a saturated aqueous solution of water in ether (1 mL) (prepared from 5% HCl and ether, 1:4, v/v) was injected. The reaction mixture was allowed to warm to 22 °C, washed with brine (8 mL) and K₂CO₃, the organic phase was separated, the aqueous phase extracted with ether (2 × 4 mL), the merged extract was dried with MgSO₄. Evaporation of volatiles gave yellow oil (80 mg) consisted of **1** (0.81 mmol), and **6** (142 mmol) (GSMS and ¹⁹F NMR).

4.13. Reaction of 2-bromoheptafluoronaphthalene with magnesium

A flask equipped with a magnetic bar, septum and a reflux condenser topped with T-adapter connected with argon line and bubbler with conc. H₂SO₄ was flushed with argon and charged with magnesium turnings (63 mg, 2.6 mmol) and ether (6 mL). The solution of DBE (91 mg, 0.48 mmol) in ether (2 mL) was added and, after 5–7 min, the solution of **4** (513 mg, 1.54 mmol) in ether (4 mL) was injected within 10 min. The reaction mixture was refluxed with stirring for 2 h, and cooled to the room temperature. A probe of the mother liquid over magnesium was taken under dry argon atmosphere. The ¹⁹F NMR spectrum showed signals of $2-C_{10}F_7$ MgBr (0.42 mmol), ($2-C_{10}F_7$)₂Mg (0.21 mmol), **4** (0.09 mmol) and **2** (0.40 mmol). In next 4 h of refluxing, **4** disappeared and amounts of **16a**, **16b** and **2** were 0.52, 0.18 and 0.49 mmol, respectively.

In a similar manner, a reaction of **4** (656 mg, 1.97 mmol) with magnesium powder (83 mg, 3.41 mmol), and DBE (126 mg, 0.67 mmol) in ether (13 mL) gave $2-C_{10}F_7MgBr$ (0.73 mmol), ($2-C_{10}F_7)_2Mg$ (0.36 mmol), **4** (0.10 mmol) and **2** (0.68 mmol) after 2 h of refluxing

4.14. Reaction of 2-bromoheptafluoronaphthalene with ethylmagnesium bromide

A reactor (see above) was charged with **4** (274 mg, 0.82 mmol) in ether (1 mL), and 0.42 M EtMgBr in ether (2.0 mL, 0.84 mmol) was injected slowly under cooling of the reactor with cold water. The solution was stirred at 22 °C for 2 h. The ¹⁹F NMR spectrum showed signals of 2-C₁₀F₇MgBr (0.60 mmol), (2-C₁₀F₇)₂Mg (0.12 mmol) and trace of **2**. After dilution in half the ratio **16a**:**16b** was not changed.

4.14.1. 2-Heptafluoronaphthylmagnesium bromide 16a

 ^{19}F NMR (ether): $\delta=-90.37$ (dd, $^{4}J(\text{F}^1,\ \text{F}^8)=68$ Hz, $^{5}J(\text{F}^1,\ \text{F}^4)=24$ Hz, 1F, F^1), -108.10 (d, $^{3}J(\text{F}^3,\ \text{F}^4)=28$ Hz, 1F, F^3), -145.68 (ddd, $^{4}J(\text{F}^8,\ \text{F}^1)=68$ Hz, $^{3}J(\text{F}^8,\ \text{F}^7)=17$ Hz, $^{5}J(\text{F}^8,\ \text{F}^5)=17$ Hz, 1F, F^8), -149.10 (ddd, $^{4}J(\text{F}^5,\ \text{F}^4)=56$ Hz, $^{3}J(\text{F}^5,\ \text{F}^6)=14$ Hz, $^{5}J(\text{F}^5,\ \text{F}^8)=17$ Hz, 1F, F^5), -153.33 (ddd, $^{4}J(\text{F}^4,\ \text{F}^5)=56$ Hz, $^{5}J(\text{F}^4,\ \text{F}^1)=24$ Hz, $^{3}J(\text{F}^4,\ \text{F}^3)=28$ Hz, 1F, F^4), -159.94 (dd, $^{3}J(\text{F}^6,\ \text{F}^7)=18$ Hz, $^{3}J(\text{F}^7,\ \text{F}^8)=18$ Hz, $^{15}J(\text{F}^7,\ \text{F}^6)=18$ Hz, 1F, F^7).

4.14.2. Bis(2-heptafluoronaphthyl)magnesium 16b

 ^{19}F NMR (ether): $\delta=-90.73$ (dd, $^4J(\text{F}^1,\ \text{F}^8)=68\,\text{Hz},\ {}^5J(\text{F}^1,\ \text{F}^4)=25\,\text{Hz},\ 2F,\ F^1),\ -108.32$ (d, $^3J(\text{F}^3,\ \text{F}^4)=28\,\text{Hz},\ 2F,\ \text{F}^3),\ -146.49$ (ddd, $^4J(\text{F}^8,\ \text{F}^1)=68\,\text{Hz},\ {}^3J(\text{F}^8,\ \text{F}^7)=16\,\text{Hz},\ {}^5J(\text{F}^8,\ \text{F}^5)=16\,\text{Hz},\ {}^4J(\text{F}^8,\ \text{F}^6)=5\,\text{Hz},\ 2F,\ \text{F}^8),\ -149.14$ (ddd, $^4J(\text{F}^5,\ \text{F}^4)=59\,\text{Hz},\ {}^3J(\text{F}^5,\ \text{F}^6)=14\,\text{Hz},\ {}^5J(\text{F}^5,\ \text{F}^8)=16\,\text{Hz},\ {}^2J(\text{F}^5,\ \text{F}^8)=16\,\text{Hz},\ {}^2J(\text{F}^6,\ \text{F}^5)=56\,\text{Hz},\ {}^5J(\text{F}^4,\ \text{F}^5)=24\,\text{Hz},\ {}^3J(\text{F}^6,\ \text{F}^5)=16\,\text{Hz},\ {}^2J(\text{F}^4,\ \text{F}^5)=28\,\text{Hz},\ 2F,\ \text{F}^4),\ -160.12\,\text{(dd},\ {}^3J(\text{F}^6,\ \text{F}^7)=18\,\text{Hz},\ {}^3J(\text{F}^6,\ \text{F}^5)=14\,\text{Hz},\ 2F,\ \text{F}^6),\ -161.62\,\text{(dd},\ {}^3J(\text{F}^7,\ \text{F}^8)=16\,\text{Hz},\ {}^3J(\text{F}^7,\ \text{F}^6)=18\,\text{Hz},\ 2F,\ \text{F}^7).$

4.15. Reaction of 2-heptafluoronaphthylmagnesium derivatives, 2- $C_{10}F_7MgX$, with ClSiMe₃

4.15.1. The solution of $2-C_{10}F_7MgX$ (X = Br and $2-C_{10}F_7$) (from **4** (347 mg, 1.0 mmol), ether (5 mL) and 0.42 M EtMgBr in ether (4.8 mL, 2.0 mmol)) was stirred at 22 °C for 1 h and ClSiMe₃ (0.30 mL, 2.36 mmol) in THF (2.5 mL) was injected under cooling with cold water within 1 min

Formed white suspension was stirred for 2 h and hydrolyzed with 5% HCl (5 mL). The organic phase was separated, the aqueous phase extracted with ether (5 mL), the merged extract washed with brine and dried with MgSO₄. The solvent was evaporated, and brown oil was passed through a column with alumina (eluent petroleum ether (40–60 °C)). The solvent was removed on the evaporator to yield **5** (colorless oil) (255 mg, 78%).

4.15.2. The Grignard reagent (from **4** (513 mg, 1.54 mmol), magnesium (63 mg, 2.6 mmol), DBE (91 mg, 0.48 mmol) in ether (16 mL)) were refluxed for 6 h, and $ClSiMe_3$ (127 mg, 1.17 mmol) in ether (3 mL) was added

The reaction mixture was refluxed for 2 h. The ¹⁹F NMR spectrum showed resonances of **2** (0.49 mmol), **16a** (0.52 mmol), and **16b** (0.17 mmol). The further refluxing for 5 h gave a mixture of **2** (1.30 mmol), **16a** and **16b** (0.07 mmol) and **5** (0.24 mmol).

4.16. Formation of C_6F_5MgX (X = Br, C_6F_5) and its reaction with ClSiMe₃

A bottle (5 mL) equipped with a magnetic bar was sealed with AluCap®, flushed with argon and charged with C_6F_5Br (208 mg, 0.84 mmol) in ether (1 mL). Then a solution of 0.42 M EtMgBr in ether (2.0 mL, 0.84 mmol) was injected in portions under cooling of the reactor with cold water. The solution was stirred at 22 °C for 2 h. The ¹⁹F NMR spectrum showed signals of C_6F_5MgBr (0.57 mmol) and (C_6F_5)₂Mg (0.14 mmol). The reaction mixture was treated with ClSiMe₃ (0.2 mL) and stirred at 22 °C for 4 h. The ¹⁹F NMR spectrum showed signals of C_6F_5MgBr , (C_6F_5)₂Mg, $C_6F_5SiMe_3$ and C_6F_5H (10:4:1:3). In 50 h, resonances of C_6F_5MgX disappeared and $C_6F_5SiMe_3$ and C_6F_5H were present (10:8).

4.17. Reaction of 1-bromoheptafluoronaphthalene with magnesium

4.17.1. The solution of **3** (167 mg, 0.50 mmol) and DBE (37 mg, 0.20 mmol) in ether (1.5 mL) was added to magnesium (19 mg, 0.76 mmol) in ether (1.5 mL)

The stirred solution was kept at 36-40 °C and hydrolyzed to give **3** (0.36 mmol) and **1** (0.16 mmol) (19 F NMR).

4.17.2. A reactor (see above) was charged with magnesium (27 mg, 1.1 mmol) and ether (1.8 mL)

The solution of **3** (110 mg, 0.33 mmol), DBE (92 mg, 0.49 mmol) in ether (1.3 mL) was injected in portions and the reaction mixture was refluxed with stirring for 3 h. A probe of the mother liquid over magnesium was taken at dry argon atmosphere. The ¹⁹F NMR spectrum showed signals of $(1-C_{10}F_{7})_2$ Mg (0.10 mmol), **3** (0.04 mmol) and **1** (0.15 mmol). In next 2 h of refluxing **17b** (0.11 mmol), **3** (0.04 mmol) and **1** (0.18 mmol) were found.

4.18. Reaction of 1-bromoheptafluoronaphthalene with ethylmagnesium bromide

4.18.1. A flask equipped with a magnetic bar and septa was charged with 0.54 M EtMgBr in ether (1.0 mL, 0.54 mmol) cooled with ice water, and the solution of 3 (108 mg, 0.32 mmol) in ether (1 mL) was added with syringe

The solution was kept at 20 °C for 2 h. The ¹⁹F NMR spectrum showed signals of $1-C_{10}F_7$ MgBr and $(1-C_{10}F_7)_2$ Mg (10:1).

4.18.2. A flask equipped with a magnetic bar and septa was charged with the solution of **3** (111 mg, 0.33 mmol) in ether (1 mL), cooled with ice water, and 0.54 M EtMgBr in ether (0.50 mL, 0.27 mmol) was added with a syringe

The solution was stirred at 20 °C for 2 h. The ¹⁹F NMR spectrum showed signals of $1-C_{10}F_7MgBr$ (0.20 mmol), $(1-C_{10}F_7)_2Mg$ (0.04 mmol) and residual **3** (0.07 mmol).

4.18.2.1. 1-Heptafluoronaphthylmagnesium bromide **17a**. ¹⁹F NMR (ether): $\delta = -106.8$ (br, $\omega_{\frac{1}{2}} = 98$ Hz, 1F, F²), -143.0 (br, $\omega_{\frac{1}{2}} = 109$ Hz, 1F, F⁸), -145.9 (d, ⁴J(F⁴, F⁵) = 52 Hz, 1F, F⁴), -148.1 (d, ⁴J(F⁵, F⁴) = 52 Hz, 1F, F⁵), -159.2 (dddd, ³J(F³, F²) = 35 Hz, ³J(F³, F⁴) = 15 Hz, ⁵J(F³, F⁵) = 7 Hz, ⁷J(F³, F⁷) = 8 Hz, 1F, F³), -161.4 (dd, ³J(F, F⁴) = 15 Hz, ⁵J(F³, F⁵) = 7 Hz, ⁷J(F³, F⁷) = 8 Hz, 1F, F³), -161.4 (dd, ³J(F, F⁴) = 15 Hz, ⁵J(F⁴) = 15 Hz, ⁴J(F⁴) = 15

F) = 20 Hz, ${}^{3}J(F, F) = 20$ Hz, 1F) and -161.6 (dd, ${}^{3}J(F, F) = 20$ Hz, ${}^{3}J(F, F) = 20$ Hz, 1F) (F⁶ and F⁷).

4.18.2.2. Bis(1-heptafluoronaphthyl)magnesium **17b**. ¹⁹F NMR (ether): $\delta = -106.90 (d, {}^{3}J(F^{2}, F^{3}) = 37 Hz, 2F, F^{2}), -142.2 (dd, {}^{3}J(F^{8}, F^{7}) = 15 Hz, {}^{5}J(F^{8}, F^{5}) = 15 Hz, 2F, F^{8}), -146.1 (d, {}^{4}J(F^{4}, F^{5}) = 52 Hz, 2F, F^{4}), -148.3 (dddd, {}^{4}J(F^{5}, F^{4}) = 52 Hz, {}^{3}J(F^{5}, F^{6}) = 15 Hz, {}^{5}J(F^{5}, F^{8}) = 15 Hz, {}^{4}J(F^{5}, F^{7}) = 6 Hz, 2F, F^{5}), -159.3 (dddd, {}^{3}J(F^{3}, F^{2}) = 35 Hz, {}^{3}J(F^{3}, F^{4}) = 14 Hz, {}^{7}J(F^{3}, F^{7}) = 7 Hz, {}^{6}J(F^{3}, F^{6}) = 7 Hz, 2F, F^{3}), -161.5 (dd, {}^{3}J(F^{6}, F^{5}) = 19 Hz, {}^{3}J(F^{6}, F^{7}) = 19 Hz, 2F, F^{6}), -161.6 (dd, {}^{3}J(F^{7}, F^{8}) = 19 Hz, {}^{3}J(F^{7}, F^{6}) = 19 Hz, 2F, F^{7}).$

4.19. Reaction of 1-heptafluoronaphthylmagnesium derivatives, 1- $C_{10}F_7MgX$, with ClSiMe₃

The solution of $1-C_{10}F_7MgX$ (X = Br and $1-C_{10}F_7$) (from **3** (105 mg, 0.31 mmol), ether (1 mL) and 0.54 M EtMgBr in ether (1 mL, 0.54 mmol)) was stirred at 22 °C for 1 h and the flask was cooled with ice water. Chlorotrimethylsilane (0.06 mL, 0.5 mmol) in THF (1 mL) was injected within 1 min. The formed white suspension was stirred for 2 h. After hydrolysis with 5% HCl (5 mL) the organic phase was separated, the aqueous phase extracted with ether (5 mL) and the merged extract dried with MgSO₄. Evaporation of volatiles gave **6** and **1** (4:1) (83 mg).

4.19.1. 1-Trimethylsilylheptafluoronaphthalene 6

 ^{1}H NMR (CCl₄): $\delta = 0.45$ (d 3.3 Hz, d 4.7 Hz, 9H). ^{19}F NMR (CCl₄): $\delta = -111.8$ (m, 1F, F²), -133.9 (m, 1F, F⁸), -138.6 (ddd, $^{4}J(\text{F}^4, \text{F}^5) = 66$ Hz, $^{3}J(\text{F}^4, \text{F}^3) = 15$ Hz, $^{5}J(\text{F}^4, \text{F}^8) = 15$ Hz, 1F, F⁴), -146.1 (dddd, $^{4}J(\text{F}^5, \text{F}^4) = 66$ Hz, $^{3}J(\text{F}^5, \text{F}^6) = 19.6$ Hz, $^{5}J(\text{F}^5, \text{F}^8) = 12.5$ Hz, $^{5}J(\text{F}^5, \text{F}^3) = 5.6$ Hz, $^{4}J(\text{F}^5, \text{F}^7) = 3$ Hz, 1F, F⁵), -156.7 (ddd, $^{3}J(\text{F}^7, \text{F}^6) = 19.4$ Hz, $^{3}J(\text{F}^7, \text{F}^8) = 19.4$ Hz, $^{7}J(\text{F}^7, \text{F}^3) = 8.4$ Hz, 1F, F⁷), -157.6 (tm 19 Hz) and -157.8 (tm 19 Hz) (2F, F³ and F6). ^{19}F NMR (ether + THF): $\delta = -110.9$ (m, 1F, F²), -132.0 (m, 1F, F⁸), -138.3 (dddd, $^{4}J(\text{F}^4, \text{F}^5) = 66$ Hz, $^{3}J(\text{F}^4, \text{F}^3) = 16.5$ Hz, $^{5}J(\text{F}^4, \text{F}^8) = 12.8$ Hz, $^{5}J(\text{F}^4, \text{F}^6) = 4$ Hz, $^{4}J(\text{F}^4, \text{F}^2) = 4$ Hz, 1F, F⁴), -146.1 (dddd, $^{4}J(\text{F}^5, \text{F}^3) = 5.9$ Hz, $^{4}J(\text{F}^5, \text{F}^7) = 4$ Hz, 1F, F⁵), -156.5 (dddd, $^{3}J(\text{F}^7, \text{F}^3) = 5.9$ Hz, $^{4}J(\text{F}^5, \text{F}^7) = 4$ Hz, 1F, F⁵), -156.5 (dddd, $^{3}J(\text{F}^7, \text{F}^6) = 19.9$ Hz, $^{3}J(\text{F}^7, \text{F}^8) = 18.1$ Hz, $^{7}J(\text{F}^7, \text{F}^3) = 8.6$ Hz, $^{4}J(\text{F}^7, \text{F}^5) = 4$ Hz, 1F, F⁷), -157.6 (tm, 20 Hz) and -157.7 (tm, 20 Hz) (2F, F³ and F⁶). ^{29}S i {H} NMR (CCl_4): $\delta = -0.08$ (d, 3 Hz, d, 7 Hz). Found: M/z^+ 326.0370. C_{13}H_9\text{F}7si. Calc.: 326.0361.

4.20. Reaction of $1-C_{10}F_7Br$ and C_6F_5Br with ethylmagnesium bromide

A flame-dried flask equipped with a magnetic bar and septa was flushed with argon and charged with $1-C_{10}F_7Br$ (104 mg, 0.31 mmol) and C_6F_5Br (82 mg, 0.33 mmol) in ether (3 mL). Then 0.42 M EtMgBr in ether (2.7 mL, 1.1 mmol) was injected under cooling of the flask with cold water. The solution was stirred at 22 °C for 2 h. The ¹⁹F NMR spectrum showed signals of $1-C_{10}F_7MgBr$, $(1-C_{10}F_7)_2Mg$, C_6F_5MgBr , $(C_6F_5)_2Mg$ and, probably, $1-C_{10}F_7MgC_6F_5$ in 10:1:10:1:1 molar ratio. Signals assigned to $1-C_{10}F_7MgEt$ or C_6F_5MgEt were not detected.

4.20.1. 1-Heptafluoronaphthyl(pentafluorophenyl)magnesium

¹⁹F NMR (ether): $\delta = -107.30$ (d, ³*J*(F², F³) = 34 Hz, 1F, F²), -144.26 (dd, ³*J*(F⁸, F⁷) = 16 Hz, ⁵*J*(F⁸, F⁵) = 16 Hz, 1F, F⁸), -146.30 (d, ⁴*J*(F⁴, F⁵) = 56 Hz, 1F, F⁴), -158.80 (t, ³*J*(F^{para}, F^{meta}) = 18 Hz, 1F,

 F^{para}), -148.0, -159.2, -161.8, -113.1, and -162.0 (1 F^5 , 1 F^3 , 1 F^6 , 1 F^7 , 2 F^{ortho} , and 2 F^{meta} , respectively).

4.21. Reaction of $2-C_{10}F_7Br$ and C_6F_5Br with ethylmagnesium bromide

0.54 M EtMgBr in ether (1.6 mL, 0.86 mmol) was injected into solution of $2-C_{10}F_7Br$ (108 mg, 0.32 mmol) and C_6F_5Br (81 mg, 0.32 mmol) in ether (3 mL) and the solution was stirred at 22 °C for 2 h. The ¹⁹F NMR spectrum showed signals of $2-C_{10}F_7MgBr$, (2- $C_{10}F_7)_2Mg$, C_6F_5MgBr , ($C_6F_5)_2Mg$ and, probably, $2-C_{10}F_7MgC_6F_5$ in 10:2:10:2:2 molar ratio. Signals assigned to $1-C_{10}F_7MgEt$ or C_6F_5MgEt were not detected.

4.21.1. 2-Heptafluoronaphthyl(pentafluorophenyl))magnesium

¹⁹F NMR (ether): $\delta = -90.66$ (dd, ⁴*J*(F¹, F⁸) = 67 Hz, ⁵*J*(F¹, F⁴) = 24 Hz, 1F, F¹), -108.26 (d, ³*J*(F³, F⁴) = 24 Hz, 1F, F³), -145.6 (ddd, ⁴*J*(F⁸, F¹) = 67 Hz, ³*J*(F⁸, F⁷) = 18 Hz, ⁵*J*(F⁸, F⁵) = 17 Hz, 1F, F⁸), -149.05 (ddd, ⁴*J*(F⁵, F⁴) = 56 Hz, ³*J*(F⁵, F⁶) = 18 Hz, ⁵*J*(F⁵, F⁸) = 17 Hz, 1F, F⁵), -153.3 (ddd, ⁴*J*(F⁴, F⁵) = 56 Hz, ⁵*J*(F⁴, F¹) = 26 Hz, ³*J*(F⁴, F³) = 26 Hz, 1F, F⁴), -158.36 (dd, ³*J*(F⁶, F⁷) = 18 Hz, ³*J*(F⁶, F⁵) = 14 Hz, 1F, F⁶ or F⁷), -161.45 (dd, ³*J*(F⁷, F⁸) = 18 Hz, ³*J*(F⁷, F⁶) = 18 Hz, 1F, F⁷), -113.28 (m, 2F^{ortho}), -160.08 (t, ³*J*(F^{para}, F^{meta}) = 18 Hz, 1F^{para}), -162.0 (m, 2F^{meta}).

Acknowledgements

The work was supported by the Ministry of Science and Higher Education of the Russian Federation and the Russian Foundation for Basic Research (project No. 16-29-10762 ofi_m). The authors also would like to acknowledge the Multi-Access Chemical Research Center SB RAS (Novosibirsk) for spectral and analytical measurements.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jorganchem.2019.120889.

References

- N.Y. Adonin, V.V. Bardin, U. Florke, H.J. Frohn, Z. Anorg. Allg. Chem. 631 (2005) 2638–2646.
- [2] P.A. Morken, D.J. Burton, in: fourth ed., in: B. Baasner, H. Hagemann, J.C. Tatlow (Eds.), Houben-Weyl Methods of Organic Chemistry. Organo-Fluorine Compounds, 10b1, Thieme, Stuttgart, 2000, pp. 465–480. E10a.
- [3] I.L. Knunyants, G.G. Yakobson (Eds.), Syntheses of Fluoroorganic Compounds, Springer., 1985, pp. 113–114.
- [4] N.N. Vorozhtsov Jr., V.A. Barkhash, N.G. Ivanova, S.A. Anichkina, O.I. Andreevskaya, Dokl. Akad. Nauk SSSR 159 (1964) 125–128.
- (a) O.I. Osina, V.D. Shteingarts, J. Org. Chem. USSR 10 (1974) 329–334;
 (b) O.I. Osina, V.D. Shteingarts, Zh. Org. Khim. 10 (1974) 329–334.
- 6] G.M. Brooke, J.M. Meara, J. Fluorine Chem. 50 (1990) 229–242.
- [7] D.J. Morrison, S.D. Riegel, W.E. Piers, M. Parvez, R. McDonald, Chem. Commun. 27 (2006) 2875–2877.
- [8] W.L. Respess, C. Tamborski, J. Organomet. Chem. 18 (1969) 263-274.
- [9] L.T. Li, T.J. Marks, Organometallics 17 (1998) 3996–4003.
- [10] J. Burdon, H.S. Gill, I.W. Parsons, J. Chem. Soc. Perkin Trans. 1 (1980) 2494–2496.
- [11] J. Burdon, H.S. Gill, I.W. Parsons, J.C. Tatlow, J. Fluorine Chem. 24 (1984) 263–268.
- [12] R.J. Harper, E.J. Soloski, C. Tamborski, J. Org. Chem. 29 (1964) 2385–2389.
- [13] C. Tamborski, E.J. Soloski, J. Org. Chem. 31 (1966) 743-745.
- [14] D.F. Evans, M.S. Khan, J. Chem. Soc. A (1967) 1643-1649.
- [15] B. Gething, C.R. Patrick, J.C. Tatlow, J. Chem. Soc. (1962) 186-190.