Ligandenaustauschreaktionen an Kupfer(II)-Komplexen mit Harnstoffliganden: Synthesen, Strukturen, EPR-Spektroskopie

Ligand Exchange Reactions of Copper(II) Complexes of Urea Type Ligands: Syntheses, Structures, EPR Spectroscopy

Sina Gruschinski^[a] und Axel Rodenstein*^[b]

Professor Reinhard Kirmse zum 65. Geburtstag gewidmet

Keywords: Copper; Crystal structures; EPR spectroscopy; Ligand exchange reactions; Urea type ligands

Abstract. The synthesis of copper(II) and nickel(II) complexes of *N*,*N*-diethyl-*N*'-benzoylurea HL¹, *N*,*N*-diethyl-*N*'-(2,6-difluorbenzoyl)urea HL², *N*,*N*-diethyl-*N*'-benzoylthiourea HL³, *N*,*N*-diethyl-*N*'-(3,4,5-trimethoxybenzoyl)thiourea HL⁴ and *N*,*N*-diethyl-*N*'-benzimidoylthiourea H₂L⁵ and the crystal structures of HL², [Cu(L²)₂] and [Ni(HL⁵)₂] are reported. All Cu^{II} complexes were investigated by EPR spectroscopy in liquid and frozen solutions. The Cu^{II} complex [Cu(HL⁵)₂] was additionally studied as diamagnetically diluted powder system

Einleitung

Kupfer(II)-Komplexe mit *N*-Acylchalkogenoharnstoffliganden sind in der Literatur häufig beschrieben. Im Fokus der Untersuchungen standen Synthese und allgemeine Charakterisierung,^[1–4] molekulare Strukturen,^[3–8] EPR-Parameter und magnetische Eigenschaften,^[3,4,8–10] Massenspektren,^[11] XPS-Spektren, elektrochemische^[12,13] und biologische Eigenschaften.^[14]

Die Kupfer(II)-Komplexe 1 liegen überwiegend als verzerrt quadratisch-planare, neutrale Bischelate in *cis*-Anordnung vor. Diese strukturellen Eigenschaften haben auch Nickel(II)-, Pal-

- E-Mail: axel.rodenstein@fu-berlin.de
- [a] Universität Leipzig Institut für Anorganische Chemie Johannisallee 29 04103 Leipzig, Germany
- [b] Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstr. 34–36 14195 Berlin, Germany

 $[Ni(HL^5)_2] / [Cu(HL^5)_2]$ (99:1). The calculation of electron spin-density distribution in the first coordination sphere of $[Cu(HL^5)_2]$ is represented, based on well-resolved ^{63,65}Cu and ¹⁴N hyperfine structure (*hfs*) couplings. Ligand exchange reactions of Cu^{II} complexes of urea type ligands HL^{1-4} and H_2L^5 were studied by means of EPR spectroscopy in liquid solutions. Statistical and quantitative runs were derived from concentration-dependent *hfs* line intensities.

ladium(II)- und Platin(II)-Komplexe dieser Ligandenklasse. Eine *trans*-Anordnung der Chelatliganden wurde bisher nur bei drei Verbindungen, dem Bis-[*N*,*N*-diethyl-*N*'-(*p*-nitrobenzoyl) thioureato]kupfer(II),^[10] Bis[*N*-pyrrolidin-*N*'-(*o*-chlorbenzoyl) thioureato]kupfer(II)^[15] und Bis[*N*,*N*-dibutyl-*N*'-naphthoylthioureato]platin(II),^[16] kristallographisch bestätigt.

Das Vorliegen dynamischer *cis-/trans*-Isomerie-Gleichgewichte in Lösungen wurde hingegen sehr oft beobachtet, wobei stets ein größerer Anteil des *cis*-Komplexes nachgewiesen wurde.^[10,17]

Die Kupfer(II)-Komplexe der *N*-Acylharnstoffe (HL¹, HL²), *N*-Acylthioharnstoffe (HL³, HL⁴) und des Thio-harnstoffderivats H₂L⁵ weisen ähnlich wie Kupfer(II)-Komplexe der Dithio- und Diselenolate bzw. -carbamate ein sehr schnelles Ligandenaustauschverhalten auf.^[18–28] Im Rahmen dieser Arbeit wurden Ligandenaustauschreaktionen dieser Komplexe in flüs-

WILEY CONLINE LIBRARY 1179

^{*} Dr. A. Rodenstein Tel: +49-30-838-52461

ARTICLE

sigen Lösungen EPR-spektroskopisch verfolgt und die Spektren basierend auf der Konzentrationsabhängigkeit der Linienintensität ausgewertet.

Über die erhaltenen 63,65 Cu- und 14 N-Hyperfeinstrukturtensoren werden Aussagen zur Spindichteverteilung von [Cu(HL⁵)₂], eingebaut im diamagnetischen Nickel(II)-Komplex [Ni(HL⁵)₂], getroffen.

Weiterhin berichten wir die Ergebnisse der Röntgenkristallstrukturanalyse des *N*-Acylharnstoffs HL^2 , des Kupfer(II)-Komplexes[Cu(L²)₂]unddesNickel(II)-Komplexes[Ni(HL⁵)₂], wobei letzterer in der eher seltenen *trans*-Form kristallisiert.

Ergebnisse und Diskussion

Die Darstellung der Liganden HL^1 und HL^2 erfolgte durch Umsetzung des entsprechenden Benzoylchlorids mit *N*,*N*-Diethylharnstoff und Triethylamin in Aceton. Diese Liganden wurden mit 0.5 Äquivalenten Kupfer(II)-acetat-Monohydrat versetzt, wobei die Komplexe [Cu(L¹)₂] und [Cu(L²)₂] als blaue Feststoffe erhalten wurden, die aus Chloroform umkristallisiert werden konnten.

Die Darstellung der Liganden HL^3 und HL^4 und deren Komplexe $[Cu(L^3)_2]$ und $[Cu(L^4)_2]$ erfolgte nach literaturbekannten Vorschriften.^[1,29]

Die Synthese des Benzimidoylthioharnstoffliganden H_2L^5 und der Komplexe [Cu(HL⁵)₂] und [Ni(HL⁵)₂] erfolgte in Anlehnung an die Vorschriften von *Beyer* et al.^[30,31] Der Kupfer(II)-Komplex ist in Lösungen nur wenige Minuten stabil und konnte daher nicht in kristalliner Form erhalten werden. Der Nickel(II)-Komplex kristallisiert in orangen Primen. Es gelang außerdem, ein diamagnetisch verdünntes System bestehend aus ca. 1% [Cu(HL⁵)₂] und ca. 99% [Ni(HL⁵)₂] zu präparieren. Die erhaltenen Pulverproben erwiesen sich als geeignet für die EPR-Experimente.

Molekülstruktur von N,N-Diethyl-N'-(2,6-difluorbenzoyl)harnstoff HL²

Der Ligand HL² kristallisiert monoklin in der Raumgruppe $P2_1/c$ mit vier Formeleinheiten pro Elementarzelle. Die Verbindung liegt in der Ketoform vor, wobei das zentrale Stickstoffatom N1 protoniert ist (Abbildung 1). Die räumliche Struktur entspricht annähernd einer E,Z'-Konfiguration mit Torsionswinkeln von τ (O2C8N1C7) = 122.5(1)° und τ (O1C7N1C8) = 11.9(2)°.

Wasserstoffbrückenbindungen zwischen Wasserstoff- und Fluoratomen, wie für vergleichbare mono- und difluorsubstituierte Benzoylthioharnstoffe gefunden,^[32] treten auch in dieser Struktur auf. Der kürzeste H···F-Abstand in diesem Molekül beträgt für H1A···F1' = 257(2) pm, der entsprechende Winkel für N1–H1A···F1' = 97(1)°. Das enspricht den Kriterien einer intramolekularen H···F-Wasserstoffbrückenbindung ausgehend von einer N–H-Gruppe zu einem an einem *sp*²-hybridisierten Kohlenstoffatom gebundenen Fluoratom.^[33]

Abbildung 1. Molekülstruktur von HL². Ellipsoidenwahrscheinlichkeit 50%. Ausgewählte Bindungslängen /pm und -winkel /°: C7–N1 136.3(2); C7–O1 121.1(1); C8–N1 141.8(1); C8–N2 132.9(2); C8–O2 123.7(1); O1–C7–N1 124.6(1); N1–C8–N2 119.1(1); N1–C8–O2 117.5(1); O2–C8–N2 123.4(1); C7–N1–H1A 116(1); C8–N1–H1A 112(1); H1A···F1' 257(2); N1–H1A···F1' 97(1).

Molekülstruktur von Bis[N,N-diethyl-N'-(2,6-difluorbenzoyl)ureato]kupfer(II) [Cu(L²)₂]

Das Kupfer(II)-Chelat $[Cu(L^2)_2]$ kristallisiert triklin in der Raumgruppe $P\bar{1}$ mit zwei Formeleinheiten pro Elementarzelle. Es handelt sich um ein neutrales Bischelat mit zwei zweizähnigen Liganden, die in *cis*-Anordnung über die Sauerstoffatome koordiniert sind. Die Koordinationsgeometrie am Kupferatom ist quadratisch-planar mit einem Koordinationswinkel Cu10102/Cu103O4 von 5.9(4) °. Durch die Ausbildung des Chelatrings kommt es im Vergleich zur Molekülstruktur von HL² zu einer deutlichen Verlängerung der Bindungen C7–O1 und C8–O2 bzw. C27–O3 und C28–O4 und zu einer Verkürzung der Bindungen C7–N1 und C8–N1 bzw. C27–N3 und C28–N3. Diese Bindungslängen nähern sich an, was auf eine π -Elektronendelokalisierung in den Chelatringen hinweist (Abbildung 2).

Abbildung 2. Molekülstruktur von $[Cu(L^2)_2]$. Ellipsoidenwahrscheinlichkeit 50%. Ausgewählte Bindungslängen /pm und -winkel /°: C7–N1 113.1(3); C7–O1 128.0(3); C8–N1 137.1(3); C8–O2 127.3(1); C27–N3 130.4(3); C27–O3 127.8(3); C28–N3 138.3(3); Cu1–O1 191.3(2); Cu1–O2 190.7(2); Cu1–O3 191.2(2); Cu1–O4 190.5 (2); O1–C7–N1 130.6(2); O2–C8–N1 117.8(2); O3–C27–N3 131.2(2); O4–C28–N3 126.7(2); C7–N1–C8 129.5(2); C27–N3–C28 120.3(2); O1–Cu1–O2 91.9(1); O2–Cu1–O4 89.3(1); O3–Cu1–O4 91.9(1); O3–Cu1–O1 87.2(1); Cu1–O1–C7 123.5(2); Cu1–O2–C8 125.5(2); Cu1–O3–C27 123.3(2); Cu1–O4–C28 125.9(2).

Molekülstruktur von Bis[N,N-diethyl-N'-benzimidoylthioureato]nickel(II) [Ni(HL⁵)₂]

Der Nickel(II)-Komplex [Ni(HL⁵)₂] kristallisiert in der triklinen Raumgruppe $P\bar{1}$ mit zwei symmetrieunabhängigen Formeleinheiten pro Elementarzelle. Der Komplex hat die Molekülsymmetrie C_i und liegt ebenfalls als Neutralchelat vor, wobei die einfach deprotonierten Liganden zweizähnig an das Nickelatom koordinieren. Daraus ergibt sich eine ideale quadratisch-planare Geometrie. Interessanterweise koordinieren die Chelatliganden in der für diese Substanzklasse eher seltenen trans-Anordnung (Abbildung 3).

Abbildung 3. Molekülstruktur von [Ni(HL⁵)₂]. Ellipsoidenwahrscheinlichkeit 50%. Ausgewählte Bindungslängen /pm und -winkel /°: C7-N1 133.6(4); C7-N3 131.4(4);C8-N1 133.2(4); C8-S1 173.0(3); C19-N4 133.4(4); C19-N6 131.6(4); C20-N4 133.2(4); C20-S2 173.1(3); Ni1-N3 184.9(3); Ni1-S1 216.8(1); Ni2-N6 185.3(3); Ni2-S2 215.8(1); N1-C7-N3 128.2(3); N1-C8-S1 127.1(3); N4-C19-N6 127.7(3); N4-C20-S2 127.7(2); C7-N1-C8 124.6(3); C19-N4-C20 124.6(2); Ni1-N3-C7 135.1(2); Ni1-S1-C8 111.3(1); Ni2-N6-C19 135.3(3); Ni2-S2-C20 110.8(1); N3-Ni1-S1 93.0(1); N3-Ni1-S1' 87.0(1); N3'-Ni1-S1' 93.0(1); N3'-Ni1-S1' 87.0(1); N6-Ni2-S2 93.2(1); N6-Ni2-S2' 86.8(1); N6'-Ni2-S2' 93.2(2); N6'-Ni2-S2 86.8(1).

EPR-spektroskopische Untersuchungen

Die Kupfer(II)-Komplexe [$Cu(L^1)_2$], [$Cu(L^2)_2$], [$Cu(L^3)_2$], $[Cu(L^4)_2]$ und $[Cu(HL^5)_2]$ wurden in flüssiger (T = 298 K) und gefrorener (T = 8 K) Chloroform-Lösung im X-Band untersucht. Der Komplex [Cu(HL⁵)₂], eingebaut im diamagnetischen Nickel(II)-Komplex [Ni(HL⁵)₂] (Cu:Ni wie 1:99%), wurde zusätzlich als Pulverprobe im Q-Band EPR-spektroskopisch charakterisiert. Abbildung 4 zeigt repräsentativ die X-Band-EPR-Spektren von $[Cu(L^1)_2]$, $[Cu(L^3)_2]$ und $[Cu(HL^5)_2]$ in Chloroform bei Raumtemperatur. In den Raumtemperaturspektren werden gut aufgelöste ^{63,65}Cu-Hyperfeinstrukturlinienquartetts (I (63,65 Cu) = 3/2) beobachtet. Die 63,65 Cu-Hyperfeinstruktur-signale von [Cu(HL⁵)₂] spalten aufgrund der Wechsel-wirkung des ungepaarten Elektrons mit den zwei äquivalenten ¹⁴N-Kernen ($I(^{14}N) = 1$) zusätzlich in ¹⁴N-Hyperfeinstrukturlinienquintetts mit dem Intensitäts-verhältnis 1:2:3:2:1 auf. Aufgrund der ausgeprägten Abhängigkeit der Linienbreite vom $m_I(Cu)$ -Wert ist die Auflösung bei den Hochfeldsignalen sehr gut beobachtbar. Die isotropen Spektrenparameter sind in Tabelle 1 angegeben.

Abbildung 4. X-Band-EPR-Spektrum von (a) $[Cu(L^1)_2]$, (b) $[Cu(L^4)_2]$, (c) [Cu(HL⁵)₂] (experimentell) und (d) [Cu(HL⁵)₂] (simuliert). Lösungsmittel: Chloroform. T = 298 K.

Die Tieftemperaturspektren von $[Cu(L^1)_2]$, $[Cu(L^2)_2]$, $[Cu(L^3)_2]$ und $[Cu(L^4)_2]$ weisen axiale Symmetrie für die g-Tensoren und die 63,65 Cu-Hyperfeinstrukturtensoren A^{Cu} aus (Tabelle 1). Die Auswertung der EPR-Spektren von [Cu(HL⁵)₂] in gefrorener Lösung und als diamagnetisch verdünnte Pulverprobe ist nur durch Spektrensimulation möglich, da es aufgrund der ¹⁴N-Hyperfeinstrukturaufspaltung und des Cu-Isotopeneffekts zu zahlreichen Linienüberlagerungen vor allem im Hochfeldbereich des Spektrums kommt. Abbildung 5 zeigt das experimentelle und das nach zahlreichen Spektrensimulationen erhaltene O-Band-EPR-Pulverspektrum. Die ¹⁴N-Aufspaltung im Tieffeldbereich entspricht einem Hauptwert des ¹⁴N-Tensors A^N. Die Auswertung der ¹⁴N-Aufspaltungen im Hochfeldbereich ist nur durch Spektrensimulation zugänglich. Die beste Übereinstimmung zwischen dem experimentellen und simulierten Spektrum wurde für rhombische Tensoren g, A^{Cu} und einem axial-symmetrischen Tensor A^N erhalten. Alle EPR-Spektren wurden mit dem nachstehenden Spin-Hamilton-Operator (Gleichung (1)) ausgewertet bzw. simuliert:

$$H_{\rm sp} = \mu_{\rm B} B_0 \cdot g \cdot S + S \cdot A^{\rm Cu} \cdot I^{\rm Cu} - \mu_{\rm N} B_0 \cdot I^{\rm Cu} + \sum_{i=1}^2 S \cdot A^{N_i} \cdot I^{N_i} - \sum_{i=1}^2 \mu_{\rm N} B_0 \cdot I^{N_i}$$
(1)

Die ermittelten Tensorhauptwerte sind in Tabelle 1 aufgelistet.

Die erhaltenen Hauptwerte der Tensoren A^{Cu} und A^N können zur Bestimmung der Spindichten an den Kupfer- und Stickstoffatomen verwendet werden. Im Grundzustand befindet sich das ungepaarte Elektron im folgenden antibindenden Molekülorbital (x,y-Achsen des Molekülkoordinatensystems entlang der Cu-N,S-Bindungen):

$$\Psi(\mathbf{A}_2) = \alpha \left| d_{xy} \right\rangle - \frac{\alpha_N}{\sqrt{2}} \left(-\sigma^1 + \sigma^2 \right) - \frac{\alpha_S}{\sqrt{2}} \left(-\sigma^3 + \sigma^4 \right).$$
⁽²⁾

wobei a, $a_{\rm S}$ und $a_{\rm N}$ die MO-Koeffizienten und $\sigma^{\rm i}$ die entsprechenden s/p-Hybridorbitale der S- bzw. N-Donoratome repräsentieren, die aus den s- und p-Orbitalen des Stickstoffs bzw. des Schwefels gebildet werden:

$$\sigma^{i} = n \cdot (p^{i}) \pm \sqrt{1 - n^{2}} \cdot (s^{i}), \qquad (3)$$

n ist der Hybridisierungsgrad.

Die individuellen Spindichten in den *s*- und *p*-Orbitalen C_s^2 und C_p^2 lassen sich aus den isotropen und dipolaren experimentellen Kopplungskonstanten A_{\exp}^{iso} und A_{\exp}^{dip} wie folgt berechnen:

$$C_s^2 = \frac{A_{exp}^{\rm iso}}{A_{\rm theo}^{\rm iso}} \text{ bzw. } C_p^2 = \frac{A_{exp}^{\rm dip}}{A_{\rm theo}^{\rm dip}}.$$
(4)

 A_{\exp}^{dip} (N–2*p*) wird dabei über die Beziehung $A_{\exp}^{dip} = (A_1^N - A_{iso}^N)$ erhalten. Die theoretischen Werte der Kopplungskonstanten wurden von *Morton* und *Preston* für den Fall berechnet, in dem das ungepaarte Elektron zu 100 % im entsprechenden Orbital lokalisiert ist.^[34] Sie betragen:

Abbildung 5. Experimentelles und simuliertes Q-Band-EPR-Pulverspektrum des diamagnetisch verdünnten Systems $[Cu(HL^5)_2] / [Ni(HL^5)_2]$ bei T = 298 K.

$$A_{\text{theo}}^{\text{iso}} (\text{Cu} - 4s) = 1998.0 \times 10^{-4} \text{ cm}^{-1}$$
 (5)

$$A_{\text{theo}}^{\text{dip}} (\text{Cu} - 3d) = 399.0 \times 10^{-4} \text{ cm}^{-1}$$
 (6)

$$A_{\text{theo}}^{\text{iso}} (N - 2s) = 604.0 \times 10^{-4} \text{ cm}^{-1}$$
 (7)

$$A_{\text{theo}}^{\text{dip}}(N-2p) = 46.3 \times 10^{-4} \text{ cm}^{-1}$$
 (8)

Der MO-Koeffizient a_N^2 und der Hybridisierungsgrad *n* wird über folgende Korrelationen berechnet:

$$C_{s,N}^{2} = \left(\frac{\alpha_{N}}{\sqrt{2}}\right)^{2} \cdot (1-n^{2}) \text{ und } C_{p,N}^{2} = \left(\frac{\alpha_{N}}{\sqrt{2}}\right)^{2} \cdot n^{2}.$$
(9)

Für das Kupferatom ergibt sich der MO-Koeffizient a^2 aus der Cu-Hyperfeinstruktur über die dargestellten Gleichungen (10) ($\Delta g_i = g_i - g_e$) näherungsweise zu 0.58.

$$A_{1} = A_{\text{theo}}^{\text{dip}} \left(-\kappa \alpha^{2} + \frac{2}{7} \alpha^{2} + \Delta g_{1} - \frac{3}{14} \Delta g_{2} \right)$$

$$A_{2} = A_{\text{theo}}^{\text{dip}} \left(-\kappa \alpha^{2} + \frac{2}{7} \alpha^{2} + \Delta g_{2} - \frac{3}{14} \Delta g_{1} \right)$$

$$A_{3} = A_{\text{theo}}^{\text{dip}} \left(-\kappa \alpha^{2} - \frac{4}{7} \alpha^{2} + \Delta g_{3} + \frac{3}{14} \Delta g_{1} + \frac{3}{14} \Delta g_{2} \right)$$
(10)

Die ermittelten Werte für die individuellen Spindichten, MO-Koeffizienten und der Hybridisierungsgrad sind in Tabelle 2 zusammengestellt.

Tabelle 2. Experimentell ermittelte Spindichten C_i^2 und MO-Koeffizienten a_i^2 für Cu und N sowie der *s/p*-Hybridisierungsgrad für die N-Donoratome.

	$a_{\rm Cu}^2$	$C_{\rm s,N}^{2}$	$C_{\rm p,N}^{2}$	$a_{\rm N}^{2}$	п
$[Cu(HL^5)_2]$	0.58	0.025	0.019	0.088	0.66

Es zeigt sich, dass in dem Cu^{II}-Komplex knapp 58% der Spindichte am Kupferatom lokalisiert ist. Etwa jeweils 9% der Spindichte entfallen auf die N-Donoratome. Der N-2*s*/2*p*-Hybridisierungsgrad *n* liegt bei 0.66 und entspricht damit dem einer idealen *sp*²-Hybridisierung. Dabei muss aber berücksichtigt werden, dass bei der Berechnung von *n* der Wert von

Tabelle 1. EPR-Parameter der Kupfer(II)-Komplexe [$Cu(L^{1-4})_2$] und [$Cu(HL^5)_2$].

	$[Cu(L^1)_2]$	$[Cu(L^2)_2]$	$[Cu(L^3)_2]$	$[Cu(L^4)_2]$	[Cu(HL ⁵) ₂]
g_0	2.128 ^{a)}	2.132 ^{a)}	2.081 ^{a) [1]}	2.127 ^{a)}	2.068 ^{a)}
81	2.273 ^{b)}	2.308 ^{b)}	2.162 ^b)	2.148 ^b)	2.120 ^c)
82	2.061 ^{b)}	2.046 ^b	2.042 ^{b)}	2.042 ^{b)}	2.044 ^{c)}
83	2.061 ^{b)}	2.046 ^{b)}	2.042 ^b)	2.042 ^b)	2.018 ^c)
gav	2.132 ^{b)}	2.133 ^{b)}	2.082 ^{b)}	2.077 ^{b)}	2.061 ^c)
$\overline{a_0^{\mathrm{Cu}}}$	78.2 ^{a)}	74.7 ^{a)}	77.5 ^{a) [1]}	75.8 ^{a)}	78.2 ^{a)}
A_1^{Cu}	169.7 ^{b)}	166.1 ^{b)}	178.1 ^{b)}	174.5 ^{b)}	180.1 ^{c)}
A_2^{Cu}	23.5 ^{b)}	33.4 ^{b)}	30.8 ^{b)}	31.5 ^{b)}	41.1 ^{c)}
A_3^{Cu}	23.5 ^{b)}	33.4 ^{b)}	30.8 ^{b)}	31.5 ^{b)}	19.3 ^{c)}
$A_{\rm av}^{\rm Cu}$	72.2 ^{b)}	77.6 ^{b)}	79.9 ^{b)}	79.1 ^{b)}	80.1 ^{c)}
$\overline{a_0^N}$	_	_	_	_	14.0 ^{a)}
A_1^{N}	-	_	_	_	16.3 ^{c)}
$A_2^{\rm N}$	_	_	_	_	15.0 ^{c)}
A_3^N	_	-	_	_	15.0 ^{c)}
A _{av} ^N	-	-	-	-	15.4 ^c)

Experimenteller Fehler: $g_i = \pm 0.002$; $A_i^{Cu} = \pm 1.0 \times 10^{-4} \text{ cm}^{-1}$; $A_i^N = \pm 0.3 \times 10^{-4} \text{ cm}^{-1}$; $g_{av} = \frac{1}{3}(g_1 + g_2 + g_3)$; $A_{av} = \frac{1}{3}(A_1 + A_2 + A_3)$. (a) CHCl₃, T = 298 K; (b) CHCl₃, T = 8 K; (c) [(Cu/Ni)(HL⁵)₂], T = 298 K.

 $A_{\rm exp}^{\rm dip}$ signifikanter eingeht als der von $A_{\rm exp}^{\rm iso}$. Hinzu kommt, dass der Messfehler von $\pm 0.3 \times 10^{-4}$ cm⁻¹ bei der Bestimmung der ¹⁴N-Hyperfeinstrukturtensoren Berücksichtigung finden muss. Die Fehlerangabe bei *n* sollte somit für den N-2*s*/2*p*-Hybridisierungsgrad bei ± 0.05 liegen.

Abschließend sei angemerkt, dass die Spindichte an den Schwefelatomen experimentell nicht bestimmt werden konnte. Aufgrund der geringen natürlichen Häufigkeit des S-Isotops ³³S (I = 3/2; 0.7%) konnten die hierfür erforderlichen ³³S-Hyperfeinstruktursignale bisher nur bei Einkristall-EPR-Spektren mit Linienbreiten von 0.3–0.6 mT beobachtet werden.^[35,36] Aufgrund der gegenüber den Cu–N-Bindungen üblicherweise beobachteten größeren Kovalenz der Cu–S-Bindungen werden für a_S^2 größere Werte als für a_N^2 erwartet.

Die EPR-Spektroskopie eignet sich sehr gut, um relative Konzentrationen im Gleichgewicht befindlicher paramagnetischer Spezies zu bestimmen, wenn sich deren Konzentrationen nicht um mehr als zwei bis drei Größenordnungen unterscheiden und die Spektrenparameter g_0 und a_0 ausreichend voneinander verschieden sind. Hierbei wird vorausgesetzt, dass die Intensität *I* der EPR-Signale direkt proportional zur Konzentration *c* der paramagnetischen Verbindung ist (Gleichung (11)).

$$c \sim I = (\Delta B_{PP})^2 \cdot h \tag{11}$$

 (ΔB_{PP}) ist hier Linienbreite und *h* die Amplitude.

Untersuchungen von *Kirmse* et al. konnten zeigen, dass das Ligandenaustauschverhalten von Cu^{II}-Komplexen der Dichalkogenocarbamate, 1,1-Dichalkogenolate und Maleo-nitrildithiolate in flüssigen Lösungen EPR-spektroskopisch verfolgt werden kann (Gleichung (12)).^[18–24, 37]

$$CuX_2 + CuY_2 \rightleftharpoons 2 CuXY \tag{12}$$

Ein ähnliches Ligandenaustauschverhalten wird für Cu^{II}-Komplexe mit Harnstoffliganden beobachtet (Abbildung 6, Abbildung 7). In Abbildung 6 ist das X-Band-EPR-Spektrum eines 1:1-Gemisches einer 8.5×10^{-2} mol·l⁻¹ [Cu(L²)₂]- und einer äquimolaren [Cu(L4)2]-Chloroformlösung bei Raumtemperatur gezeigt. Vergleichend dazu sind die Spektren der Ausgangskomplexe dargestellt. In analoger Weise wurde das EPR-Spektrum von [Cu(L²)(HL⁵)] erhalten (Abbildung 7). Diese Spektren sind die Ergebnisse sehr schnell verlaufender Ligandenaustauschreaktionen. Für die bestimmten Gemischtligandkomplexe $[Cu(L^1)(L^3)]$, $[Cu(L^2)(L^4)]$, $[Cu(L^1)(HL^5)]$ und [Cu(L²)(HL⁵)] ergeben sich folgende isotrope EPR-Parameter: [**Cu**(**L**¹)(**L**³)]: $g_0 = 2.107(2); a_0^{\text{Cu}} = (79.9 \pm 1.0) \times 10^{-4} \text{ cm}^{-1}$ [**Cu**(**L**²)(**L**⁴)]: $g_0 = 2.104(2); a_0^{\text{Cu}} = (77.5 \pm 1.0) \times 10^{-4} \text{ cm}^{-1}$ [Cu(L¹)(HL⁵)]: $g_0 = 2.091(2)$; $a_0^{\text{Cu}} = (78.7 \pm 1.0) \times 10^{-4} \text{ cm}^{-1}$; $a_0^{N} = (16.0 \pm 0.3) \cdot 10^{-4} \text{ cm}^{-1}$ [**Cu**(**L**²)(**HL**⁵)]: $g_0 = 2.092(2)$; $a_0^{\text{Cu}} = (79.0 \pm 1.0) \times 10^{-4} \text{ cm}^{-1}$; $a_0^{\rm N} = (16.0 \pm 0.3) \times 10^{-4} \, {\rm cm}^{-1}$

Die Unterschiede zu den Ausgangskomplexen sind hauptsächlich durch g_0 determiniert, da für diese Systeme die Additivitätsregel gilt. So sinkt der *g*-Wert mit steigender Anzahl an schwereren Donoratomen aufgrund größerer effektiver Liganden-Spin-Bahn-Kopplungskonstanten λ_L . Die Abweichung des

Abbildung 6. X-Band-EPR-Spektrum von $[Cu(L^2)_2]$, $[Cu(L^4)_2]$ und dem 1:1-Gemisch; ", \downarrow " kennzeichnet Hyperfeinstrukturlinien von $[Cu(L^2)(L^4)]$.

Abbildung 7. X-Band-EPR-Spektrum von (a) $[Cu(L^2)_2]$, (b) 1:1-Gemisch aus $[Cu(L^2)_2]$ und $[Cu(HL^5)_2]$, (c) $[Cu(L^2)(HL^5)]$ (simuliert) und (d) $[Cu(HL^5)_2]$.

 g_0 -Wertes von g_e (2.00232) kann durch die Beziehung (13) ausgedrückt werden:

$$g_0 - g_e = -\lambda \left[A - \left(\frac{\lambda L}{\lambda}\right) B \right]$$
(13)

$$\lambda_L = \frac{1}{4} \left[n\lambda_O + (n-1)\lambda_S \right] \text{bzw. } \lambda_L = \frac{1}{4} \left[n\lambda_N + (n-1)\lambda_S \right]$$
(14)

n – Anzahl der Donoratome im Komplex; λ_L – effektive Spin-Bahn-Kopplungskonstante der Ligandendonoratome. λ und λ_L sind hier die Spin-Bahn-Kopplungskonstanten des Metallions und der Donoratome der Liganden; A und B sind Parameter, die von der Symmetrie und den Bindungspartnern abhängen.^[19] Da die Symmetrie und der Bindungscharakter bei den untersuchten Cu^{II}-Komplex näherungsweise gleich ist, variieren A und B nur wenig und ($g_0 - g_e$) ist nur vom Verhältnis λ_L/λ abhängig.

In den Spektren von $[Cu(L^1)(HL^5)]$ und $[Cu(L^2)(HL^5)]$ verdeutlichen die gut aufgelösten ¹⁴N-Hyperfeinstruktur-linientri-

ARTICLE

pletts im Hochfeldbereich die Bildung dieser Gemischtligandkomplexe (Abbildung 7).

Die Analyse der relativen Signalintensitäten der im Gleichgewicht befindlichen Komplexe lieferte für die Harnstoff- und Thioharnstoffkomplexe statistische Verläufe der Ligandenaustauschreaktionen mit einer Gleichgewichtskonstante von K = 3 bzw. 4 und für Harnstoff- und Benzimidoylthioharnstoffkomplexe quantitative Verläufe mit K = 180 bzw. 225 (Tabelle 3).

Tabelle 3. Isotrope g-Werte und Gleichgewichtskonstanten der Reaktion Komplex I + Komplex II \rightleftharpoons 2 Komplex III (= Gemischtligandkomplex) in Chloroform bei T = 298 K; $c_0 = 8.5 \times 10^{-2}$ mol·l⁻¹.

Komplex I / Komplex II	$g_{ m Komplex \ I}$	$g_{ m Komplex~II}$	$g_{ m Komplex~III}$	Κ
$[Cu(L^1)_2] / [Cu(L^3)_2]$	2.128	2.080	2.107	3
$[Cu(L^2)_2] / [Cu(L^4)_2]$	2.132	2.079	2.104	4
$[Cu(L^1)_2] / [Cu(HL^5)_2]$	2.128	2.068	2.091	180
$[Cu(L^2)_2] / [Cu(HL^5)_2]$	2.132	2.068	2.092	225

Diese Ergebnisse zeigen sehr deutlich, dass die quantitative Bildung von Gemischtligandkomplexen mit Harnstoffliganden möglich ist. Die Isolierung dieser Komplexe ist Gegenstand aktueller Untersuchungen.

Experimenteller Teil

Synthesen

Die Synthesen der Thioharnstoffliganden HL^3 und HL^4 wurden in Anlehnung an Ref. [29], die Synthesen der entsprechenden Cu^{II}-Komplexe in Anlehnung an Ref. [1] durchgeführt. Die Synthese des Benzimidoylthioharnstoffliganden H_2L^5 und der Komplexe [Cu(HL⁵)₂] und [Ni(HL⁵)₂] erfolgte in Anlehnung an die Vorschriften in Ref. [30,31].

N,N-Diethyl-N'-benzoylharnstoff HL^1 und N,N-Diethyl-N'-(2,6-difluorbenzoyl)harnstoff HL^2

Zu einer Lösung von N,N-Diethylharnstoff (3.02 g, 28.5 mmol) und Triethylamin (3.4 mL, 28.5 mmol) in trockenem Aceton (40 mL) wurde eine Lösung von Benzoylchlorid (28.5 mmol) bzw. 2,6-Difluorbenzoylchlorid in trockenem Aceton (60 mL) getropft, wobei sich farbloses Triethylaminhydrochlorid niederschlug. Die Reaktionsmischung wurde 30 Minuten unter Rückfluss erhitzt, anschließend heiß filtriert und das Lösungsmittel des Filtrats wurde unter vermindertem Druck entfernt. Das Rohprodukt wurde als gelbliches Öl erhalten. Die Reinigung erfolgte über die Bildung eines Kupferkomplexes. Dazu wurde eine Lösung des Rohproduktes in Ethanol (40 mL) mit Natriumcarbonat (2.75 g, 25.9 mmol) versetzt und zu einer Lösung von Kupfer(II)-acetat-Monohydrat (2.85 g, 14.3 mmol) in Ethanol (110 mL) getropft. Das Reaktionsgemisch wurde eine Stunde unter Rückfluss erhitzt, danach auf 0 °C abgekühlt und der blaue Niederschlag abfiltriert. Dieser wurde in Chloroform (150 mL) gelöst und mit deionisiertem Wasser (150 mL) versetzt. Zu dem entstandenen Zweiphasengemisch wurde bis zur vollständigen Entfärbung der organischen Phase konzentrierte Salzsäure gegeben. Anschließend wurden die Phasen getrennt und die wässrige Phase mit Chloroform (dreimal je 20 mL) extrahiert. Die organischen Phasen wurden vereint, über Natriumsulfat getrocknet und bis zur Trockne eingeengt.

HL¹: 5.06 g; 23.0 mmol; 81 % d.Th.; farbloser, kristalliner Feststoff; Fp 92 °C; Analyse für $C_{12}H_{16}N_2O_2$ (%): C 64.9 (ber. 65.4); H 6.8

(7.3); N 12.4 (12.7). ¹**H-NMR** (400 MHz, CDCl₃, $\delta_{TMS} = 0.00$ ppm): 1.23 (t, 6H, ³*J* = 7.2 Hz, CH₃); 3.42 (q, 4H, ³*J* = 7.2 Hz, CH₂); 7.38– 7.50 (m, 1H, Ar-H); 7.44–7.64 (m, 2H, Ar-H); 7.85 (d, 2H, ³*J* = 7.2 Hz, Ar-H); 8.34 (s, 1H, NH). ¹³C{¹H}-NMR (100 MHz, CDCl₃, $\delta_{TMS} = 0.00$ ppm): 13.4 (s, CH₃); 42.3 (s, CH₂); 128.1 (s, Ar-C); 128.6 (s, Ar-C); 132.5 (s, Ar-C); 133.3 (s, Ar-C); 154.5 (s, CO); 167.1 (s, CO). **IR** (KBr): 3180 (s, ν (NH)), 1720 (s, ν (CO)), 1670 (s, ν (CO)) cm⁻¹.

HL²: 6.06 g; 23.7 mmol; 83 % d. Th.; farbloser, kristalliner Feststoff; Fp 113–114 °C. Analyse für $C_{12}H_{14}F_2N_2O_2$ (%): C 56.0 (ber. 56.3); H 5.4 (5.5); N 10.9 (10.9). ¹H-NMR (400 MHz, CDCl₃): 1.20 (t, 6H, ³J_{HH} = 6.8 Hz, CH₃); 3.37 (q, 4H, ³J_{HH} = 7.1 Hz, CH₂); 6.92 (t, 2H, ³J_{HH/HF} = 8.3 Hz, Ar-H); 7.32–7.40 (m, 1H, Ar-H); 8.71 (s, 1H, NH). ¹³C{¹H}-NMR (100 MHz, CDCl₃): 13.5 (s, CH₃); 42.1 (s, CH₂); 111.6 (dd, ²J_{CF} = 19.5 Hz, ⁴J_{CF} = 5.5 Hz, Ar-C); 114.6 (t, ²J_{CF} = 20.3 Hz, Ar-C); 131.7 (s, Ar-C); 151.4 (s, CO); 159.1 (dd, ¹J_{CF} = 251.7 Hz, ³J_{CF} = 7.0 Hz, Ar-C); 163.2 (s, CO). ¹⁹F{¹H}-NMR (CDCl₃, 188 MHz): -113.8 (s, Ar-F). IR (KBr): 3182 (s, *v* (NH)), 1718 (s, *v* (CO)), 1671 (s, *v* (CO)) cm⁻¹.

$Bis[N,N-diethyl-N'-benzoylureato]kupfer(II) [Cu(L^1)_2] und Bis[N,N-diethyl-N'-(2,6-difluorbenzoyl)ureato]-kupfer(II) [Cu(L^2)_2]$

Zu einer Lösung von HL^1 bzw. HL^2 (2.0 mmol) in Ethanol (15 mL) wurde tropfenweise eine Lösung von Kupfer(II)-acetat-Monohydrat (0.20 g; 1.0 mmol) in Ethanol (15 mL) gegeben. Das Reaktionsgemisch wurde eine Stunde unter Rückfluss erhitzt, danach auf 0 °C abgekühlt und der blaue Niederschlag wurde abfiltriert. Das Rohprodukt wurde aus Chloroform/*n*-Hexan (1:1) umkristallisiert.

[**Cu**(**L**¹)₂]: 0.49 g; 0.99 mmol; 99 % d. Th.; blauer, kristalliner Feststoff; Fp 198–199 °C. Analyse für $C_{24}H_{28}CuF_2N_4O_4$ (%): C 57.5 (ber. 57.4); H 6.4 (6.0); N 11.1 (11.2). **IR** (KBr): 1457 (s, ν (CO)) cm⁻¹.

Bis[N,N-diethyl-N'-benzimidoyl-thioureato]nickel(II) [Ni(HL⁵)₂]

¹**H-NMR** (400 MHz, [D₆]DMSO, $\delta_{TMS} = 0.00$ ppm): 1.20 (t, 12H, ³*J* = 6.9 Hz, CH₃); 3.74 (q, 8H, ³*J* = 6.9 Hz, CH₂); 6.59 (br, 2H, NH); 7.43 (m, 6H, Ar-H); 7.80 (d, 4H, ³*J* = 6.9 Hz, Ar-H). ¹³C{¹H}-NMR (100 MHz, [D₆]DMSO, $\delta_{TMS} = 0.00$ ppm): 12.5 (CH₃); 43.9 (CH₂); 126.8 (Ar-C); 127.6 (Ar-C); 129.3 (Ar-C); 139.0 (Ar-C_q); 166.2 (CO); 168.7 (CS).

Präparation der diamagnetisch verdünnten Pulverprobe

Für die Darstellung der diamagnetisch verdünnten Cu^{II}/Ni^{II}-Probe des Liganden H₂L⁵ wurden 1% des Cu^{II}-Komplexes und 99% des Ni^{II}-Komplexes in Chloroform gelöst. Die Lösung wurde zur Kristallisation an der Luft stehen lassen. Die rotbraunen Plättchen wurden anschließend im Achatmörser fein pulverisiert.

Kristallstrukturbestimmungen

Die Daten für die Kristallstrukturbestimmungen wurden mit einem STOE IPDS-1- (HL²) bzw. STOE IPDS-2T-Diffraktometer ([Cu(L²)₂],

Tabelle 4. Kristalldaten und einige Details der Strukturbestimmungen.

	HL ¹	$[Cu(L^2)_2]$	[Ni(HL ⁵) ₂]
Summenformel	$C_{12}H_{14}F_2N_2O_2$	$C_{24}H_{26}Cu_1F_4N_4O_4$	C ₂₄ H ₃₂ N ₆ Ni ₁ S ₂
$M_r /g \cdot mol^{-1}$	256.25	574.03	527.39
Farbe, Habitus	farblose Prismen	blaue Prismen	orange Prismen
Diffraktometer	STOE IPDS-1	STOE IPDS-2T	STOE IPDS-2T
Kristallsystem	monoklin	triklin	triklin
Raumgruppe	$P2_1/c$	$P\bar{1}$	ΡĪ
a /pm	1156.8(2)	938.1(1)	800.5(1)
b /pm	1053.1(1)	1147.9(1)	1213.1(1)
c /pm	1111.7(2)	1207.9(1)	1368.2(2)
$a /^{\circ}$	90	75.35(1)	89.81(1)
β /°	114.99(1)	76.49(1)	84.68(1)
γ /°	90	89.62(1)	75.64(1)
V/10 ⁶ pm ³	1227.5(3)	1221.7(2)	1281.4(2)
Ζ	4	2	2
$\rho_{\rm ber}$ /g·cm ⁻³	1.387	1.560	1.367
Kristallgröße /mm	$0.40 \times 0.35 \times 0.35$	$0.10 \times 0.10 \times 0.10$	$0.25 \times 0.20 \times 0.15$
Messbereich 2θ /°	5.48-50.76	9.22-55.80	6.94-50.00
Messtemperatur /K	213(2)	180(2)	200(2)
Absorptionskoeff. /mm ⁻¹	0.115	0.964	0.944
gemessene Reflexe	7425	11407	9329
unabhängige Reflexe	2242	5647	4477
beob. Reflexe $[I > 2\sigma(I)]$	1611	4691	4128
R _{int}	0.0235	0.0510	0.1054
vollst. Datensatz /%	99.3	96.6	99.0
verfeinerte Parameter	181	339	310
wR_2 (unabh. Reflexe)	0.0647	0.1526	0.1517
R_1 (beob. Reflexe)	0.0264	0.0535	0.0572
Restelektronendichte /e·Å ⁻³	0.160 / -0.129	0.623 / -1.103	0.975 / -0.550

[Ni(HL⁵)₂]) mit Graphitmonochromator unter Verwendung von Mo- K_a -Strahlung ($\lambda = 0.71073$ Å) bei unterschiedlichen Messtemperaturen gesammelt. Die Daten wurden mit Hilfe von X-AREA (Stoe) ausgegeben. Die Strukturlösung erfolgte mit SHELXS-97 und die Verfeinerung mit SHELXL-97.^[38] Die Wasserstoffatom-Positionen wurden in allen Strukturen geometrisch berechnet unter Fixierung der U_{iso} -Werte (1.2bzw. 1.5faches der U_{eq} -Werte der zugehörigen Kohlenstoffatome). Eine Ausnahme stellt das Wasserstoffatom an N1 in HL² dar, welches frei verfeinert wurde. Die Molekülstrukturen wurden mit der Visualisierungssoftware Diamond dargestellt.^[39]

Details der Kristalldaten und der Strukturbestimmungen sind in Tabelle 4 zu finden.

Spektren

Die IR-Spektren wurden mit einem FT-IR-Spektrometer System 2000 der Firma Perkin-Elmer als Kaliumbromid-Presslinge im Bereich von 4000–400 cm⁻¹ aufgenommen.

Die NMR-Spektren wurden mit einem Spektrometer vom Typ Mercury plus 400 MHz der Firma Varian bei T = 26 °C in CDCl₃ aufgenommen. Die chemischen Verschiebungen der angegebenen ¹H-NMR- bzw. ¹³C-NMR-Spektren sind auf der δ -Skala gegen Tetramethylsilan (TMS) referenziert.

Die X-Band-EPR-Spektren (v ≈ 9.5 GHz) der flüssigen und gefrorenen Lösungen und der Pulverprobe wurden mit einem Spektrometer vom Typ EMX micro der Firma Bruker aufgenommen. Die Q-Band-EPR-Messungen (v ≈ 35 GHz) wurden an einem Spektrometer vom Typ EMX der Firma Bruker durchgeführt. Die simulierten Spektren wurden unter Anwendung des Simulationspakets *EasySpin Version 2.2.0.* erstellt.^[40]

Literatur

- [1] L. Beyer, E. Hoyer, H. Hennig, R. Kirmse, H. Hartmann, J. Liebscher, *J. Prakt. Chem.* **1975**, *317*, 829–839.
- [2] L. Beyer, E. Hoyer, J. Liebscher, H. Hartmann, Z. Chem. 1981, 21, 81–91.
- [3] M. Kampf, R. Richter, S. Gerber, R. Kirmse, Z. Anorg. Allg. Chem. 2004, 630, 1437–1443.
- [4] M. Kampf, R. Richter, L. Hennig, A. Eidner, J. Baldamus, R. Kirmse, Z. Anorg. Allg. Chem. 2004, 630, 2677–2686.
- [5] R. Richter, L. Beyer, J. Kaiser, Z. Anorg. Allg. Chem. 1980, 461, 67–73.
- [6] A. Rodenstein, J. Griebel, R. Richter, R. Kirmse, Z. Anorg. Allg. Chem. 2008, 634, 867–874.
- [7] A. Rodenstein, J. Griebel, R. Richter, R. Kirmse, Z. Anorg. Allg. Chem. 2008, 634, 1735–1741.
- [8] A. Rodenstein, J. A. Odendal, R. Kirmse, K. R. Koch, *Inorg. Chem. Commun.* 2011, 14, 99–102.
- [9] E. Guillon, I. Dechamps-Olivier, A. Mohamadou, J. P. Barbier, *Inorg. Chim. Acta* 1998, 268, 13–19.
- [10] W. Hernandez, E. Spodine, A. Vega, R. Richter, J. Griebel, R. Kirmse, U. Schröder, L. Beyer, Z. Anorg. Allg. Chem. 2004, 630, 1381–1386.
- [11] R. Herzschuh, B. Birner, L. Beyer, F. Dietze, E. Hoyer, Z. Anorg. Allg. Chem. 1980, 464, 159–168.
- [12] E. Guillon, A. Mohamadou, I. Dechamps-Olivier, J. P. Barbier, *Polyhedron* **1996**, *15*, 947–952.
- [13] J. Losada, I. del Peso, L. Beyer, Trans. Met. Chem. 2000, 25, 112– 117.
- [14] W. Hernandez, E. Spodine, L. Beyer, U. Schroder, R. Richter, J. Ferreira, M. Pavani, *Bioinorg. Chem. Appl.* 2005, *3*, 299–316.
- [15] H. Arslan, U. Flörke, N. Kulcu, M. F. Emen, J. Coord. Chem. 2006, 59, 223–228.
- [16] K. R. Koch, J. Dutoit, M. R. Caira, C. Sacht, J. Chem. Soc., Dalton Trans. 1994, 785–786.

ARTICLE

- [17] D. Hanekom, J. M. McKenzie, N. M. Derix, K. R. Koch, *Chem. Commun.* 2005, 6, 767–769.
- [18] R. Kirmse, Z. Chem. 1974, 14, 161-162.
- [19] W. Dietzsch, J. Reinhold, R. Kirmse, E. Hoyer, I. N. Marov, V. K. Belyaeva, J. Inorg. Nucl. Chem. 1977, 39, 1377–1384.
- [20] J. Lerchner, R. Kirmse, W. Dietzsch, E. Hoyer, I. N. Marov, V. K. Belyaeva, Z. Chem. 1977, 17, 384.
- [21] W. Dietzsch, J. Lerchner, J. Reinhold, J. Stach, R. Kirmse, G. Steimecke, E. Hoyer, J. Inorg. Nucl. Chem. 1980, 42, 509–520.
- [22] J. Stach, R. Kirmse, U. Abram, W. Dietzsch, J. H. Noordik, K. Spee, K. P. Keijzers, *Polyhedron* 1984, 3, 433–442.
- [23] J. Stach, R. Kirmse, W. Dietzsch, G. Lassmann, V. K. Belyaeva, I. N. Marov, *Inorg. Chim. Acta* 1985, 96, 55–59.
- [24] R. Kirmse, W. Dietzsch, J. Stach, L. Golic, R. Boettcher, W. Brunner, M. C. M. Gribnau, C. P. Keijzers, *Mol. Phys.* **1986**, *57*, 1139– 1152.
- [25] M. A. Doicheva, B. G. Jeliazkova, Spectrochim. Acta A 2002, 58, 1181–1189.
- [26] N. D. Yordanov, A. Dimitrova, Z. Anorg. Allg. Chem. 2005, 631, 956–960.
- [27] N. D. Yordanov, A. Dimitrova, Spectrochim. Acta A 2006, 63, 826–829.
- [28] A. Dimitrova, C. Taseva, N. D. Yordanov, Spectrochim. Acta A 2008, 70, 953–957.

- [29] I. B. Douglass, F. B. Dains, J. Am. Chem. Soc. 1934, 56, 719–721.
- [30] J. Hartung, G. Weber, L. Beyer, R. Szargan, Z. Anorg. Allg. Chem. 1985, 523, 153–160.
- [31] G. Weber, J. Hartung, L. Beyer, *Tetrahedron Lett.* **1988**, 29, 3475–3476.
- [32] L. Hennig, K. Ayala-Leon, J. Angulo-Cornejo, R. Richter, L. Beyer, J. Fluorine Chem. 2009, 130, 453–460.
- [33] J. A. K. Howard, V. J. Hoy, D. O'Hagan, G. T. Smith, *Tetrahe*dron 1996, 52, 12613–12622.
- [34] J. R. Morton, K. F. Preston, J. Magn. Reson. 1978, 30, 577-582.
- [35] R. Kirmse, J. Stach, U. Abram, W. Dietzsch, R. Boettcher, M. C. M. Gribnau, C. P. Keijzers, *Inorg. Chem.* 1984, 23, 3333– 3338.
- [36] J. Stach, R. Kirmse, W. Dietzsch, R. M. Olk, E. Hoyer, *Inorg. Chem.* 1984, 23, 4779–4780.
- [37] I. N. Marov, M. N. Vargaftik, V. K. Belyaeva, G. A. Evtikova, E. Hoyer, R. Kirmse, W. Dietzsch, *Zh. Neorg. Khim.* 1980, 25, 188– 193.
- [38] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112-122.
- [39] K. Brandenburg, *Diamond 3.2f*, Crystal and Molecular Structure Visualization, Bonn, 2010.
- [40] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42-55.

Eingegangen: 03. Februar 2012 Online veröffentlicht: 04. Juni 2012