DOI: 10.1002/ejoc.200700443

Synthesis of Tyrosine-Derived Tetrahydroisoquinolines by Lewis Acid Catalyzed Cyclization of N-(Phenylsulfonyl)alkyloxazolidinones

Stefan Tussetschläger,^[a] Angelika Baro,^[a] Sabine Laschat,^{*[a]} and Wolfgang Frey^[a]

Dedicated to Professor Ekkehard Winterfeldt on the occasion of his 75th birthday

Keywords: Amino acids / Bromine / Protecting groups / Debromination / Oxazolidinones / Regioselectivity

N-Boc-protected tyrosine esters 5a, b were converted into tetrahydroisoquinolines 13 and 14 in four steps by reduction and ring closure to oxazolidinones 9 and 10, addition of benzenesulfinic acid and aldehydes to sulfones 11 and 12 and subsequent Lewis acid catalyzed cyclization. In the case of *m*-tyrosine derivative 5a, selective protection with bromine prevented the formation of undesired regioisomers. Debromination of target compounds 13 was readily achieved under

Introduction

Tetrahydroisoquinoline alkaloids have received much interest because of their tremendous structural diversity and broad spectrum of biological and pharmaceutical activities.^[1] The most popular synthetic approaches towards tetrahydroisoquinolines are the Pictet–Spengler reaction,^[2,3] the Bischler–Napieralski reaction,^[4,5] and the Pomeranz–Fritsch reaction.^[6–8] However, concerning *m*-tyrosine-derived precursors **1**, the above-mentioned cyclizations are hampered by the formation of regioisomers **2** and **3** (Scheme 1) or undesired byproducts such as oxazoles.^[9]

Scheme 1. Possible regioisomers 2 and 3.

WILEY InterScience

A typical example for these regioisomers was reported by Myers in the total synthesis of (–)-quinocarcin.^[10] To overcome the regioselectivity problem, Fukuyama introduced a bromine protecting group at C-6 of cyclization precursor **1**, and subjected these bromo-substituted *m*-tyrosines to Pictet–Spengler reactions.^[11] Hashmi used substituted furylalanine derivatives in Au-catalyzed cycloisomerizations.^[12] Upon searching for suitable methods we were

 [a] Institut f
ür Organische Chemie der Universit
ät Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, Fax: +49-711-68564285 E-mail: sabine.laschat@oc.uni-stuttgart.de radical reduction conditions by using $Bu_3SnH/AIBN$. Tetrahydroisoquinolines **13** and **14** were isolated as single diastereomers whose *trans* configuration was confirmed by Xray crystal structure analysis. Partial epimerization of *trans*-**13i** and *trans*-**21** to the corresponding *cis* diastereomers was achieved under basic conditions.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

attracted by the conversion of benzyl-substituted oxazolidinones with aldehydes and benzenesulfinic acid to the corresponding *N*-[1-(phenylsulfonyl)alkyl]oxazolidinones and their Lewis acid mediated ring closure to tricyclic tetrahydroisoquinoline derivatives published by Petrini.^[13] This approach was used for the synthesis of azapodophyllotoxin^[14] starting from DOPA.^[13b] To the best of our knowledge, however, in no case was either *p*- or *m*-tyrosine considered as a starting material. Thus, we investigated the cyclization of tyrosine-derived *N*-[(phenylsulfonyl)alkyl]oxazolidinones as an extension of Petrini's methodology. The results are reported below.

Results and Discussion

The synthesis of cyclization precursors **9** and **10** commenced with the conversion of tyrosines **4a,b** to the corresponding Boc-protected amino $\operatorname{acids}^{[15]}$ in 90 and 81% yield, respectively, following the method used by $\operatorname{Jung}^{[15a]}$ (Scheme 2). The *N*-Boc derivatives were subsequently methylated with iodomethane in acetone in the presence of K₂CO₃ according to the protocol by Reddy^[16a] to give compounds **5a,b**^[16] in 97 and 76% yield, respectively.

Prior to reduction with LiBH₄ in Et₂O/MeOH to alcohol 7 (95%), *m*-tyrosine **5a** was brominated at the C-6 position with NBS in CH₂Cl₂ at room temperature to compound **6** (86%) (Scheme 2) to suppress cyclization to the undesired regioisomer. Tyrosine derivative **5b** was directly reduced to corresponding Boc-protected amino alcohol **8**^[16a] in 80% yield.

Scheme 2. Preparation of m- and p-tyrosine-derived oxazolidinones 9 and 10 and subsequent cyclization to corresponding tetrahydroisoquinolines 13 and 14.

Treatment of amino alcohols **7** and **8** with thionyl chloride at $0 \,^{\circ}C^{[13b]}$ yielded oxazolidinones **9** and **10** in 83 and 89% yield, respectively. Crystallization of derivative **10** from Et₂O gave single crystals that were suitable for X-ray crystal structure analysis (Figure 1).^[17]

Figure 1. Molecular structure of 4-(4-methoxybenzyl)-1,3-oxazolidin-2-one (10) in the solid state (ORTEP presentation).

Following the protocol of Petrini,^[13] compounds **9** and **10** were treated with benzenesulfinic acid and various aldehydes to give corresponding α -amidoalkylphenyl sulfones **11** and **12** as diastereomeric mixtures. The results are summarized in Table 1.

Whereas the addition reaction worked for aliphatic aldehydes and croton- and 2-benzyloxyacetaldehyde (Table 1, Entries 1–5, 9–13), benzaldehyde and glyoxal did not give sulfones **11f**,g and **12f**,g (Table 1, Entries 6, 7, 14, 15). In the reaction of tyrosine-based oxazolidinone **10** and glyoxal, hemiaminal **15** was isolated instead (Table 1). Under the conditions of the addition reaction, *m*-tyrosine-derived **9** afforded directly tricyclic tetrahydroisoquinoline **13f** in 4% yield. As derivative **11e** was difficult to isolate, the alter-

Table 1. Reaction of oxazolidinones 9 and 10 with aldehydes and PhSO₂H to form N-[1-(phenylsulfonyl)alkyl]oxazolidinones 11 and 12 followed by cyclization to tetrahydroisoquinolines 13 and 14^[a].

Entry	Compound	RCHO	Oxazolidinones			Time	Isoquinolines	
		R =		Yield [%]	dr	[h]		Yield [%]
1	9	Pr	11a	78	51:49	0.75	13a	56
2	9	$C_{5}H_{11}$	11b	41	51:49	2.25	13b	80
3	9	iPr	11c	37	58:42	2.5	13c	80
4	9	CH=CHCH ₃	11d	52	67:33	1.0	13d	19
5	9	CH ₂ OBn	11e	38	55:45	6.5	13e	_[b]
6	9	Ph	11f	_	_	36	13f	4 ^[c]
7	9	CO_2Et	11g	_	_	_	13g	_
8	9	CH_2OPMB	11h	40	56:44	1.0	13h	_[d]
9	10	Pr	12a	31	89:11	1.0	14a	68
10	10	$C_{5}H_{11}$	12b	11	57:43	2.0	14b	73
11	10	iPr	12c	52	51:49	2.5	14c	28
12	10	CH=CHCH ₃	12d	44	70:30	1.0	14d	_[e]
13	10	CH ₂ OBn	12e	22	68:32	0.75	14e	30
14	10	Ph ⁻	12f	_[f]	_	-	14f	_
15	10	CO ₂ Et	12g	_[g]	_	_	14g	_

[a] Reaction conditions according to Scheme 2. [b] Starting material **11e** was reisolated in 36% yield. [c] Under the reaction conditions starting material **9** was directly converted into **13f** (4%) and reisolated in 37%. [d] Oxazolidinone **16** was isolated in 50% (*dr* 52:48). [e] Starting material **12d** was reisolated in 68% yield. [f] Starting material **10** was reisolated in 37% yield. [g] Hemiaminal **15** was isolated in 51% yield (*dr* 71:29).

native paramethoxybenzyl (PMB) protecting group was used; addition product **11h** was obtained in 40% yield (Table 1, Entry 8).

N-[1-(Phenylsulfonyl)alkyl]oxazolidinones **11** and **12** were then cyclized in the presence of $TiCl_4$ in CH_2Cl_2 at -78 °C^[13] to afford target compounds 13 and 14 (Scheme 2). As can be seen from Table 1, the ring closure of starting sulfones 11a-c and 12a-c proceeded uneventfully (Table 1, Entries 1-3, 9-11). Crotyl-substituted compound 12d, however, did not react and was reisolated in 68% yield, whereas analogous *m*-tyrosine-based derivative **11d** gave the product in 19% yield (Table 1, Entries 4, 12). In contrast, from benzyloxymethyl-substituted oxazolidinones 11e and 12e, the reaction of tyrosine derivative 12e afforded tricyclic compound 14e, whereas 13e was not formed (Table 1, Entries 5, 13). Under the cyclization conditions, the PMB protecting group in compound 11h was removed and sulfone derivative 16 was isolated instead of desired tetrahydroisoquinoline 13h (Table 1, Entry 8).

It should be noted that in all cases tetrahydroisoquinolines 13 and 14 were obtained as single diastereomers independent of the diastereomeric ratio of intermediate adducts 11 and 12. The *trans* configuration was assigned according to NOE experiments for tyrosine-based tetrahydroisoquinoline 14e. This assignment was further supported by X-ray crystal structure analysis of *m*-tyrosine derivative 13a (Figure 2).^[17]

Figure 2. Molecular structure of 9-bromo-6-methoxy-5-propyl-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-*b*]isoquinolin-3-one (**13a**) in the solid state (ORTEP presentation).

The failure of initial adduct formation of benzaldehyde and glyoxal might be due to the oxazolidinone because Petrini reported the successful conversion of both aldehydes to the corresponding amido sulfones.^[18] In our case, however, sulfinic acid partially reduced the aldehydes to the corresponding primary alcohols, RCH₂OH, which were found in all crude mixtures as byproducts.

The failure of ring closure in the case of crotyl-substituted oxazolidinone 12d might be explained by the influence of the methoxy group. Although the charge delocalization through conjugation with R should be operative in both acyliminium ions 17 and 19, presumably the +M effect of the methoxy substituent in *m*-tyrosine derivative 17 increases the nucleophilicity of the aromatic ring relative to tyrosine derivative 19 where such mesomeric activation is not possible (Scheme 3).

Scheme 3.

As shown in Scheme 4 for one example, alternative procedures were investigated for comparison. Following the benzotriazole method by Katritzky^[14a] (A), tricyclic products **13a** and **14a** could be isolated in 64 and 54% yield, respectively.

In contrast, the direct Pictet–Spengler reaction (B) could not be applied to starting materials **23a,b.** Under the used conditions, condensation products **24a,b** were obtained instead of the desired bicycles. Derivatives **24** might be formed by an aldol-type condensation in analogy to a former publication by Ishii.^[19] It should be noted that Tourwé and Hruby reported the failure of tetrahydroisoquinoline formation from tyrosine derivatives and formaldehyde by the Pictet–Spengler reaction.^[20] It thus seems that the limitations of the Pictet–Spengler cyclization with regard to aliphatic aldehydes can be overcome by the Petrini and Katritzky methods.

m-Tyrosine-derived tetrahydroisoquinolines **13a,b** were debrominated under radical reduction conditions by using Bu₃SnH in the presence of catalytic amounts of AIBN in refluxing benzene according to the method of Fuku-yama^[11,21] to afford the corresponding tricyclic products in 88 and 51% yield, respectively.

Next, the utilization of crotyl-substituted tetrahydroisoquinoline **13d** as a possible precursor to the AB system of the antitumor alkaloid quinocarcin^[10,22,23] was investigated. Thus, derivative **13d** was ozonized in MeOH in the presence of NaOH at -78 °C to derivative **13i**, which was isolated in 69% yield (Scheme 5).

Its *trans* configuration was confirmed by X-ray crystal structure analysis (Figure 3).^[17] It should be noted that corresponding ethyl ester **13g** could not be obtained by the

Scheme 4. Cyclization by (A) benzotriazole and (B) the Pictet–Spengler reaction. Reaction conditions: (a) 1. butyraldehyde (1.6 equiv.), molecular sieves 4 Å, CH_2Cl_2 , r.t., 24 h; 2. TFA (3.2 equiv.), 0 °C, 16 h, 27% (24a), 32% (24b); (b) *p*-TsOH (0.1 equiv.), *n*PrCHO (1 equiv.), Dean–Stark trap, 16 h, 18% (24a), 14% (24b).

Scheme 5.

sulfinic acid route (Table 1). Radical-induced debromination of *trans*-13i gave derivative *trans*-25 in 69% yield. Epimerization with NaOMe in MeOH heated at reflux led to complete decomposition of *trans*-25. In contrast, bromo derivative *trans*-13i epimerized partially under these conditions to yield a *trans:cis* mixture of 13i in a 90:10 ratio. By using DBU in boiling toluene, however, both 13i and 25 epimerized to *cis* configured analogues *cis*-**13i** and *cis*-**25** in a *trans:cis* ratio of 85:15. The isomers of **13i** could be separated by preparative HPLC [$t_R(cis) = 6.59 \text{ min}$ and $t_R(trans) = 10.05 \text{ min}$] to afford *trans*- and *cis*-**13i** in 93 and 5% yield, respectively.

Figure 3. Molecular structure of methyl 9-bromo-6-methoxy-3oxo-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-*b*]isoquinoline-5-carboxylate (**13i**) (ORTEP presentation).

Conclusions

It could be demonstrated that N-[1-(phenylsulfonyl)alkyl]oxazolidinones **11** and **12** are valuable intermediates for the synthesis of tyrosine-derived tetrahydroisoquinolines **13** and **14**. Butyraldehyde was used to compare Petrini's method with Katritzky's benzotriazoles and the Pictet– Spengler cyclization. Whereas the latter completely failed, the methods by Petrini and Katritzky gave similar results. Thus, the used Petrini method complements the Pictet– Spengler reaction. In particular, *m*-tyrosine **4a** can be converted regioselectively via the N-[1-(phenylsulfonyl)alkyl]oxazolidinones to the corresponding tetrahydroisoquinolines by employing bromine as a protecting group. This may open synthetic access to tetrahydroisoquinoline alkaloids.

Experimental Section

General: Melting points were determined with a Büchi SMP 20 and are uncorrected. NMR spectra were recorded with a Bruker Avance 300 or a Bruker Avance 500 (¹H: 300 or 500 MHz, ¹³C: 75 or 125 MHz) with TMS as an internal standard. Signal assignments were made on the basis of DEPT experiments. IR spectra were recorded with a Bruker Vector 22 FTIR. Mass spectrometry was performed with a Finnigan MAT 95, Varian MAT 711, or Bruker Daltonics micrOTOF_Q. Chromatography was performed on silica gel 60 (230–400 mesh) (Macherey–Nagel). GC was performed with a Hewlett–Packard HP 6890, column HP 5TA (30 m × 0.32 mm), temperature program 16 °Cmin⁻¹, gradient from 80 to 300 °C.

FULL PAPER

tyraldehyde, isobutyraldehyde, crotonaldehyde, and hexanal, as well as all solvents, were distilled prior to use. Reactions were performed in oven-dried glassware under a N₂ atmosphere. The following compounds were prepared according to literature procedures: *N*-Boc protected tyrosines,^[15a] **5a**,**b**,^[16a] **8**,^[16a] [(4-methoxybenzyl)oxy]acetaldehyde,^[24] and benzenesulfinic acid.^[25]

Methyl 2-Bromo-N-(tert-butoxycarbonyl)-5-methoxyphenylalaninate (6): N-Bromosuccinimide (790 g, 4.44 mmol) was added portionwise to a solution of 5a (1.25 g, 4.04 mmol) in absolute DMF (40 mL), and the reaction mixture was stirred at room temperature for 6 h. The solvent was removed, and the residue was chromatographed on SiO₂ (hexanes/EtOAc, 6:1) to give 6 as a colorless solid (1.36 g, 86%). M.p. 106–108 °C. $R_{\rm f} = 0.23$ (hexanes/EtOAc, 6:1). ¹H NMR (300 MHz, CDCl₃): δ = 1.39 [s, 9 H, C(CH₃)₃], 3.05 (dd, J = 8.3, 13.8 Hz, 1 H, 3-H_A), 3.27 (dd, J = 5.7, 13.8 Hz, 1 H, 3-H_B), 3.72 (s, 3 H, OCH₃), 3.79 (s, 3 H, OCH₃), 4.60–4.67 (m, 1 H, 2-H), 5.07 (d, J = 8.3 Hz, 1 H, NH), 6.68 (dd, J = 2.9, 8.7 Hz, 1 H, 4'-H), 6.75 (d, J = 2.9 Hz, 1 H, 2'-H), 7.42 (d, J = 8.7 Hz, 1 H, 5'-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 28.3$ [C(CH₃)₃], 38.8 (C-3), 52.4 (OCH₃), 53.5 (C-2), 55.4 (OCH₃), 79.9 [C(CH₃)₃], 114.5 (C-2', C-4'), 115.4 (C-6'), 116.7 (C-2', C-4'), 133.4 (C-5'), 136.9 (C-1'), 155.0, 158.9 (C-3', CO2tBu), 172.4 (CO2CH3) ppm. FTIR (ATR): $\tilde{v} = 1739$ (s), 1689 (s), 1521 (s), 1480 (m), 1463 (m), 1440 (m), 1276 (br., m), 1240 (s), 1218 (s), 1157 (vs), 1041 (m), 1013 (m), 994 (m), 847 (m), 825 (m), 599 (br., m) cm⁻¹. MS (EI, 70 eV): m/z $(\%) = 389 (7) [M]^+, 387 (7) [M]^+, 333 (13), 331 (13), 316 (10) [M - 100] [M - 100]$ $OC(CH_3)_3]^+$, 314 (10) [M - $OC(CH_3)_3]^+$, 288 (2) [M - $CO_2C_3^ (CH_3)_3$ ⁺, 286 (2) $[M - CO_2C(CH_3)_3]^+$, 272 (35), 270 (29), 252 (43), 230 (11), 228 (11), 208 (22), 200 (10), 191 (30), 175 (2), 148 (9), 132 (3), 121 (6), 91 (3), 88 (20), 77 (2), 57 (100) $[C(CH_3)_3]^+$, 41 (7). C₁₆H₂₂BrNO₅ (388.25): calcd. C 49.50, H 5.71, N 3.61, Br 20.58; found C 49.71, H 5.79, N 3.61, Br 20.62.

tert-Butyl 1-(2-Bromo-5-methoxybenzyl)-2-hydroxyethylcarbamate (7): To a solution of 6 (2.10 g, 5.41 mol) in absolute Et_2O (100 mL) in a Schlenk flask under inert gas at 0 °C was added lithiumborohydride (470 mg, 21.6 mmol) and absolute MeOH (10 mL), and the reaction mixture was stirred at 0 °C for a further 30 min. After warming to room temperature, the reaction mixture was heated at reflux for 16 h. Then a saturated solution of NH₄Cl (50 mL) was added, and the reaction mixture was stirred for 15 min. The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 20 \text{ mL})$. The combined organic layers were washed with brine $(3 \times 100 \text{ mL})$, dried (Na₂SO₄), and concentrated. The residue was chromatographed on SiO₂ (hexanes/EtOAc, 2:1) to give 7 as a colorless solid (1.84 mg, 95%). M.p. 109–110 °C. $R_{\rm f} = 0.24$ (hexanes/ EtOAc, 2:1) ¹H NMR (500 MHz, CDCl₃): $\delta = 1.40$ [s, 9 H, C(CH₃)₃], 2.17 (br. s, 1 H, OH), 2.74–2.96 (m, 1 H, 3-H_A), 2.99 $(dd, J = 6.8, 13.7 Hz, 1 H, 3-H_B), 3.61 (dd, J = 4.6, 11.2 Hz, 1 H,$ $1-H_A$), 3.70 (dd, J = 3.6, 11.2 Hz, 1 H, $1-H_B$), 3.77 (s, 3 H, OCH₃), 3.87-3.94 (m, 1 H, 2-H), 4.91 (d, J = 7.8 Hz, 1 H, NH), 6.67 (dd, J = 3.0, 8.8 Hz, 1 H, 4'-H), 6.75 (br. s, 1 H, 2'-H), 7.42 (d, J =8.8 Hz, 1 H, 5'-H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 28.3 [C(CH₃)₃], 37.5 (C-3), 53.1 (C-2), 55.5 (OCH₃), 64.5 (C-1), 79.7 [C(CH₃)₃], 114.1 (C-2'), 115.3 (C-6'), 116.7 (C-4'), 133.3 (C-5'), 138.6 (C-1'), 156.0, 159.0 (C-3', C=O) ppm. FTIR (ATR): v = 1687 (vs), 1670 (m), 1573 (m), 1520 (s), 1475 (m), 1445 (m), 1418 (m), 1391 (m), 1366 (m), 1356 (m), 1318 (m), 1303 (m), 1280 (m), 1241 (s), 1166 (s), 1145 (m), 1091 (m), 1065 (m), 1015 (m), 1004 (s), 822 (m), 807 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 361, 359 (1) [M]⁺, 330, 328 (1), 305, 303 (1), 274, 272 (4), 230, 228 (10), 224 (12), 203, 201 (7), 202, 200 (7) $[M + H - HOCH_2CHNHC(O)OC(CH_3)_3]^+$, 180 (6), 161 (2), 160 (26) [HOCH₂CHNHC(O)OC(CH₃)₃]⁺, 121 (4), 104 (34), 60 (78), 57 (100) $[C(CH_3)_3]^+$, 42 (2), 41 (11), 28 (11).

 $C_{15}H_{22}BrNO_4$ (360.24): calcd. C 50.01, H 6.16, N 3.89; found C 50.09, H 6.23, N 3.86.

General Procedure for the Cyclization to Oxazolidinones 9 and 10: To an ice-cold solution of either 7 or 8 in absolute THF in a Schlenk flask under inert gas was added dropwise thionyl chloride (8 equiv.), and the reaction mixture was stirred at 0 °C for a further 3 h. After warming to room temperature, all volatile materials were removed and crude product 9 or 10 was chromatographed on SiO₂ (CH₂Cl₂/EtOAc, 3:1).

4-(2-Bromo-5-methoxybenzyl)-1,3-oxazolidin-2-one (9): From 7 (1.84 g, 5.12 mmol) in THF (100 mL) was obtained 9 as a colorless solid (1.21 g, 83%). M.p. 87–88 °C. R_f = 0.31 (CH₂Cl₂/EtOAc, 3:1). ¹H NMR (300 MHz, CDCl₃): δ = 2.94 (dd, J = 7.4, 13.5 Hz, 1 H, $3-H_A$), 3.02 (dd, J = 5.6, 13.5 Hz, 1 H, $3-H_B$), 3.79 (s, 3 H, OCH₃), 4.16-4.27 (m, 2 H, 1-H, 2-H), 4.43-4.52 (m, 1 H, 1-H), 5.73 (br. s, 1 H, NH), 6.71 (dd, J = 3.0, 8.7 Hz, 1 H, 4'-H), 6.77 (d, J = 3.0 Hz, 1 H, 2'-H), 7.45 (d, J = 8.7 Hz, 1 H, 5'-H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 41.6 \text{ (C-3)}, 52.0 \text{ (C-2)}, 55.5 \text{ (OCH}_3), 69.5$ (C-1), 114.4 (C-4'), 114.7 (C-6'), 117.2 (C-2'), 133.9 (C-5'), 136.4 (C-1'), 159.2, 159.3 (C-5', C=O) ppm. FTIR (ATR): $\tilde{v} = 1766$ (vs), 1592 (m), 1579 (m), 1480 (m), 1470 (m), 1436 (m), 1404 (m), 1310 (m), 1239 (s), 1221 (s), 1177 (s), 1120 (m), 1114 (m), 1075 (m), 1007 (s), 948 (m), 937 (s), 889 (m), 822 (m), 812 (s), 762 (m), 705 (s), 657 (br., m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 287, 285 (22) [M]⁺, 207 (12), 206 (100) $[M - Br]^+$, 202 (97) $[H_3COC_6H_4BrCH_2 + H]^+$, 200 (98) [MeOC₆H₄BrCH₂ + H]⁺, 160, 158 (4), 171, 169 (3), 162 (13), 147 (1), 132 (1), 121 (29), 105 (3), 91 (9), 86 (86) [M - Me-OC₆H₄BrCH₂]⁺, 77 (9), 63 (3), 58 (5), 42 (20), 28 (2). C₁₁H₁₂BrNO₃ (286.12): calcd. C 46.18, H 4.23, N 4.90; found C 46.25, H 4.26, N 4.82.

(4S)-4-(4-Methoxybenzyl)-1,3-oxazolidin-2-one (10): From (959 mg, 3.41 mmol) in THF (60 mL) was obtained 10 as colorless crystals (632 mg, 89%). M.p. 75 °C. $R_{\rm f} = 0.20$ (CH₂Cl₂/EtOAc, 3:1). $[a]_{D}^{22} = -55.9 \ (c = 1.0, CH_2Cl_2)$. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.80$ (dd, J = 6.6, 13.8 Hz, 1 H, 3-H_A), 2.83 (dd, J = 7.2, 13.8 Hz, 1 H, 3-H_B), 3.79 (s, 3 H, OCH₃), 4.02-4.07 (m, 1 H, 2-H), 4.13 (dd, J = 5.5, 8.7 Hz, 1 H, 1-H_A), 4.43 (dd, J = 8.0, 8.7 Hz, 1 H, 1-H_B), 5.72 (br. s, 1 H, NH), 6.85–6.88 (m, 2 H, 3'-H, 5'-H), 7.09-7.10 (m, 2 H, 2'-H, 6'-H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 40.5$ (C-3), 53.9 (C-2), 55.3 (OCH₃), 69.6 (C-1), 114.4 (C-3', C-5'), 127.9 (C-1'), 130.0 (C-2', C-6'), 158.8, 159.4 (C-4', C=O) ppm. FTIR (ATR): $\tilde{v} = 1740$ (vs), 1512 (s), 1243 (s), 1178 (m), 1026 (m) cm^{-1} . MS (EI, 70 eV): m/z (%) = 208 (1) [M + H]⁺, 207 (10) [M]⁺, 123 (2), 122 (26), 121 (100) $[CH_2C_6H_5OMe]^+$, 107 (2), 91 (3), 78 (4), 65 (3), 51 (1), 42 (4), 32 (3), 28 (30), 18 (24). C₁₁H₁₃NO₃ (207.23): calcd. C 63.76, H 6.32, N 6.76; found C 63.73, H 6.34, N 6.66

General Procedure for the Preparation of Sulfones 11 and 12: To a solution of either 9 or 10 (100–150 mg, 1 equiv.) in CH_2Cl_2 (5–7 mL) in a Schlenk flask under inert gas were successively added benzenesulfinic acid (2 equiv.), the respective aldehyde (1.5 equiv.), and MgSO₄ (100–150 mg), and the reaction mixture was stirred for 36 h at room temperature. Then, the mixture was filtered through a sintered-glass frit (bottom layer: 1 cm sand, top layer: 1 cm Florisil) with CH₂Cl₂. The filtrate was concentrated and crude sulfone 10 or 11 was chromatographed on SiO₂.

4-(2-Bromo-5-methoxybenzyl)-3-[1-(phenylsulfonyl)butyl]-1,3-oxazolidin-2-one (11a): Yield: 132 mg (78%), colorless foam. $R_{\rm f} = 0.13$ (hexanes/EtOAc, 4:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.94-1.04$ (m, 3 H, 4''-H), 1.30–1.57 (m, 2 H, 3''-H), 2.06–2.18 (m, 0.5 H, 2''-H), 2.22–2.35 (m, 1 H, 2''-H), 2.39–2.52 (m, 0.5 H, 2''-H), 2.81 (dd, J = 11.2, 13.1 Hz, 0.5 H, 3-H_A), 2.85 (dd, J = 11.2, 13.4 Hz,

 $0.5 \text{ H}, 3-\text{H}_{A}$, $3.31 \text{ (dd, } J = 3.6, 13.1 \text{ Hz}, 0.5 \text{ H}, 3-\text{H}_{B}$), 3.70 (br. d, $J = 13.4 \text{ Hz}, 0.5 \text{ H}, 3-\text{H}_{B}$), 3.80 (2 s, 3 H, OCH₃), 3.90–3.95 (m, 0.5 H, 1-H), 4.08–4.18 (m, 1.5 H, 1-H), 4.24–4.33 (m, 0.5 H, 2-H), 4.64–4.76 (m, 0.5 H, 2-H), 4.93 (br. d, J = 9.2 Hz, 0.5 H, 1''-H), 5.15 (t, J = 7.4 Hz, 0.5 H, 1''-H), 6.73 (ddd, J = 1.8, 2.9, 8.7 Hz, 1 H, 4'-H), 6.78 (dd, J = 2.4, 2.9 Hz, 1 H, 2'-H), 7.47 (dd, J = 3.8, 8.7 Hz, 1 H, 5'-H), 7.55-7.63 (m, 2 H, m-C₆H₅), 7.66-7.73 (m, 1 H, p-C₆H₅), 7.92-7.96 (m, 1 H, o-C₆H₅), 7.99-8.03 (m, 1 H, o- C_6H_5) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.45, 13.50 (C-4''),$ 19.3, 19.7 (C-3''), 26.8, 27.4 (C-2''), 40.0, 40.3 (C-3), 53.4 (C-2), 55.6 (OCH₃), 66.9, 67.0 (C-1), 74.6, 75.7 (C-1''), 114.5, 114.6 (C-4'), 114.8, 115.1 (C-6'), 117.7, 117.8 (C-2'), 128.7 (o-C₆H₅), 129.28, 129.32, 129.5 (o-, m-C₆H₅), 134.0 (C-5'), 134.3, 134.5 (p-C₆H₅), 135.8, 135.9, 136.9, 137.4 (C-1', C-6', i-C₆H₅), 157.1, 159.2 (C=O, C-3') ppm. FTIR (ATR): $\tilde{v} = 1753$ (vs), 1473 (m), 1446 (m), 1403 (m), 1305 (m), 1240 (m), 1199 (m), 1163 (m), 1143 (s), 1079 (m), 1044 (m), 1012 (m), 722 (m), 687 (m), 600 (m), 577 (m), 555 (m), 540 (m), 522 (m) cm⁻¹. MS (FAB, 3-nitrobenzyl alcohol + NaI): m/z (%) = 506 (48) [M + Na]⁺, 504 (46) [M + Na]⁺, 479 (2), 477 (2), 413 (2), 364 (27) $[M + Na - PhSO_2H]^+$, 362 (27) $[M + Na - PhSO_2H]^+$ PhSO₂H]⁺, 342 (22) [M - SO₂Ph]⁺, 340 (23) [M - SO₂Ph]⁺, 329 (15), 327 (13), 284 (3), 218 (1), 199 (16) [H₃COC₆H₃BrCH₂]⁺, 176 (100) $[3-NO_2C_6H_5 + Na]^+$, 172 (21), 136 (9), 95 (7), 92 (11), 69 (11), 55 (15). HRMS (FAB): calcd. for $C_{21}H_{24}BrNNaO_5S^+$ [M + Na]⁺ 504.0451; found 504.0452.

4-(2-Bromo-5-methoxybenzyl)-3-[1-(phenylsulfonyl)hexyl]-1,3oxazolidin-2-one (11b): Yield: 74 mg (41%), colorless foam. $R_{\rm f}$ = 0.25 (hexanes/EtOAc, 3:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.82$ – 0.96 (m, 3 H, 6"-H), 1.21-1.61 (m, 6 H, 3"-H, 4"-H, 5"-H), 2.09-2.23 (m, 0.56 H, 2"-H), 2.24-2.35 (m, 1.01 H, 2"-H), 2.35-2.52 (m, 0.53 H, 2''-H), 2.81 (dd, J = 7.8, 13.1 Hz, 0.5 H, 3-H), 2.85 (dd, J = 7.6, 13.1 Hz, 0.5 H, 3-H), 3.31 (dd, J = 3.5, 13.1 Hz, 0.52 H, 3-H), 3.70-3.76 (m, 0.53 H, 3-H), 3.80 (2 s, 1.5 H, OCH₃), 3.88-3.98 (m, 0.56 H, 1-H), 4.05-4.23 (m, 1.69 H, 1-H), 4.22-4.35 (m, 0.56 H, 2-H), 4.63–4.77 (m, 0.52 H, 2-H), 4.92 (br. d, J = 9.8 Hz, 0.49 H, 1''-H), 5.09–5.19 (m, 0.48 H, 1''-H), 6.73 (dd, J = 2.9, 8.8 Hz, 1 H, 4'-H), 6.78 (dd, J = 1.8, 2.9 Hz, 1 H, 2'-H), 7.45 (dd, J = 4.2, 8.8 Hz, 1 H, 5'-H), 7.55–7.63 (m, 2 H, m-SO₂C₆H₅), 7.66– 7.73 (m, 1 H, p-SO₂C₆H₅), 7.92–7.95 (m, 1 H, o-SO₂C₆H₅), 7.99– 8.01 (m, 1 H, o-SO₂C₆H₅) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 13.89, 13.90 (C-6''), 22.3 (C-4'', C-5''), 24.8, 25.4 (C-2''), 25.6, 26.6 (C-3''), 31.09, 31.13 (C-4'', C-5''), 40.0, 40.3 (C-3), 53.13, 53.20 (C-2), 55.9 (OCH₃), 66.8, 67.0 (C-1), 74.9, 75.9 (C-1''), 114.49, 114.54 (C-4'), 114.8, 115.1 (C-6'), 117.7, 117.8 (C-2'), 128.7, 129.27 (o-SO₂C₆H₅), 129.31, 129.4 (m-SO₂C₆H₅), 134.0 (C-5'), 134.3, 134.5 (p-SO₂C₆H₅), 135.8, 135.9, 136.9, 137.4 (C-1', *i*- $SO_2C_6H_5$, 158.1, 159.2 (C-3') ppm. FTIR (ATR): $\tilde{v} = 1755$ (vs), 1471 (m), 1446 (m), 1403 (m), 1304 (m), 1241 (m), 1217 (m), 1144 (s), 1081 (m), 1044 (m), 1013 (m), 724 (m), 688 (m), 620 (m), 601 (m), 579 (m) cm⁻¹. MS (FAB, 3-nitrobenzyl alcohol + NaI): m/z $(\%) = 684 (5), 682 (5), 649 (3), 545 (2), 534 (100) [M + Na]^+, 532$ (94) [M + Na]⁺, 499 (9), 476 (9), 474 (8), 413 (2), 392 (82) [M + Na - PhSO₂H]⁺, 390 (81) [M + Na - PhSO₂H]⁺, 370 (32) [M -PhSO₂]⁺, 368 (37) [M – PhSO₂]⁺, 349 (7), 323 (19), 259 (1), 214 (5), 205 (10), 187 (27), 176 (12), 133 (10), 119 (14), 109 (11), 105 (14). HRMS (FAB): calcd. for $C_{23}H_{28}BrNNaO_5S^+$ [M + Na]⁺ 532.0764; found 532.0768.

4-(2-Bromo-5-methoxybenzyl)-3-[2-methyl-1-(phenylsulfonyl)propyl]-1,3-oxazolidin-2-one (11c): Yield: 62 mg (37%), colorless foam. $R_f = 0.24$ and 0.27 (hexanes/EtOAc, 3:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): $\delta = 1.19$ [br. d, J = 6.5 Hz, 3 H, CH(CH₃)₂], 1.27 [d, J = 6.5 Hz, 3 H, CH(CH₃)₂], 2.73–2.84 [m, 1 H, CH(CH₃)₂], 2.89 (br. t, J = 13.0 Hz, 1 H, 3-H_A), 3.39 (dd, J = 3.7, 13.0 Hz, 1 H, 3-H_B), 3.64–3.72 (m, 1 H, 1-H_A), 3.80 (s, 3 H, OCH₃), 4.06 (dd, J = 3.4, 8.8 Hz, 1 H, 1-H_B), 4.59 (br. s, 1 H, 2-H), 5.04 (br. d, J = 10.8 Hz, 1 H, CHSO₂C₆H₅), 6.72 (dd, J =3.0, 8.8 Hz, 1 H, 4'-H), 6.78 (d, J = 3.0 Hz, 1 H, 2'-H), 7.60 (d, J= 8.8 Hz, 1 H, 5'-H), 7.55–7.58 (m, 2 H, m-SO₂C₆H₅), 7.64–7.67 (m, 1 H, p-SO₂C₆H₅), 7.94 (br. d, J = 7.3 Hz, 2 H, o-SO₂C₆H₅) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 20.4$ [CH(CH₃)₂], 21.4 [CH(CH₃)₂], 28.5 (C-3), 53.8 (C-2), 55.6 (OCH₃), 67.1 (C-1), 81.2 (CHSO₂C₆H₅), 114.6 (C-4'), 115.0 (C-6'), 117.5 (C-2'), 127.9 (o-SO₂C₆H₅), 129.3 (*m*-SO₂C₆H₅), 134.0 (C-5'), 134.1 (*p*-SO₂C₆H₅), 135.2, 135.9 (C-1', *i*-SO₂C₆H₅), 159.2 (C=O, C-3') ppm. FTIR (ATR): $\tilde{v} = 1751$ (vs), 1474 (m), 1407 (m), 1302 (m), 1241 (m), 1142 (m), 1075 (m), 599 (m), 585 (m), 561 (m) cm⁻¹. MS (FAB, 3nitrobenzyl alcohol + NaI): m/z (%) = 538 (1), 506 (100) [M + Na]⁺, 504 (96) [M + Na]⁺, 479 (5), 418 (1), 395 (1), 364 (79) [M + Na - PhSO₂H]⁺, 362 (80) [M + Na - PhSO₂H]⁺, 342 (52) [M -PhSO₂]⁺, 340 (52) [M – PhSO₂]⁺, 329 (13), 296 (2), 284 (5), 245 (2), 218 (4), 201 (5), 187 (18), 154 (11), 107 (6), 79 (4), 55 (4), 28 (2). HRMS (FAB): calcd. for $C_{21}H_{24}BrNNaO_5S^+$ [M + Na]⁺ 504.0451; found 504.0438.

4-(2-Bromo-5-methoxybenzyl)-3-[(2E)-1-(phenylsulfonyl)but-2-enyl]-**1,3-oxazolidin-2-one (11d):** Yield: 88 mg (52%), colorless foam. $R_{\rm f}$ = 0.13 (hexanes/EtOAc, 5:2). ¹H NMR (300 MHz, CDCl₃): δ = 1.43 (d, J = 6.9 Hz, 1.98 H, 4"-H), 1.51 (d, J = 6.9 Hz, 1.02 H, 4''-H), 2.61 (dd, J = 9.6, 13.7 Hz, 0.33 H, 3-H), 2.67 (dd, J = 9.6, 13.7 Hz, 0.67 H, 3-H), 3.38-3.46 (m, 1 H, 3-H), 3.68-3.77 (m, 1 H, 3"-H), 3.79, 3.80 (2 s, 3 H, OCH₃), 4.11–4.27 (m, 2 H, 1-H), 4.26– 4.46 (m, 1 H, 2-H), 5.23 (dd, J = 8.3, 14.6 Hz, 0.66 H, 2''-H), 5.24 (dd, J = 8.7, 14.6 Hz, 0.34 H, 2''-H), 6.57 (d, J = 14.6 Hz, 0.33 H)1''-H), 6.60 (d, J = 14.6 Hz, 0.67 H, 1''-H), 6.70–6.76 (m, 2 H, 3'-H, 4'-H), 7.43-7.49 (m, 1 H, 5'-H), 7.51-7.55 (m, 2 H, m-SO₂C₆H₅), 7.56–7.69 (m, 1 H, p-SO₂C₆H₅), 7.85–7.91 (m, 2 H, o- $SO_2C_6H_5$) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 14.0, 14.2 (C-4"), 36.3, 36.8 (C-3), 53.1, 53.2 (C-2), 55.59, 55.63 (OCH₃), 62.2, 62.5 (C-3''), 65.9, 66.2 (C-1), 103.5, 104.1 (C-2''), 114.66, 114.73 (C-3', C-4'), 114.8 (C-6'), 117.8, 118.0 (C-3', C-4'), 128.2, 128.4 (C-1''), 129.0, 129.05, 129.11, 129.2 (o-, m-SO₂C₆H₅), 133.9, 134.0 (C-5', p-SO₂C₆H₅), 135.4, 135.6, 136.9, 137.2 (C-1', *i*-SO₂C₆H₅), 154.7, 159.2 (C=O, C-3') ppm. FTIR (ATR): v = 1753 (vs), 1663 (m), 1475 (m), 1446 (m), 1408 (s), 1291 (m), 1224 (m), 1135 (s), 1082 (s), 1012 (m), 951 (m), 757 (m), 728 (s), 690 (s), 666 (m), 599 (m), 586 (m), 570 (m), 547 (m) cm⁻¹. MS (ESI): m/z (%) = 983 (6) $[2 M + Na]^+$, 520 (21) $[M + K]^+$, 518 (18) $[M + K]^+$, 504 (100) [M+ Na]⁺, 502 (95) [M + Na]⁺. HRMS (ESI): calcd. for $C_{21}H_{22}BrNNaO_5S^+$ [M + Na]⁺ 502.0300; found 502.0303.

3-[2-(Benzyloxy)-1-(phenylsulfonyl)ethyl]-4-(2-bromo-5-methoxybenzyl)-1,3-oxazolidin-2-one (11e): Yield: 75 mg (38%), colorless foam. $R_{\rm f}$ = 0.10 (hexanes/EtOAc, 5:1). ¹H NMR (300 MHz, CDCl₃): δ = 2.79 (dd, J = 10.7, 13.7 Hz, 0.5 H, 3-H_A), 2.87 (dd, J = 10.7, 13.7 Hz, 0.5 H, 3-H_A), 3.29 (dd, J = 3.7, 13.7 Hz, 0.5 H, 3-H_B), $3.62 (dd, J = 3.7, 13.7 Hz, 0.5 H, 3-H_B), 3.73, 3.74 (2 s, 3 H, 3.74)$ OCH₃), 3.77-3.88 (m, 2 H, CHCH₂OCH₂C₆H₅), 4.06-4.39 (m, 3 H, 2-H, 1-H, CHCH₂OCH₂C₆H₅), 4.50–4.61 (m, 2 H, 1-H, CHCH₂OCH₂C₆H₅), 5.14–5.18 (m, 0.5 H, CHCH₂OCH₂C₆H₅), 5.38–5.43 (m, 0.5 H, CHCH₂OCH₂C₆H₅), 6.70 (ddd, J = 1.0, 3.0,8.8 Hz, 1 H, 4'-H), 6.75 (dd, J = 1.0, 3.0 Hz, 1 H, 2-H), 7.18–7.36 (m, 5 H, o-, m-, p-CH₂C₆H₅), 7.44 (dd, J = 1.6, 8.8 Hz, 1 H, 5'-H), 7.52–7.60 (m, 2 H, m-SO₂C₆H₅), 7.65–7.72 (m, 1 H, p-SO₂C₆H₅), 7.89–7.98 (m, 2 H, o-SO₂C₆H₅) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3): \delta = 34.3, 39.6 \text{ (C-3)}, 48.3 \text{ (C-2)}, 50.0$ (CHCH₂OCH₂C₆H₅), 55.49, 55.50 (OCH₃), 68.9 (C-1), 70.2 (CHCH₂OCH₂C₆H₅), 72.6 (CHCH₂OCH₂C₆H₅), 110.0 (C-2'), 116.0 (C-6'), 117.5, 117.7 (C-4'), 127.6, 127.8, 127.9, 128.0, 128.1

FULL PAPER

(o-, m-, p-CH₂C₆H₅), 128.5, 129.1 (o-SO₂C₆H₅), 129.3, 129.4 (m-SO₂C₆H₅), 131.8 (C-5'), 134.4 (p-SO₂C₆H₅), 155.1, 156.3, 156.7, 159.1 (C-3', C=O) ppm. FTIR (ATR): $\tilde{v} = 1746$ (vs), 1460 (m), 1438 (m), 1409 (m), 1289 (m), 1241 (m), 1216 (m), 1145 (m), 1079 (s), 1011 (m), 984 (m), 806 (m), 737 (s), 697 (s), 688 (s), 600 (m), 581 (s), 553 (m), 523 (m) cm⁻¹. MS (ESI): m/z (%) = 600 (6) [M + K]⁺, 598 (6) [M + K]⁺, 584 (86) [M + Na]⁺, 582 (100) [M + Na]⁺, 560 (4), 558 (4), 487 (2), 473 (3), 458 (4), 456 (4), 442 (89) [M + H + Na - SO₂Ph]⁺, 440 (87) [M + H + Na - SO₂Ph]⁺, 420 (2), 418 (2), 387 (3), 362 (7). HRMS (ESI): calcd. for C₂₆H₂₆BrNNaO₆S⁺ [M + Na]⁺ 582.0556; found 582.0549.

4-(2-Bromo-5-methoxybenzyl)-3-[2-[(4-methoxybenzyl)oxy]-1-(phenylsulfonyl)ethyl]-1,3-oxazolidin-2-one (11h): Yield: 79 mg (40%), colorless solid. M.p. 37–40 °C. $R_f = 0.33$ (hexanes/EtOAc, 2:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.77$ (dd, J = 10.6, 13.6 Hz, 1 H, 3-H), 2.86 (dd, J = 10.9, 13.6 Hz, 1 H, 3-H), 3.24 (dd, J = 3.8, 13.6 Hz, 0.55 H, 3-H), 3.61 (dd, J = 3.6, 13.6 Hz, 0.48 H, 3-H), 3.74, 3.77, 3.78, 3.79 (4 s, 6 H, OCH₃), 4.08 (q, J = 8.1 Hz, 0.67 H, 1-H), 4.11–4.17 (m, 1.9 H, 1-H, CHCH₂OCH₂C₆H₅OCH₃), 4.19 (dd, J = 5.3, 11.2 Hz, 0.62 H, CHCH₂OCH₂C₆H₅OCH₃), 4.24– 4.35 (m, 1.5 H, 2-H, CHCH₂OBn), 4.41 (d, J = 11.4 Hz, 0.46 H, $OCH_2C_6H_5OCH_3$), 4.46 (d, J = 11.4 Hz, 0.47 H, $OCH_2C_6H_5$ - OCH_3), 4.47 (d, J = 11.4 Hz, 0.54 H, $OCH_2C_6H_5OCH_3$), 4.53 (d, $J = 11.4 \text{ Hz}, 0.57 \text{ H}, \text{ OCH}_2\text{C}_6\text{H}_5\text{OCH}_3), 4.60-4.65 \text{ (m}, 0.58 \text{ H}, 2-100 \text{ Hz})$ H), 5.15 (dd, J = 5.1, 8.7 Hz, 0.47 H, CHCH₂OCH₂C₆H₅OCH₃), 5.38 (dd, J = 5.5, 7.5 Hz, 0.53 H, CHCH₂OCH₂C₆H₅OCH₃), 6.70 (dd, J = 1.2, 3.1 Hz, 1 H, 4'-H), 6.71 (dd, J = 1.2, 3.1 Hz, 0.5 H)4'-H), 6.74 (dd, J = 3.0, 4.5 Hz, 1 H, 2'-H), 6.81–6.85 (m, 2 H, o- $C_6H_5OCH_3$, 7.14–7.20 (m, 2 H, *m*- $C_6H_5OCH_3$), 7.44 (dd, J = 2.5, 8.8 Hz, 1 H, 5'-H), 7.52–7.60 (m, 2 H, m-SO₂C₆H₅), 7.65–7.72 (m, 1 H, p-SO₂C₆H₅), 7.89–7.91 (m, 1 H, o-SO₂C₆H₅), 7.96–7.98 (m, 1 H, o-SO₂C₆H₅) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 39.5, 40.3 (C-3), 53.5 (C-2), 55.26, 55.28, 55.50, 55.54 (OCH₃), 62.9, 63.7 (CHCH₂OCH₂C₆H₅OCH₃), 67.16, 67.22 (C-1), 73.0, 73.1 (OCH₂C₆H₅), 73.6, 74.6 (CHCH₂OCH₂C₆H₅OCH₃), 113.9, 114.0 (o-C₆H₅OCH₃), 114.4, 114.6 (C-4'), 114.8, 115.1 (C-6'), 117.5, 117.7 (C-2'), 128.3, 128.5 (C-1', i-SO₂C₆H₅, p-C₆H₅OCH₃), 128.7, 129.1 (o-SO₂C₆H₅), 129.3, 129.4 (m-SO₂C₆H₅), 129.6, 129.8 (m-C₆H₅OCH₃), 134.4, 134.5 (*p*-SO₂C₆H₅), 135.9, 136.0 (C-1', *i*-SO₂C₆H₅, p-C₆H₅OCH₃), 137.6, 137.8 (C-1', i-SO₂C₆H₅, p-C₆H₅OCH₃), 159.12, 159.16, 159.55, 159.57, 157.5, 157.9 (C-3', *i*-C₆H₅OCH₃, C=O) ppm. FTIR (ATR): $\tilde{v} = 1754$ (vs), 1513 (m), 1473 (m), 1446 (m), 1405 (m), 1304 (m), 1242 (s), 1210 (m), 1174 (m), 1144 (s), 1080 (m), 1062 (m), 1031 (m), 1012 (m), 815 (m), 756 (m), 724 (m), 687 (m), 584 (s), 552 (m), 522 (m) cm⁻¹. MS (FAB, 3-nitrobenzyl alcohol + NaI): m/z (%) = 764 (2), 686 (1), 614 (96) $[M + Na]^+$, 612 (89) $[M + Na]^+$, 472 (11) $[M + H + Na - SO_2Ph]^+$, 470 (11) [M + H + Na - SO₂Ph]⁺, 352 (4), 329 (48), 307 (4), 245 (2), 187 (3), 177 (5), 154 (38), 121 (100) [CH₂C₆H₅OCH₃]⁺, 83 (11), 81 (9), 69 (16), 57 (16), 43 (7). HRMS (FAB): calcd. for $C_{27}H_{28}BrNNaO_7S^+$ [M + Na]⁺ 612.0662; found 612.0661.

(4*S*)-4-(4-Methoxybenzyl)-3-[1-(phenylsulfonyl)butyl]-1,3-oxazolidin-2-one (12a): With butyraldehyde. Yield: 90 mg (31%), colorless solid. M.p. 94–96 °C. $R_{\rm f}$ = 0.27 and 0.22 (hexanes/EtOAc, 3:1). [*a*]₂²² = +97.35 (*c* = 1.0, CH₂Cl₂). Major diastereomer: ¹H NMR (300 MHz, CDCl₃): δ = 0.99 (t, *J* = 7.4 Hz, 2 H, 4''-H), 1.43–1.66 (m, 2 H, 3''-H), 2.08–2.30 (m, 1 H, 2''-H), 2.60 (dd, *J* = 11.3, 13.1 Hz, 1 H, 3-H_A), 3.30 (dd, *J* = 3.6, 13.1 Hz, 1 H, 3-H_B), 3.81 (s, 3 H, OCH₃), 3.88 (dd, *J* = 8.0, 8.8 Hz, 1 H, 1-H_A), 3.99 (dd, *J* = 4.3, 8.8 Hz, 1 H, 1-H_B), 4.50–4.59 (m, 1 H, 2-H), 5.19 (dd, *J* = 4.3, 10.9 Hz, 1 H, 1''-H), 6.85–6.91 (m, 2 H, 3'-H, 5'-H), 7.11–7.16 (m, 2 H, 2'-H, 6'-H), 7.56–7.61 (m, 2 H, *m*-C₆H₅), 7.67–7.72 (m, 1 H, *p*-C₆H₅), 7.92–7.95 (m, 2 H, *o*-C₆H₅) ppm. ¹³C NMR (75 MHz,

CDCl₃): $\delta = 13.4$ (C-4''), 19.1 (C-3''), 27.7 (C-2''), 38.9 (C-3), 55.3 (OCH₃), 67.6 (C-1), 74.4 (C-1''), 114.5 (C-3', C-5'), 127.2 (C-1'), 128.6 (o-C₆H₅), 129.5 (m-C₆H₅), 130.2 (C-2', C-6'), 134.6 (p-C₆H₅), 136.9 (i-C₆H₅), 158.2, 158.9 (C=O, C-5') ppm. FTIR (ATR): $\tilde{v} = 1749$ (vs), 1512 (s), 1446 (m), 1403 (m), 1304 (m), 1289 (m), 1246 (s), 1195 (m), 1178 (m), 1143 (s), 1079 (m), 1029 (m), 999 (m), 758 (m), 722 (m), 714 (m), 687 (m), 614 (m), 576 (s), 549 (m), 535 (m), 524 (m) cm⁻¹. MS (CI, 70 eV): m/z (%) = 523 (9) [2 (M - C₆H₅SO₂) - H]⁺, 474 (1), 469 (13), 458 (3), 415 (6), 375 (4), 350 (4), 332 (13), 258 (2), 278 (7), 267 (25), 262 (80) [M - C₆H₅SO₂]⁺, 251 (15), 218 (7), 208 (46), 178 (3), 159 (6), 147 (11), 143 (71), 125 (100), 121 (33) [CH₂C₆H₅OCH₃]⁺, 94 (7), 78 (21), 55 (16). C₂₁H₂₅NO₅S (403.49): calcd. C 62.51, H 6.25, N 3.47; found C 62.31, H 6.23, N 3.37.

(4S)-4-(4-Methoxybenzyl)-3-[1-(phenylsulfonyl)hexyl]-1,3-oxazolidin-2-one (12b): With hexanal. Yield: 147 mg (11%). Colorless foam. $R_{\rm f} = 0.13$ and 0.17 (hexanes/EtOAc, 7:2). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 0.85-0.88 \text{ (m, 3 H, 6''-H)}, 1.26-1.61 \text{ (m, 6)}$ H, 3''-H, 4''-H, 5''-H), 2.09–2.23 (m, 1 H, 2''-H_A), 2.23–2.30 (m, 1 H, 2^{''}-H_B), 2.59 (dd, J = 11.4, 13.1 Hz, 0.56 H, 3-H), 2.68 (dd, *J* = 10.3, 13.5 Hz, 0.42 H, 3-H), 3.30 (dd, *J* = 3.7, 13.1 Hz, 0.55 H, 3-H), 3.46-3.55 (m, 0.45 H, 3-H), 3.80 (2 s, 3 H, OCH₃), 3.88 (dd, *J* = 8.1, 8.8 Hz, 0.56 H, 1-H), 3.99 (dd, *J* = 4.4, 8.8 Hz, 0.56 H, 1-H), 4.06–4.16 (m, 1.32 H, 1-H, 2-H), 4.52–4.56 (m, 0.53 H, 2-H), 4.84 (br. d, J = 6.6 Hz, 0.38 H, 1''-H), 5.17 (br. d, J = 9.1 Hz, 0.51 H, 1''-H), 6.86-6.88 (m, 1 H, 3'-H, 5'-H), 6.88-6.90 (m, 1 H, 3'-H, 5'-H), 7.12-7.15 (m, 1 H, 2'-H, 6'-H), 7.14 (m, 1 H, 2'-H, 6'-H), 7.57–7.61 (m, 2 H, m-SO₂C₆H₅), 7.70–7.71 (m, 1 H, p- $SO_2C_6H_5$), 7.93 (d, J = 7.3 Hz, 1 H, $o-SO_2C_6H_5$), 7.97 (d, J =7.3 Hz, 1 H, o-SO₂C₆H₅) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 13.88, 13.90 (C-6''), 22.27, 22.30, 24.8, 25.4, 25.7, 25.9, 31.05, 31.10 (C-2'', C-3'', C-4'', C-5''), 38.9, 39.0 (C-3), 55.29, 55.31 (C-2, OCH₃), 55.9 (C-2), 67.57, 67.60 (C-1), 74.6, 75.9 (C-1''), 114.5 (C-3', C-5'), 127.2 (C-1'), 128.6, 129.27 (o-SO₂C₆H₅), 129.30, 129.5 $(m-SO_2C_6H_5)$, 130.1, 130.2 (C-2', C-6'), 134.3, 134.6 $(p-SO_2C_6H_5)$, 136.9, 137.1 (*i*-SO₂C₆H₅), 158.2, 158.8, 158.9 (C-4', C=O) ppm. FTIR (ATR): $\tilde{v} = 1752$ (vs), 1512 (m), 1404 (m), 1303 (m), 1247 (s), 1178 (m), 1144 (s), 1080 (m), 1030 (m), 751 (m), 722 (m), 715 (m), 688 (m), 578 (s), 550 (m) cm⁻¹. MS (FAB, 3-nitrobenzyl alcohol + NaI): m/z (%) = 885 (2) [2 M + Na]⁺, 604 (7), 454 (100) $[M + Na]^+$, 413 (2), 328 (2), 312 (1) $[M + Na - PhSO_2H]^+$, 290 (56) [M – PhSO₂]⁺, 197 (2), 187 (13), 165 (5), 121 (14) [H₃COC₆H₅CH₂]⁺, 55 (19). HRMS (FAB): calcd. for C₂₃H₂₉NNaO₅S [M + Na]⁺ 454.1659; found 454.1670.

(4S)-4-(4-Methoxybenzyl)-3-[2-methyl-1-(phenylsulfonyl)propyl]-1,3oxazolidin-2-one (12c): With isobutyraldehyde. Yield: 102 mg (52%). Colorless foam. $R_{\rm f}$ = 0.22 (hexanes/EtOAc, 7:2). Major diastereomer: ¹H NMR (300 MHz, CDCl₃): δ = 1.18 [d, J = 6.5 Hz, 3 H, CH(CH₃)₂], 1.28 [d, J = 6.5 Hz, 3 H, CH(CH₃)₂], 2.63 (dd, J = 11.7, 13.0 Hz, 1 H, 3-H_A), 2.66–2.76 [m, 1 H, CH(CH₃)₂], 3.36 (dd, J = 3.3, 13.0 Hz, 1 H, 3-H_B), 3.53–3.75 (m, 1 H, 1-H_A), 3.80 (s, 3 H, OCH₃), 3.94 (dd, J = 4.4, 8.8 Hz, 1 H, 1-H_B), 4.33–4.49 (m, 1 H, 2-H), 5.05 (br. d, J = 10.4 Hz, 1 H, $CHSO_2C_6H_5$), 6.85– 6.90 (m, 2 H, 3'-H, 5'-H), 7.10-7.15 (m, 2 H, 2'-H, 6'-H), 7.53-7.59 (m, 2 H, m-SO₂C₆H₅), 7.63–7.69 (m, 1 H, p-SO₂C₆H₅), 7.94 (d, J = 7.3 Hz, 2 H, o-SO₂C₆H₅) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 20.4, 21.2 [CH(CH₃)₂], 28.6 [CH(CH₃)₂], 39.0 (C-3), 55.3 (OCH₃), 55.7 (C-2), 67.6 (C-1), 80.7 (CHSO₂C₆H₅), 114.5 (C-3', C-5'), 127.2 (C-1'), 127.8 (o-SO₂C₆H₅), 129.3 (m-SO₂C₆H₅), 130.2 (C-2', C-6'), 134.2 (p-SO₂C₆H₅), 139.2 (i-SO₂C₆H₅), 158.9 (C=O, C-4') ppm. FTIR (ATR): $\tilde{v} = 1748$ (vs), 1512 (s), 1446 (m), 1301 (m), 1247 (s), 1178 (m), 1141 (s), 1073 (m), 1029 (m), 759 (m), 729 (m), 712 (m), 689 (m), 608 (m), 578 (s), 546 (m), 523 (m) cm⁻¹. MS (FAB, 3-nitrobenzyl alcohol + NaI): m/z (%) = 487 (2), 449 (1), 434 (2), 426 (100) [M + Na]⁺, 402 (1), 363 (4), 337 (1), 300 (1), 285 (14), 284 (81) [M + Na - PhSO₂H]⁺, 262 (82) [M - PhSO₂]⁺, 230 (1), 189 (1), 187 (18), 165 (1), 147 (7), 133 (7), 121 (18) [H₃COC₆H₅CH₂]⁺, 92 (10), 72 (9), 63 (18), 51 (1), 27 (1). HRMS (FAB): calcd. for C₂₁H₂₅NNaO₅S [M + Na]⁺ 426.1346; found 426.1340.

(4S)-4-(4-Methoxybenzyl)-3-[(2E)-1-(phenylsulfonyl)but-2-enyl]-1,3oxazolidin-2-one (12d): With crotonaldehyde. Yield: 86 mg (44%). Colorless foam. $R_f = 0.12$ (hexanes/EtOAc, 2:1). ¹H NMR (500 MHz, CDCl₃): δ = 1.48 (d, J = 7.0 Hz, 2.1 H, 4''-H), 1.52 (d, J = 7.0 Hz, 0.9 H, 4^{''}-H), 2.70–2.80 (m, 1 H, 3-H_A), 3.00 (dd, J =3.1, 14.1 Hz, 0.3 H, 3-H_B), 3.05 (dd, J = 3.1, 14.1 Hz, 0.7 H, 3-H_B), 3.77–3.81 (m, 1 H, 3^{''}-H), 3.80 (s, 3 H, OCH₃), 4.17–4.27 (m, 3 H, 1-H, 2-H), 5.00 (dd, J = 9.0, 14.7 Hz, 0.2 H, 1''-H), 5.05 (dd, J = 8.0, 14.7 Hz, 0.8 H, 1''-H), 6.58 (dd, J = 0.8, 14.7 Hz, 0.3 H,2''-H), 6.60 (dd, *J* = 0.8, 14.7 Hz, 0.7 H, 2''-H), 6.85 (d, *J* = 8.7 Hz, 0.3 H, 3'-H, 5'-H), 6.84–6.88 (m, 2 H, 3'-H, 5'-H), 6.98–7.01 (m, 0.6 H, 2'-H, 6'-H), 7.03-7.06 (m, 1.4 H, 2'-H, 6'-H), 7.52-7.56 (m, 2 H, m-SO₂C₆H₅), 7.63–7.69 (m, 1 H, p-SO₂C₆H₅), 7.86–7.89 (m, 2 H, o-SO₂C₆H₅) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 13.9, 14.3 (C-4''), 34.9, 35.3 (C-3), 54.6, 54.9 (C-2), 55.3 (OCH₃), 62.1, 62.5 (C-3''), 66.4, 66.7 (C-1), 102.7, 103.5 (C-1''), 114.4, 114.5 (C-2', C-6'), 126.3, 126.5 (C-1'), 128.5, 128.6 (C-2''), 128.9, 129.1, 129.2 (*o*-, *m*-SO₂C₆H₅), 130.37, 130.42 (C-3', C-5'), 133.89, 133.91 $(p-SO_2C_6H_5)$, 136.9, 137.2 $(i-SO_2C_6H_5)$, 154.8, 159.0 (C-4', C=O)ppm. FTIR (ATR): $\tilde{v} = 1750$ (vs), 1661 (m), 1512 (m), 1410 (s), 1301 (m), 1247 (s), 1179 (m), 1138 (s), 1115 (m), 1083 (m), 1068 (m), 1026 (m), 1000 (m), 952 (m), 818 (m), 754 (m), 728 (s), 690 (m), 666 (m), 587 (m), 547 (m) cm⁻¹. MS (ESI): m/z (%) = 825 (4) $[2 M + Na]^+$, 440 (27) $[M + K]^+$, 425 (27) $[M + Na + H]^+$, 424 (100) $[M + Na]^+$. HRMS (ESI): calcd. for $C_{21}H_{23}NNaO_5S^+$ [M +Na]⁺ 424.1189; found 424.1188.

(4S)-3-[2-(Benzyloxy)-1-(phenylsulfonyl)ethyl]-4-(4-methoxybenzyl)-1,3-oxazolidin-2-one (12e): With benzyloxyacetaldehyde. Yield: 78 mg (22%). Colorless foam. $R_{\rm f} = 0.17$ (hexanes/EtOAc, 3:1). ¹H NMR (300 MHz, CDCl₃): δ = 2.58 (dd, J = 10.5, 13.5 Hz, 0.7 H, 3-H), 2.69 (dd, J = 10.5, 14.0 Hz, 0.3 H, 3-H), 3.15 (dd, J = 3.8, 13.5 Hz, 0.7 H, 3-H), 3.41 (dd, J = 3.8, 14.0 Hz, 0.3 H, 3-H), 3.78 (s, 3 H, OCH₃), 4.02–4.27 (m, 4.5 H, 2-H, 2''-H, OCH₂C₆H₅), 4.40-4.62 (m, 2.9 H, 1-H, 2-H), 5.14 (dd, J = 5.1, 8.9 Hz, 0.3 H, 1''-H), 5.38 (dd, J = 5.4, 6.7 Hz, 0.6 H, 1''-H), 6.78–6.83 (m, 2 H, 3'-H, 5'-H), 6.92–6.97 (m, 0.6 H, 2'-H, 6'-H), 7.00–7.05 (m, 1.4 H, 2'-H, 6'-H), 7.24–7.38 (m, 5 H, o-, m-, p-OCH₂C₆H₅), 7.52–7.60 (m, 2 H, m-C₆H₅SO₂), 7.64–7.72 (m, 2 H, p-C₆H₅SO₂), 7.88–7.98 (m, 2 H, o-C₆H₅SO₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 38.6, 39.1 (C-3), 55.3 (OCH₃), 55.4, 55.8 (C-2), 63.1, 64.8 (C-2''), 67.7, 67.9 (OCH₂C₆H₅), 73.4, 73.6 (C-1"), 74.6 (C-1"), 114.28, 114.34 (C-3', C-5'), 127.2, 127.3 (C-1'), 128.1, 128.2 (o-, m-, p-OCH₂C₆H₅), 128.3 (o-OCH₂C₆H₅), 128.5, 128.65, 128.68, 129.1 (o-C₆H₅SO₂), 129.3, 129.4 (*m*-C₆H₅SO₂), 130.0, 130.3 (C-2', C-6'), 134.4, 134.5 (*p*-C₆H₅SO₂), 136.5, 136.7, 137.6, 137.7 (*i*-OCH₂C₆H₅, i-C₆H₅SO₂), 157.6, 158.0, 158.7, 158.8 (C-4', C=O) ppm. FTIR (ATR): $\tilde{v} = 1752$ (vs), 1512 (s), 1405 (m), 1304 (m), 1247 (s), 1214 (m), 1178 (m), 1144 (s), 1114 (m), 1079 (m), 1029 (m), 736 (m), 698 (m), 687 (s) 578 (s) cm⁻¹. MS (CI, 70 eV): m/z (%) = 697 (1) [2 $(M - C_6H_5SO_2) + C_2H_5]^+$, 679 (10) $[2 (M - C_6H_5SO_2) + H]^+$, 589 (6), 550 (1), 499 (5), 460 (6), 430 (10), 390 (1), 368 (4), 340 (100) $[M - C_6H_5SO_2]^+$, 322 (3), 262 (3), 250 (48), 218 (31), 176 (5), 147 (17), 121 (65) $[H_3COC_6H_5CH_2]^+$, 91 (33) $[C_7H_7]^+$, 77 (5), 65 (3). C₂₆H₂₇NO₆S (481.56): calcd. C 64.85, H 5.65, N 2.91; found C 64.94, H 5.70, N 2.79.

Ethyl Hydroxy[4-(4-methoxybenzyl)-2-oxo-1,3-oxazolidin-3-yl]acetate (15): Yield: 77 mg (51%). Colorless oil. $R_{\rm f} = 0.15$ (hexanes/ EtOAc, 2:1). ¹H NMR (500 MHz, CDCl₃): $\delta = 1.35$, 1.36 (t, J =7.1 Hz, 3 H, CH_2CH_3), 2.63 (dd, J = 9.5, 13.8 Hz, 0.29 H, 3-H_A), 2.79 (dd, *J* = 8.7, 13.8 Hz, 0.75 H, 3-H_A), 3.06 (dd, *J* = 4.2, 13.9 Hz, 0.27 H, $3-H_B$), 3.17 (dd, J = 4.7, 13.9 Hz, 0.75 H, $3-H_B$), 3.80 (s, 3H, OCH₃), 4.05 (dd, J = 6.1, 8.2 Hz, 1 H, 1-H_A), 4.10–4.18 (m, 1 H, 2-H), 4.21 (dd, J = 8.2, 16.4 Hz, 1 H, 1-H_B), 4.37 (q, J = 7.2 Hz, 2 H, CH₂CH₃), 5.31 (s, 0.7 H, 1"-H), 5.41 (s, 0.23 H, 1"-H), 6.83-6.88 (m, 2 H, 3'-H, 5'-H), 7.07–7.14 (m, 2 H, 2'-H, 6'-H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 14.07, 14.13 (CH₂CH₃), 38.1, 38.8 (C-3), 55.2, 55.8 (C-2), 55.3 (OCH₃), 63.16, 63.27 (CH₂CH₃), 67.60, 67.63 (C-1), 74.8, 74.9 (C-1''), 114.38, 114.39 (C-3', C-5'), 126.95, 127.05 (C-1'), 130.08, 130.16 (C-2', C-6'), 157.4, 157.6 (COH), 158.8 (C-4'), 169.1, 170.3 (COO) ppm. FTIR (ATR): $\tilde{v} = 1734$ (vs), 1512 (s), 1418 (br., m), 1299 (m), 1243 (br., s), 1178 (s), 1113 (m), 1067 (br., m), 1023 (br., s) cm⁻¹. MS (FAB, 3-nitrobenzyl alcohol): m/z (%) = 332 (6) [M + Na]⁺, 310 (12) [M + H]⁺, 309 (14) [M]⁺, 292 (40) $[M + OH]^+$, 259 (4), 236 (9), 218 (100) $[M - H - CO_2$ - $C_{2}H_{5}^{+}$, 208 (5), 188 (5), 174 (7), 151 (6), 147 (14), 121 (21) [CH₂C₆H₅OCH₃]⁺, 107 (7), 91 (9), 83 (8), 69 (10), 57 (12), 43 (13). HRMS (FAB): calcd. for C₁₅H₁₉NO₆ [M]⁺ 309.1212; found 309.1220.

4-(2-Bromo-5-methoxybenzyl)-3-[2-hydroxy-1-(phenylsulfonyl)ethyl]-1,3-oxazolidin-2-one (16): Yield: 19 mg (50%). Colorless crystalline solid. M.p. 124–125 °C. $R_f = 0.12$ and 0.17 (hexanes/EtOAc, 2:1). Major diastereomer: ¹H NMR (300 MHz, CDCl₃): δ = 2.74 (t, J = 6.7 Hz, 1 H, OH), 2.92 (dd, J = 10.8, 13.4 Hz, 1 H, 3-H_A), 3.41 $(dd, J = 3.7, 13.4 Hz, 1 H, 3-H_B), 3.79 (s, 3 H, OCH_3), 4.10 (dd, J)$ $= 7.7, 8.8 \text{ Hz}, 1 \text{ H}, 1 \text{-H}_{A}, 4.22 \text{ (dd, } J = 2.7, 8.8 \text{ Hz}, 1 \text{ H}, 1 \text{-H}_{B},$ 4.44 (dd, J = 5.6, 6.7 Hz, 1 H, CH₂OH), 4.64–4.72 (m, 1 H, 2-H), 5.25 (t, J = 5.6 Hz, 1 H, CHCH₂OH), 6.72 (dd, J = 3.0, 8.8 Hz, 1 H, 4'-H), 6.83 (d, J = 3.0 Hz, 1 H, 2'-H), 7.47 (d, J = 8.8 Hz, 1 H, 5'-H), 7.57-7.69 (m, 2 H, m-SO₂C₆H₅), 7.71-7.74 (m, 1 H, p-SO₂C₆H₅), 7.93–7.99 (m, 2 H, o-SO₂C₆H₅) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3): \delta = 39.6 \text{ (C-3)}, 54.4 \text{ (C-2)}, 55.6 \text{ (OCH}_3), 58.7$ (CH₂OH), 67.5 (C-1), 75.1 (CHCH₂OH), 114.6 (C-4'), 115.2 (C-6'), 117.5 (C-2'), 128.6 (o-SO₂C₆H₅), 129.6 (m-SO₂C₆H₅), 133.9 (C-5'), 134.8 (*p*-SO₂C₆H₅), 136.1, 137.4 (C-1', *i*-SO₂C₆H₅), 158.2, 159.2 (C-3', C=O) ppm. FTIR (ATR): $\tilde{v} = 1717$ (vs), 1470 (m), 1415 (m), 1322 (m), 1308 (m), 1281 (m), 1252 (m), 1233 (m), 1218 (m), 1197 (m), 1183 (m), 1162 (m), 1145 (m), 1133 (m), 1116 (m), 1085 (m), 1069 (m), 1055 (m), 1000 (m), 806 (m), 774 (m), 766 (m), 727 (m), 686 (m), 609 (m), 598 (m), 576 (m) cm⁻¹. MS (ESI): m/z $(\%) = 963 (9) [2 M + Na]^+, 510 (15) [M + K]^+, 508 (13) [M + K]^+,$ 494 (100) [M + Na]⁺, 492 (93) [M + Na]⁺, 352 (42), 350 (45). HRMS (ESI): calcd. for $C_{19}H_{20}BrNNaO_6S^+$ [M + Na]⁺ 492.0087; found 492.0088.

General Procedure for the Preparation of Tetrahydroisoquinolines 13 and 14: To a solution of either 11 or 12 (1 equiv.) in CH_2Cl_2 (3– 5 mL) in a Schlenk flask under inert gas at -78 °C was added TiCl₄ (ca. 3.5 equiv.) by syringe, and the reaction mixture was stirred for the given time (Table 1). After the addition of brine (10 mL), the reaction mixture was warmed to room temperature. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layer was dried (Na₂SO₄) and concentrated. Crude product 13 or 14 was chromatographed on SiO₂ with hexanes/EtOAc.

9-Bromo-6-methoxy-5-propyl-1,5,10,10a-tetrahydro[1,3]oxazolo-[3,4-*b***]isoquinolin-3-one (13a): Yield: 22 mg (56%). Colorless crystalline solid. M.p. 137 °C. R_f = 0.33 (hexanes/EtOAc, 5:1). ¹H NMR (300 MHz, CDCl₃): \delta = 0.98 (t, J = 7.2 Hz, 3 H,** CH₂CH₂CH₃), 1.28–1.59 (m, 3 H, CH₂CH₂CH₃), 1.92–1.93 (m, 1 H, $CH_2CH_2CH_3$), 2.64 (dd, J = 10.4, 17.0 Hz, 1 H, 10-H_A), 3.12 $(dd, J = 5.5, 17.0 \text{ Hz}, 1 \text{ H}, 10 \text{ H}_{B}), 3.83 (s, 3 \text{ H}, \text{OC}H_{3}), 4.07 \text{--} 4.16$ (m, 1 H, 10a-H), 4.19 (dd, J = 3.3, 8.6 Hz, 1 H, 1-H), 4.55 (dd, J= 7.8, 8.6 Hz, 1 H, 1-H), 5.03 (dd, J = 2.5, 10.1 Hz, 1 H, 5-H), 6.68 (d, J = 8.8 Hz, 1 H, 7-H), 7.42 (d, J = 8.8 Hz, 1 H, 8-H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 13.6 (CH₂CH₂CH₃), 19.7 (CH₂CH₂CH₃), 34.2 (C-10), 36.0 (CH₂CH₂CH₃), 47.0 (C-10a), 48.8 (C-5), 55.6 (OCH₃), 68.7 (C-1), 110.1 (C-7), 115.8 (C-9), 128.5 (C-9a, C-5a), 131.2 (C-8), 131.6 (C-9a, C-5a), 155.0, 156.8 (C-6, C-3) ppm. FTIR (ATR): $\tilde{v} = 1739$ (vs), 1460 (m), 1425 (m), 1289 (m), 1273 (m), 1255 (s), 1230 (m), 1079 (s), 1044 (m), 1014 (m), 993 (m), 966 (m), 820 (m), 756 (m), 619 (m) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 341 (4) $[M]^+$, 339 (4) $[M]^+$, 298 (99) $[M - (CH_2)_2 CH_3]^+$, 296 (100) $[M - (CH_2)_2 CH_3]^+$, 281 (1), 254 (2), 252 (2), 239 (7), 237 (7), 225 (9), 217 (6), 196 (2), 173 (24), 158 (6), 146 (10), 130 (10), 103 (5), 77 (3), 63 (1), 36 (2). C₁₅H₁₈BrNO₃ (340.21): calcd. C 52.96, H 5.33, N 4.12; found C 52.89, H 5.31, N 4.11.

9-Bromo-6-methoxy-5-pentyl-1,5,10,10a-tetrahydro[1,3]oxazolo-[3,4-b]isoquinolin-3-one (13b): Yield: 29 mg (80%). Colorless crystalline solid. M.p. 86–87 °C. $R_{\rm f} = 0.23$ (hexanes/EtOAc, 6:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, J = 7.0 Hz, 3 H, 5'-H), 1.22– 1.55 (m, 7 H, 1'-H, 2'-H, 3'-H, 4'-H), 1.83-1.96 (m, 1 H, 1'-H), 2.64 (dd, J = 10.4, 17.0 Hz, 1 H, 10-H_A), 3.11 (dd, J = 5.6, 17.0 Hz, 1 H, 10-H_B), 3.82 (s, 3 H, OCH₃), 4.06–4.16 (m, 1 H, 10a-H), 4.19 (dd, J = 3.2, 8.6 Hz, 1 H, 1-H), 4.58 (dd, J = 7.8, 8.6 Hz, 1 H, 1-H)H), 4.99-5.02 (m, 1 H, 5-H), 6.66 (d, J = 8.8 Hz, 1 H, 7-H), 7.42(d, J = 8.8 Hz, 1 H, 8-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 14.0 (C-5'), 22.5, 26.1, 31.2 (C-2', C-3', C-4'), 33.7 (C-1'), 34.2 (C-10), 47.0 (C-10a), 49.1 (C-5), 55.6 (OCH₃), 68.7 (C-1), 110.1 (C-7), 115.8 (C-9), 128.6 (C-9a, C-5a), 131.2 (C-8), 131.6 (C-9a, C-5a), 155.0, 156.8 (C-6, C-3) ppm. FTIR (ATR): v = 2958 (m), 2920 (m), 1735 (vs), 1700 (m), 1291 (m), 1267 (m), 1246 (m), 1230 (m), 1200 (m), 1169 (m), 1134 (m), 1111 (m), 1082 (s), 1070 (s), 1052 (m), 1002 (m), 976 (m), 965 (m), 877 (m), 810 (m), 762 (m), 621 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 369 (3) [M]⁺, 367 (3) [M]⁺, 299 (1), 298 (99) $[M - C_5H_{11}]^+$, 296 (100) $[M - C_5H_{11}]^+$, 254 (1), 252 (1), 239 (3), 237 (3), 225 (5), 217 (2), 173 (12), 146 (4), 115 (2). C17H22BrNO3 (368.27): calcd. C 55.44, H 6.02, N 3.80; found C 55.23, H 5.93, N 3.65.

9-Bromo-5-isopropyl-6-methoxy-1,5,10,10a-tetrahydro[1,3]oxazolo-[3,4-b]isoquinolin-3-one (13c): Yield: 18 mg (80%). Colorless crystalline solid. M.p. 161 °C. $R_f = 0.39$ (hexanes/EtOAc, 3:1). ¹H NMR (300 MHz, CDCl₃): δ = 0.82 [d, J = 7.1 Hz, 3 H, CH- $(CH_3)_2$], 1.06 [d, J = 6.8 Hz, 3 H, CH $(CH_3)_2$], 2.36 [sept.d, J_d = 5.2, $J_{sept.} = 6.9$ Hz, 1 H, $CH(CH_3)_2$], 2.64 (dd, J = 9.6, 17.1 Hz, 1 H, 10-H_A), 3.15 (dd, J = 6.2, 17.1 Hz, 1 H, 10-H_B), 3.81 (s, 3 H, OCH₃), 4.12 (dd, J = 3.6, 8.6 Hz, 1 H, 1-H), 4.24–4.33 (m, 1 H, 10a-H), 4.59 (dd, J = 7.9, 8.6 Hz, 1 H, 1-H), 4.98 (d, J = 5.2 Hz, 1 H, 5-H), 6.67 (d, J = 8.8 Hz, 1 H, 7-H), 7.44 (d, J = 8.8 Hz, 1 H, 8-H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 19.1, 19.9 [CH(CH₃)₂], 32.0 [CH(CH₃)₂], 33.8 (C-10), 49.1 (C-10a), 53.8 (C-5), 55.5 (OCH₃), 68.8 (C-1), 110.1 (C-7), 115.8 (C-9), 127.3 (C-5a), 131.3 (C-8), 132.3 (C-9a), 155.4, 157.7 (C-3, C-6) ppm. FTIR (ATR): $\tilde{v} = 1734$ (vs), 1458 (m), 1434 (m), 1421 (m), 1412 (m), 1384 (m), 1290 (m), 1252 (m), 1224 (m), 1069 (s), 1009 (m), 980 (m), 880 (m), 802 (m), 756 (m), 703 (m), 629 (m) cm⁻¹. MS (EI, 70 eV): *m*/*z* $(\%) = 341 (22) [M]^+, 339 (21) [M]^+, 298 (99) [M - CH(CH_3)_2]^+,$ 296 (100) [M - CH(CH₃)₂]⁺, 254 (2), 239 (5), 237 (5), 224 (7), 173 (19), 158 (3), 146 (7), 130 (5), 103 (2), 77 (1), 41 (1), 28 (3). C₁₅H₁₈BrNO₃ (340.21): calcd. C 52.96, H 5.33, N 4.12; found C 53.00, H 5.40, N 4.02.

9-Bromo-6-methoxy-5-[(1*E*)-prop-1-enyl]-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinolin-3-one (13d): Yield: 5 mg (19%). Colorless crystalline solid. M.p. 132–133 °C (Et₂O). $R_{\rm f} = 0.20$ (hexanes/ EtOAc, 3:1). ¹H NMR (300 MHz, CDCl₃): δ = 1.66 (s, 1.5 H, 3'-H), 1.68 (t, J = 1.5 Hz, 1.5 H, 3'-H), 2.64 (dd, J = 10.2, 16.9 Hz, 1 H, 10-H_A), 3.14 (dd, J = 5.2, 16.9 Hz, 1 H, 10-H_B), 3.81 (s, 3 H, OCH₃), 4.05–4.18 (m, 2 H, 10a-H, 1-H), 4.61 (dd, J = 7.6, 8.3 Hz, 1 H, 1-H), 5.34-5.46 (m, 1 H, 2'-H), 5.55-5.64 (m, 2 H, 5-H, 1'-H), 6.68 (d, J = 8.8 Hz, 1 H, 7-H), 7.46 (d, J = 8.8 Hz, 1 H, 8-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 17.6$ (C-3'), 34.5 (C-10), 47.3 (C-10a), 49.5 (C-5), 55.7 (OCH₃), 69.0 (C-1), 110.2 (C-7), 115.8 (C-9), 126.1 (C-5a), 127.3 (C-2'), 127.8 (C-1'), 131.6 (C-8), 132.2 (C-9a), 155.4, 156.4 (C-6, C-3) ppm. FTIR (ATR): v = 1742 (vs), 1459 (m), 1436 (m), 1412 (m), 1288 (m), 1258 (m), 1218 (m), 1081 (m), 1023 (m), 966 (m), 803 (m), 744 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 339 (47) [M]⁺, 337 (46) [M]⁺, 324 (7), 322 (6), 308 (30), 306 (30), 298 (45) [M - CH=CHCH₃]⁺, 296 (100) [M -CH=CHCH₃]⁺, 294 (51), 264 (8), 239 (10), 237 (11), 225 (13), 207 (7), 183 (5), 173 (35), 158 (27), 146 (14), 130 (15), 128 (10), 89 (4), 77 (7), 73 (2), 39 (3). HRMS (ESI): calcd. for C₁₅H₁₆BrNNaO₃⁺ $[M + Na]^+$ 360.0206; found 360.0189.

9-Bromo-6-methoxy-5-phenyl-1,5,10,10a-tetrahydro[1,3]oxazolo-[3,4-b]isoquinolin-3-one (13f): Yield: 5 mg (4%). Colorless solid. M.p. 200–201 °C. $R_f = 0.23$ (hexanes/EtOAc, 5:1). ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 2.73 \text{ (dd}, J = 10.6, 17.0 \text{ Hz}, 1 \text{ H}, 10 \text{-H}_A)$, $3.23 (dd, J = 5.3, 17.0 Hz, 1 H, 10-H_B), 3.60 (s, 3 H, OCH_3), 3.91-$ 3.96 (m, 1 H, 10a-H), 4.14 (dd, J = 4.8, 8.7 Hz, 1 H, 1-H), 4.47(dd, J = 8.0, 8.7 Hz, 1 H, 1-H), 6.21 (s, 1 H, 5-H), 6.68 (d, J =8.8 Hz, 1 H, 7-H), 7.15–7.17 (m, 2 H, 3'-H), 7.25–7.30 (m, 3 H, 2'-H, 4'-H), 7.54 (d, J = 8.8 Hz, 1 H, 8-H) ppm. ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 34.7$ (C-10), 46.9 (C-10a), 52.0 (C-5), 55.7 (OCH₃), 68.9 (C-1), 110.4 (C-7), 115.8 (C-9), 125.4 (C-9a), 127.6 (C-3'), 127.7 (C-4'), 128.4 (C-2'), 132.1 (C-8), 133.0 (C-1', C-5a), 140.6 (C-1', C-5a), 155.6, 156.1 (C-6, C-3) ppm. FTIR (ATR): $\tilde{v} = 1733$ (vs), 1455 (m), 1411 (m), 1386 (m), 1287 (s), 1259 (s), 1223 (m), 1083 (m), 1068 (s), 1014 (m), 983 (m), 809 (m), 754 (m), 602 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 376 (18) [M + H]⁺, 375 (100) $[M]^+$, 374 (18) $[M + H]^+$, 373 (100) $[M]^+$, 358 (1), 330 (4), 328 (4), 314 (9), 298 (75) $[M - C_6H_5]^+$, 296 (76) $[M - C_6H_5]^+$, 252 (2), 239 (5), 237 (5), 226 (37), 224 (37), 209 (13), 194 (7), 178 (9), 173 (19), 146 (10), 130 (6), 104 (6), 77 (5), 51 (2), 39 (1). HRMS (ESI): calcd. for C₁₈H₁₆BrNNaO₃⁺ [M + Na]⁺ 396.0206; found 396.0205.

Methyl 9-Bromo-6-methoxy-3-oxo-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinoline-5-carboxylate (13i): To a solution of 13d (42 mg, 0.124 mmol) in CH₂Cl₂ (5 mL) at -78 °C was added a solution of NaOH (2.5 M in MeOH, 248 µL, 24.8 mg, 620 µmol NaOH). Then, O₃ was passed through the mixture for 10 min followed by oxygen for 5 min. Et₂O and H₂O (4 mL each) were added, and the reaction mixture was warmed to room temperature. The layers were separated, and the aqueous layer was extracted with Et_2O (3×10 mL). The combined organic layers were dried (Na_2SO_4) and concentrated to give 13i as a colorless solid. Yield: 34 mg (69%). M.p. 157-158 °C (Et₂O). ¹H NMR (500 MHz, CDCl₃): δ = 2.64 (dd, J = 10.7, 16.6 Hz, 1 H, 10-H_A), 3.19 (dd, J $= 4.7, 16.6 \text{ Hz}, 1 \text{ H}, 10 \text{-H}_{B}, 3.78 \text{ (s, 3 H, } CO_2 CH_3), 3.81 \text{ (s, 3 H,}$ OCH₃), 4.17–4.21 (m, 1 H, 10a-H), 4.23 (dd, J = 3.7, 8.6 Hz, 1 H, 1-H), 4.60 (dd, J = 7.6, 8.6 Hz, 1 H, 1-H), 5.60 (s, 1 H, 5-H), 6.70 (d, J = 8.8 Hz, 1 H, 7-H), 7.52 (d, J = 8.8 Hz, 1 H, 8-H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 33.5 (C-10), 48.6 (C-10a), 52.2 (C-5), 52.8 (CO₂CH₃), 55.9 (OCH₃), 68.5 (C-1), 110.1 (C-7), 115.9 (C-9), 121.6 (C-5a), 132.6 (C-8), 133.0 (C-9a), 155.7, 156.3 (C-3, C-6), 170.2 (CO_2CH_3) ppm. FTIR (ATR): $\tilde{v} = 1750$ (vs), 1731 (vs), 1578 (m), 1464 (m), 1436 (m), 1416 (m), 1287 (s), 1245 (s), 1217 (m),

1201 (m), 1191 (m), 1080 (s), 1001 (m), 968 (m), 811 (m), 763 (m), 753 (m), 615 (m) cm⁻¹. MS (ESI): m/z (%) = 735 (7) [2 M + Na]⁺, 396 (5), 394 (5), 380 (92) [M + Na]⁺, 378 (100) [M + Na]⁺, 272 (100) [M + H]⁺. HRMS (ESI): calcd. for C₁₄H₁₄BrNNaO₅⁺ [M + Na]⁺ 377.9948; found 377.9950.

7-Methoxy-5-propyl-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinolin-3-one (14a): Yield: 19 mg (68%). Colorless oil. $R_f = 0.32$ (hexanes/EtOAc, 2:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.98$ [t, J = 7.3 Hz, 3 H, (CH₂)₂CH₃], 1.40–1.58 (m, 2 H, CH₂CH₂CH₃), 1.67– 1.79 (m, 1 H, CH₂CH₂CH₃), 1.82–1.93 (m, 1 H, CH₂CH₂CH₃), 2.82-2.85 (m, 2 H, 10-H), 3.80 (s, 3 H, OCH₃), 3.99-4.08 (m, 1 H, 10a-H), 4.14 (dd, J = 3.1, 8.6 Hz, 1 H, 1-H), 4.53 (dd, J = 7.8, 8.6 Hz, 1 H, 1-H), 4.87 (dd, J = 3.8, 9.7 Hz, 1 H, 5-H), 6.70 (d, J = 2.6 Hz, 1 H, 6-H), 6.76 (dd, J = 2.6, 8.4 Hz, 1 H, 8-H), 7.02 (d, J = 8.4 Hz, 1 H, 9-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.9$ [(CH₂)₂CH₃], 19.4 (CH₂CH₂CH₃), 33.2 (C-10), 39.4 (CH₂CH₂CH₃), 48.6 (C-10a), 52.7 (C-5), 55.4 (OCH₃), 68.3 (C-1), 111.9 (C-6), 113.1 (C-8), 123.4 (C-9a), 130.2 (C-9), 137.5 (C-5a), 157.2, 158.4 (C-3, C-7) ppm. FTIR (ATR): $\tilde{v} = 1738$ (vs), 1502 (m), 1415 (m), 1271 (m), 1226 (m), 1203 (m), 1177 (m), 1068 (m), 1034 (m), 1003 (m), 991 (m), 961 (m), 887 (m), 763 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 261 (13) [M]⁺, 219 (13), 218 (100) [M - C₃H₇]⁺, 174 (14), 159 (5), 147 (16), 131 (9), 115 (3), 91 (3), 77 (2), 65 (1), 51 (1), 27 (1). C₁₅H₁₉NO₃ (261.32): calcd. C 68.94, H 7.33, N 5.36; found C 69.06, H 7.43, N 5.09.

7-Methoxy-5-pentyl-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinolin-3-one (14b): Yield: 59 mg (73%). Colorless oil. $R_{\rm f} = 0.25$ (hexanes/EtOAc, 3:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, J =7.0 Hz, 3 H, 5'-H), 1.26–1.52 (m, 6 H, 2'-H, 3'-H, 4'-H), 1.66–1.79 (m, 1 H, 1'-H), 1.84–1.96 (m, 1 H, 1'-H), 2.82–2.85 (m, 2 H, 10-H), 3.79 (s, 3 H, OCH₃), 3.98–4.07 (m, 1 H, 10a-H), 4.14 (dd, J =3.0, 8.6 Hz, 1 H, 1-H), 4.54 (dd, J = 7.8, 8.6 Hz, 1 H, 1-H), 4.86(dd, J = 3.7, 9.6 Hz, 1 H, 5-H), 6.70 (d, J = 2.6 Hz, 1 H, 6-H), 6.76 (dd, *J* = 2.6, 8.4 Hz, 1 H, 8-H), 7.01 (d, *J* = 8.4 Hz, 1 H, 9-H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (C-5'), 22.6, 25.7, 31.6 (C-2', C-3', C-4'), 33.2 (C-10), 37.2 (C-1'), 48.7 (C-10a), 53.0 (C-5), 55.4 (OCH₃), 68.3 (C-1), 111.9 (C-6), 113.0 (C-8), 123.7 (C-9a), 130.2 (C-9), 137.5 (C-5a), 157.2, 158.4 (C-7, C-3) ppm. FTIR (ATR): $\tilde{v} = 1740$ (vs), 1502 (m), 1414 (m), 1269 (m), 1244 (m), 1222 (s), 1176 (m), 1098 (m), 1067 (m), 1037 (m), 1007 (m), 970 (m), 760 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 289 (7) [M]⁺, 219 (13), 218 $(100) \ [M - C_5 H_{11}]^+, \ 174 \ (9), \ 159 \ (2), \ 147 \ (6), \ 131 \ (3), \ 115 \ (1), \ 91$ (1), 28 (1). HRMS (ESI): calcd. for $C_{17}H_{23}NNaO_3^+$ [M + Na]⁺ 312.1570; found 312.1568.

5-Isopropyl-7-methoxy-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinolin-3-one (14c): Yield: 9 mg (28%). Colorless oil. $R_f = 0.11$ (hexanes/EtOAc, 6:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.78$ [d, J = 6.9 Hz, 3 H, $CH(CH_3)_2$], 1.16 [d, J = 6.8 Hz, 3 H, $CH(CH_3)_2$], 2.36 [sept.d, J_d = 4.0, $J_{sept.}$ = 6.8 Hz, 1 H, $CH(CH_3)_2$], 2.79–2.82 (m, 2 H, 10-H), 3.80 (s, 3 H, OCH₃), 4.01-4.09 (m, 1 H, 10a-H), 4.12 (dd, J = 2.4, 8.6 Hz, 1 H, 1-H), 4.54 (dd, J = 7.6, 8.6 Hz, 1 H, 1-H), 4.79 (d, J = 4.0 Hz, 1 H, 5-H), 6.75–6.89 (m, 2 H, 6-H, 8-H), 7.01–7.04 (m, 1 H, 9-H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 17.6, 20.3 [CH(CH₃)₂], 32.9 (C-10), 35.0 [CH(CH₃)₂], 51.0 (C-10a), 55.3 (OCH₃), 58.0 (C-5), 67.9 (C-1), 111.9, 113.0 (C-6, C-8), 124.3 (C-9a), 130.2 (C-9), 136.4 (C-5a), 158.3, 158.4 (C-7, C-3) ppm. FTIR (ATR): $\tilde{v} = 1729$ (vs), 1501 (m), 1407 (m), 1276 (m), 1258 (m), 1245 (m), 1222 (m), 1176 (m), 1154 (m), 1065 (m), 1037 (m), 1008 (m), 763 (m), 594 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 262 (1) $[M + H]^+$, 261 $[M]^+$, 219 (12), 218 (100) [M - CH-(CH₃)₂]⁺, 174 (12), 159 (3), 147 (10), 145 (7), 131 (5), 115 (1), 91 (1), 77 (1), 28 (2). HRMS (ESI): calcd. for $C_{15}H_{19}NNaO_3^+$ [M + Na]⁺ 284.1257; found 284.1263.

5-(Benzyloxy)methyl-7-methoxy-1,5,10,10a-tetrahydro[1,3]oxazolo-[3,4-b]isoquinolin-3-one (14e): Yield: 9 mg (30%). Colorless oil. $R_{\rm f}$ = 0.21 (hexanes/EtOAc, 2:1). ¹H NMR (500 MHz, CDCl₃): δ = $2.79 (dd, J = 11.0, 15.3 Hz, 1 H, 10-H_A), 2.87 (dd, J = 4.7, 15.3 Hz, 10-H_A)$ 1 H, 10-H_B), 3.75 (s, 3 H, OCH₃), 3.80 (dd, J = 5.3, 10.2 Hz, 1 H, $CHCH_2OCH_2Ph$), 3.89 (dd, J = 3.7, 10.2 Hz, 1 H, CHCH₂OCH₂Ph), 4.11 (dd, J = 4.1, 8.6 Hz, 1 H, 1-H), 4.16–4.22 (m, 1 H, 10a-H), 4.43 (d, J = 12.2 Hz, 1 H, OCH₂Ph), 4.53 (dd, J = 7.9, 8.6 Hz, 1 H, 1-H), 4.61 (d, J = 12.2 Hz, 1 H, OC H_2 Ph), 5.03 (t, J = 4.4 Hz, 1 H, 5 -H), 6.71 (d, J = 2.6 Hz, 1 H, 6 -H), 6.79 (dd, J = 2.6 Hz,J = 2.6, 8.4 Hz, 1 H, 8-H), 7.05 (d, J = 8.4 Hz, 1 H, 9-H), 7.19-7.21 (m, 1 H, p-PhCH₂O), 7.25–7.35 (m, 4 H, o-, m-PhCH₂O) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 33.4 (C-10), 49.7 (C-10a), 52.5 (C-5), 55.3 (OCH₃), 68.5 (C-1), 72.98 (CH₂OCH₂Ph), 73.04 (PhCH₂O), 111.6 (C-6), 113.6 (C-8), 124.5 (C-9a, C-5a, *i*-PhCH₂O), 127.67 (o-, m-PhCH₂O), 127.71 (p-PhCH₂O), 128.4 (o-, m-PhCH₂O), 130.3 (C-9), 133.7, 137.9 (C-9a, C-5a, *i*-PhCH₂O), 157.0, 158.4 (C-3, C-7) ppm. FTIR (ATR): $\tilde{v} = 1741$ (s), 1424 (m), 1222 (m), 1103 (m), 1068 (m), 1027 (m), 742 (m), 697 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 339 (11) [M]⁺, 233 (1), 219 (11), 218 (100) [M -CH(CH₃)₂]⁺, 207 (2), 174 (8), 159 (2), 147 (7), 131 (5), 130 (2), 91 (7), 32 (1), 28 (7). HRMS (ESI): calcd. for $C_{20}H_{21}NNaO_4^+$ [M + Na]⁺ 362.1363; found 362.1359.

General Procedure for the Debromination of 13: To a solution of **13** (1 equiv.) in benzene was added Bu₃SnH (ca. 1.1 equiv.) and AIBN (ca. 0.1 equiv.), and the reaction mixture was heated at reflux for 3.5–4.5 h. After cooling to room temperature, H₂O (10 mL) was added. The layers were separated, and the organic layer was washed with brine $(3 \times 10 \text{ mL})$ and dried (Na₂SO₄). The solvent was removed, and the residue was chromatographed on SiO₂ with hexanes/EtOAc.

6-Methoxy-5-propyl-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinolin-3-one: From 13a (7.40 mg, 21.7 µmol) in benzene (1 mL). Yield: 5 mg (88%). Colorless solid. M.p. 93–95 °C. $R_{\rm f} = 0.18$ (hexanes/EtOAc, 3:1). ¹H NMR (500 MHz, CDCl₃): δ = 0.98 (t, J = 7.2 Hz, 3 H, 3'-H), 1.44–1.55 (m, 3 H, 1'-H_A, 2'-H), 1.91–1.99 (m, 1 H, 1'-H_B), 2.87 (dd, J = 10.3, 16.1 Hz, 1 H, 10-H_A), 2.94 (dd, J $= 5.3, 16.1 \text{ Hz}, 1 \text{ H}, 10 \text{-H}_{B}$), 3.83 (s, 3 H, OCH₃), 4.10–4.15 (m, 2 H, 10a-H, 1-H), 4.52–4.56 (m, 1 H, 1-H), 5.03–5.05 (m, 1 H, 5-H), 6.70 (d, J = 7.7 Hz, 1 H, 9-H), 6.73 (d, J = 8.2 Hz, 1 H, 7-H), 7.15 (dd, J = 7.7, 8.2 Hz, 1 H, 8-H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 13.7 (C-3'), 19.8 (C-2'), 33.3 (C-10), 36.3 (C-1'), 47.2 (C-10a),$ 49.1 (C-5), 55.3 (OCH₃), 68.5 (C-1), 108.5 (C-7), 121.3 (C-9), 126.0 (C-5a), 127.5 (C-8), 132.3 (C-9a), 155.9, 157.0 (C-6, C-3) ppm. FTIR (ATR): $\tilde{v} = 1726$ (vs), 1471 (m), 1459 (m), 1441 (m), 1430 (m), 1420 (m), 1269 (m), 1253 (m), 1237 (s), 1098 (m), 1086 (m), 1065 (m), 1005 (m), 968 (m), 780 (m), 759 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 261 (2) [M]⁺, 219 (13), 218 (100) [M - C₃H₇]⁺, 203 (1), 174 (3), 160 (1), 159 (7), 147 (7), 131 (3), 115 (2), 103 (1), 91 (1), 77 (1). HRMS (ESI): calcd. for $C_{15}H_{19}NNaO_3^+$ [M + Na]⁺ 284.1257; found 284.1251.

6-Methoxy-5-pentyl-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinolin-3-one: From **13b** (21 mg, 57.0 μmol) in benzene (6 mL). Yield: 9 mg (51%). Colorless solid. M.p. 82–84 °C. $R_{\rm f}$ = 0.18 (hexanes/EtOAc, 3:1). ¹H NMR (300 MHz, CDCl₃): δ = 0.83–0.95 (m, 3 H, 5'-H), 1.19–1.56 (m, 6 H, 2'-H, 3'-H, 4'-H), 1.61–1.75 (m, 1 H, 1'-H), 1.92–2.05 (m, 1 H, 1'-H), 2.82–2.98 (m, 2 H, 10-H), 3.83 (s, 3 H, OCH₃), 4.07–4.16 (m, 2 H, 3-H, 1-H), 4.51–4.57 (m, 1 H, 1-H), 5.00–5.03 (m, 1 H, 5-H), 6.70 (d, *J* = 7.7 Hz, 1 H, 9-H), 6.73 (d, *J* = 8.1 Hz, 1 H, 7-H), 7.15 (dd, *J* = 7.7, 8.1 Hz, 1 H, 8-H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 14.1 (C-5'), 22.5, 26.2, 31.4 (C-2', C-3', C-4'), 33.3 (C-10), 34.0 (C-1'), 47.2 (C-10a), 49.4 (C-5), 55.3

(O*C*H₃), 68.5 (C-1), 108.5 (C-7), 121.3 (C-9), 126.0 (C-5a), 127.5 (C-8), 132.3 (C-9a), 155.9, 157.0 (C-3, C-6) ppm. FTIR (ATR): $\tilde{v} = 1734$ (vs), 1469 (m), 1434 (m), 1422 (m), 1261 (m), 1238 (m), 1074 (m), 1010 (m), 778 (m), 753 (m), 731 (m), 708 (m) cm⁻¹. MS (EI, 70 eV): *mlz* (%) = 289 (12) [M]⁺, 219 (14), 218 (100) [M - C₅H₁₁]⁺, 203 (1), 174 (4), 159 (7), 147 (13), 131 (3), 115 (2), 91 (1). HRMS (ESI): calcd. for C₁₇H₂₃NNaO₃⁺ [M + Na]⁺ 312.1576; found 312.1574.

3-[1-(1H-1,2,3-Benzotriazol-1-yl)butyl]-4-(2-bromo-5-methoxybenzyl)-1,3-oxazolidin-2-one (21): Butyraldehyde (15.4 µL, 12.6 mg, 175 µmol) was added to a suspension of rac-9 (50.0 mg, 175 µmol), 1H-benzotriazole (20.8 mg, 175 µmol) and p-toluenesulfonic acid (3.33 mg, 17.5 µmol) in absolute toluene (10 mL), and the reaction mixture was heated at reflux with a Dean-Stark trap for 10 h. After dilution with toluene (20 mL), the reaction mixture was washed with a NaOH solution (2 N; 2×40 mL) and a saturated NH₄Cl solution $(2 \times 40 \text{ mL})$, dried (Na₂SO₄), and concentrated. The residue (79 mg) was chromatographed on SiO_2 (hexanes/EtOAc, 4.5:1) to give a diastereomeric mixture of **21** (*dr* 83:17 by ¹H NMR spectroscopy). Yield: 47 mg (58%). Colorless foam. $R_{\rm f} = 0.18$ (hexanes/ EtOAc, 4.5:1). ¹H NMR (500 MHz, CDCl₃): δ = 1.05 (t, J = 7.4 Hz, 0.5 H, $CHCH_2CH_2CH_3$), 1.09 (t, J = 7.4 Hz, 2.5 H, $CHCH_2CH_2CH_3$), 1.51 (sext, J = 7.4 Hz, 2 H, $CHCH_2CH_2CH_3$), 1.99 (dd, J = 10.9, 13.3 Hz, 2.5 H, 3-H_A), 2.32 (dd, J = 10.5, 13.5 Hz, 0.5 H, 3-H_A), 2.79–2.87 (m, 1 H, CHCH₂CH₂CH₃), 2.90– 2.99 (m, 1 H, CHC H_2 CH $_2$ CH $_3$), 3.08 (dd, J = 4.0, 13.4 Hz, 1 H, 3-H_B), 3.69 (s, 2.5 H, OCH₃), 3.73 (s, 0.5 H, OCH₃), 4.03–4.14 (m, 2 H, 1-H), 4.37-4.43 (m, 0.5 H, 2-H), 4.43-4.49 (m, 2.5 H, 2-H), 6.48 (d, J = 3.0 Hz, 0.83 H, 2'-H), 6.56 (d, J = 3.0 Hz, 0.17 H, 2'-H), 6.61–6.74 (m, 2 H, CHCH₂CH₂CH₃, 4'-H), 7.38–7.44 (m, 2 H, 5'-H, 3''-H, 4''-H), 7.52–7.57 (m, 2 H, 3''-H, 4''-H), 8.02 (d, J =8.4 Hz, 1 H, 2''-H, 5''-H), 8.07 (d, *J* = 8.4 Hz, 1 H, 2''-H, 5''-H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 13.4, 13.5 (CHCH₂CH₂CH₃), 19.1, 19.3 (CHCH₂CH₂CH₃), 32.1, 32.7 (CHCH₂CH₂CH₃), 38.9, 40.0 (C-3), 52.1, 52.5 (C-2), 55.4, 55.5 (OCH₃), 66.5, 66.6 (CHCH₂CH₂CH₃), 66.7, 66.9 (C-1), 110.2, 110.9 (C-2", C-5"), 114.4, 114.6 (C-4"), 114.75, 114.84 (C-6"), 117.0, 117.4 (C-2'), 119.8, 119.9 (C-2'', C-5''), 124.6, 124.7 (C-3'', C-4''), 128.1, 128.3 (C-3'', C-4''), 132.9 (C-1'', C-6''), 133.9 (C-5'), 135.7 (C-1'), 145.9, 146.1 (C-1'', C-6''), 157.8, 158.5, 158.98, 159.04 (C=O, C-3') ppm. FTIR (ATR): v = 1747 (s), 1473 (m), 1453 (m), 1411 (m), 1239 (m), 1157 (m), 1078 (m), 1046 (m), 1012 (m), 747 (s) cm⁻¹. MS (ESI): m/z (%) = 483 (75) [M + Na]⁺, 481 (83) [M + Na]⁺, 364 (92) [M – benzotriazolyl + H + Na]⁺, 362 (92) [M - benzotriazole + H + Na]⁺, 342 (27) [M + H]⁺, 340 (30) [M + H]⁺, 149 (4), 132 (7), 104 (2). HRMS (ESI): calcd. for $C_{21}H_{23}BrN_4NaO_3^+$ [M + Na]⁺ 481.0846; found 481.0853.

3-[1-(1H-1,2,3-Benzotriazol-1-yl)butyl]-4-(4-methoxybenzyl)-1,3oxazolidin-2-one (22): As described above from (S)-10 (50.0 mg, 241 µmol), 1H-benzotriazole (28.7 mg, 241 µmol), and p-TsOH (4.58 mg, 24.1 µmol) in absolute toluene (10 mL) and butyraldehyde (21.3 µL, 17.4 mg, 241 µmol) to give a diastereomeric mixture of 22 (dr = 64:36). Yield: 34 mg (37%). Colorless foam. $R_{\rm f} =$ 0.16 (hexanes/EtOAc, 4.5:1). $[a]_{D}^{22} = -112.9$ (c = 0.036, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ = 1.04 (t, J = 7.4 Hz, 1.7 H, $CHCH_2CH_2CH_3$), 1.09 (t, J = 7.4 Hz, 1.3 H, $CHCH_2CH_2CH_3$), 1.42-1.54 (m, 2 H, CHCH₂CH₂CH₃), 1.89 (dd, J = 10.5, 13.5 Hz, 0.64 H, 3-H_A), 2.56–2.63 (m, 0.36 H, CHCH₂CH₂CH₃), 2.66–2.76 (m, 1.64 H, CHCH₂CH₂CH₃, 3-H_A, 3-H_B), 2.85–2.96 (m, 1 H, $CHCH_2CH_2CH_3$), 3.68 (dd, J = 3.9, 13.1 Hz, 0.36 H, 3-H_B), 3.75 (s, 1.7 H, OCH₃), 3.77 (s, 1.3 H, OCH₃), 3.93–4.00 (m, 1 H, 1-H_A), 4.08-4.13 (m, 1 H, 1-H_B), 4.14-4.19 (m, 1 H, 2-H), 6.61 (d, J =7.6 Hz, 0.64 H, CHCH₂CH₂CH₃), 6.77 (d, J = 8.7 Hz, 1.28 H, 3'- H), 6.81 (d, J = 8.7 Hz, 0.72 H, 3'-H), 6.90 (d, J = 8.7 Hz, 1.28 H, 2'-H), 7.04 (d, J = 8.7 Hz, 0.72 H, 2'-H), 7.39–7.44 (m, 1 H, 3''-H, 4''-H), 7.52–7.57 (m, 1 H, 3''-H, 4''-H), 7.76 (d, J = 8.4 Hz, $0.72 \text{ H}, 2^{\prime\prime}\text{-H}, 5^{\prime\prime}\text{-H}), 8.01 \text{ (d}, J = 8.4 \text{ Hz}, 1.28 \text{ H}, 2^{\prime\prime}\text{-H}, 5^{\prime\prime}\text{-H}),$ 8.07 (d, J = 8.4 Hz, 1.28 H, 2"-H, 5"-H), 8.11 (d, J = 8.4 Hz, 0.72 H, 2''-H, 5''-H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 13.4, 13.5 (CHCH₂CH₂CH₃), 19.1, 19.3 (CHCH₂CH₂CH₃), 32.0, 35.0 (CHCH₂CH₂CH₃), 37.7, 39.4 (C-3), 54.2 (C-2), 55.2 (OCH₃), 66.5, 67.3 (CHCH₂CH₂CH₃), 67.4, 67.5 (C-1), 110.2, 110.9 (C-2", C-5''), 114.27, 114.35 (C-3'), 119.8, 119.9 (C-2'', C-5''), 124.6, 124.8 (C-3'', C-4''), 127.0, 127.1 (C-1'), 128.2, 128.4 (C-3'', C-4''), 130.9 (C-2'), 132.86, 132.91 (C-1'', C-6''), 145.8, 146.1 (C-1'', C-6''), 157.8, 158.6, 158.7, 158.8 (C=O, C-4') ppm. FTIR (ATR): v = 1745 (s), 1512 (m), 1410 (m), 1245 (s), 1178 (m), 1155 (m), 1076 (m), 1030 (m), 1002 (m), 780 (m), 769 (m), 747 (s) cm⁻¹. MS (ESI): *m/z* $(\%) = 403 (100) [M + Na]^+, 338 (19) [M + H - CH_2CH_2-$ CH₃]⁺, 284 (19) [M – H – benzotriazolyl]⁺. HRMS (ESI): calcd. for $C_{21}H_{24}N_4NaO_3^+$ [M + Na]⁺ 403.1741; found 403.1722.

General Procedure for the Preparation of Compounds 13a,14a by Benzotriazole: To a solution of 23 or 24 (1 equiv.) in absolute acetonitrile (5 mL) was added TiCl₄ (1.5 equiv.) by syringe, and the reaction mixture was heated at 60 °C for 8 h. After the addition of H₂O (10 mL), the reaction mixture was extracted with Et₂O (2 × 30 mL). The combined extracts were washed with a NaOH solution (2 N; 2 × 20 mL) and a saturated NH₄Cl solution (2 × 30 mL), dried (Na₂SO₄), and concentrated. The residue was chromatographed on SiO₂ (hexanes/EtOAc, 3:1) to give product **13a** [64%, $R_f = 0.26$ (hexanes/EtOAc, 3:1)] as colorless crystals or **14a** [54%, $R_f = 0.13$ (hexanes/EtOAc, 3:1)] as a colorless oil.

Cyclization of Derivatives 23a,b by the Pictet-Spengler Reaction

Method A: To a solution of 23a (72 mg, 250 µmol) or 23b (76 mg, 363 µmol) in absolute CH₂Cl₂ (5 mL) were added molecular sieves 4 Å (100 mg) and butyraldehyde (35.3 µL, 28.8 mg, 400 µmol for 23a, 51.3 µL, 41.9 mg, 581 µmol for 23b), and the reaction mixture was stirred at room temperature for 24 h. Then, the reaction mixture was cooled to 0 °C and trifluoroacetic acid (59.4 µL, 91.2 mg, 800 µmol for 23a, 86.0 µL, 132 mg, 1.16 mmol for 23b) was added dropwise by syringe, and the mixture was stirred at 0 °C for a further 16 h. After filtration, the filtrate was concentrated and the residue chromatographed on basic Al₂O₃ (hexanes/EtOAc, 20:1) to give 24a or 24b (*E/Z*, 90:10 by ¹H NMR spectroscopy).

Methyl 2-Bromo-N-[2-ethylhex-2-enylidene]-5-methoxyphenylalaninate (24a): Yield: 27 mg (27%). Light yellow oil. $R_f = 0.29$ (hexanes/ EtOAc, 4.5:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): $\delta = 0.91$ (t, J = 7.4 Hz, 3 H, 4''-H), 0.97 (t, J = 7.5 Hz, 3 H, 4''-H), 1.42 (sext, J = 7.4 Hz, 2 H, 3'''-H), 2.17 (ddd, J = 1.7, 7.4, 14.8 Hz, 2 H, 2'''-H), 2.29–2.42 (m, 2 H, 3''-H), 3.09 (dd, *J* = 9.0, 13.5 Hz, 1 H, 3-H_A), 3.49 (dd, J = 5.2, 13.5 Hz, 1 H, 3-H_B), 3.71, 3.74 (2 s, 3 H, OCH₃), 4.15 (dd, J = 5.2, 9.0 Hz, 1 H, 2-H), 5.69 (t, J = 7.4 Hz, 3 H, 1'''-H), 6.63 (dd, J = 3.1, 8.8 Hz, 1 H, 4'-H),6.71 (d, J = 3.1 Hz, 1 H, 3'-H), 7.39 (d, J = 8.8 Hz, 1 H, 5'-H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 13.6 (C-4^{''}), 13.9 (C-4^{'''}), 19.0 (C-3''), 22.3 (C-3'''), 30.3 (C-2'''), 40.0 (C-3), 52.2, 55.4 (2 x OCH₃), 72.1 (C-2), 114.6 (C-4'), 115.1 (C-6'), 117.2 (C-2'), 133.2 (C-5'), 137.9 (C-1'), 141.7 (C-2''), 143.6 (C-1'''), 158.5 (C-3'), 167.8 (C-1''), 172.3 (CO₂CH₃) ppm. FTIR (ATR): $\tilde{v} = 2958$ (m), 1738 (m), 1613 (m), 1512 (s), 1245 (s), 1201 (m), 1175 (m), 1162 (m), 1034 (m), 823 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 397 (7) [M]⁺, 395 (7) [M]⁺, 368 (2), 366 (2), 338 (5) [M - CO₂Me]⁺, 336 $(5) \ [M-CO_2Me]^+, \ 316 \ (100) \ [M-Br]^+, \ 300 \ (7), \ 284 \ (14), \ 260 \ (12),$ 244 (3), 228 (5), 218 (9), 196 (25) $[M - CH_2C_6H_4(OMe)Br]^+$, 186 (9), 158 (7), 136 (9), 109 (3), 91 (1), 69 (3). $C_{19}H_{26}BrNO_3$ (396.32):

calcd. C 57.58, H 6.61, N 3.53; found C 57.83, H 6.71, N 3.37. HRMS (ESI): calcd. for $C_{19}H_{26}BrNNaO_3^+$ [M + $Na]^+$ 418.0988; found 418.0969.

Methyl N-(2-Ethylhex-2-enylidene)-O-methyl-L-tyrosinate (24b): Yield: 37 mg (32%). Light yellow oil. $R_f = 0.27$ (hexanes/EtOAc, 4.5:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.4 Hz, 3 H, 4'''-H), 0.98 (t, J = 7.5 Hz, 3 H, 4''-H), 1.36– 1.48 (m, 2 H, 3'''-H), 2.14–2.21 (m, 2 H, 2'''-H), 2.28–2.47 (m, 2 H, 3''-H), 3.00 (dd, J = 8.9, 13.6 Hz, 1 H, 3-H_A), 3.24 (dd, J =5.2, 13.6 Hz, 1 H, 3-H_B), 3.71, 3.77 (2 s, 3 H, OCH₃), 3.94 (dd, J = 5.2, 8.9 Hz, 1 H, 2-H), 5.67 (t, J = 7.4 Hz, 3 H, 1'''-H), 6.78 (d, J = 8.8 Hz, 2 H, 3'-H, 5'-H), 7.06 (d, J = 8.8 Hz, 2 H, 2'-H, 6'-H), 7.37 (s, 1 H, 1''-H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 13.7 (C-4''), 13.9 (C-4'''), 19.0 (C-3''), 22.4 (C-3'''), 30.2 (C-2'''), 39.0 (C-3), 52.1, 55.2 (2 x OCH₃), 75.2 (C-2), 113.6 (C-3', C-5'), 129.8 (C-1'), 130.7 (C-2', C-6'), 141.7 (C-2''), 143.3 (C-1'''), 158.2 (C-4'), 167.3 (C-1''), 172.7 (CO_2CH_3) ppm. FTIR (ATR): $\tilde{v} = 2958$ (m), 1738 (m), 1612 (m), 1512 (s), 1245 (s), 1201 (m), 1168 (m), 1110 (m), 1034 (m), 823 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 317 (69) $[M]^+$, 302 (1), 288 (4), 274 (4), 258 (14) $[M - CO_2Me]^+$, 242 (1), 214 (3), 196 (100) $[M - CH_2C_6H_4OMe]^+$, 186 (1), 165 (2), 164 (20), 151 (3), 136 (28), 121 (85) $[CH_2C_6H_4OMe]^+$, 108 (6), 91 (3), 77 (3), 55 (2), 41 (2). C₁₉H₂₇NO₃ (317.42): calcd. C 71.89, H 8.57, N 4.41; found C 71.79, H 8.76, N 4.32. HRMS (ESI): calcd. for $C_{19}H_{27}NNaO_3^+$ [M + Na]⁺ 340.1883; found 340.1872.

Method B: To a solution of **23a** or **23b** (1 equiv.) in absolute toluene (10 mL) was added *p*-TsOH (0.1 equiv.) and butyraldehyde (1 equiv.), and the reaction mixture was heated at reflux with a Dean–Stark trap for 16 h. After dilution with toluene (10 mL), the reaction mixture was poured into a saturated NaHCO₃ solution (25 mL). The layers were separated, and the organic layer was washed with a NaOH solution (0.5 N; 2×25 mL) and a saturated NaHCO₃ solution (2×20 mL), dried (Na₂SO₄), and concentrated. The residue was chromatographed on basic Al₂O₃ (hexanes/EtOAc, 20:1) to give **24a** [18%, $R_{\rm f} = 0.19$ (hexanes/EtOAc, 20:1)] or **24b** [14%, $R_{\rm f} = 0.15$ (hexanes/EtOAc, 20:1)] as colorless oils.

Methyl 6-Methoxy-3-oxo-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinoline-5-carboxylate (25): From 13i (15 mg, 41.1 µmol) in benzene (4 mL). Yield: 8 mg (69%). Colorless solid. M.p. 111-112 °C. $R_{\rm f}$ = 0.07 (hexanes/EtOAc, 2:1). ¹H NMR (300 MHz, CDCl₃): δ = 2.87 (dd, J = 10.6, 15.8 Hz, 1 H, 10-H_A), 2.96 (dd, J = 4.8, 15.8 Hz, 1 H, 10-H_B), 3.78 (s, 3 H, CO_2CH_3), 3.81 (s, 3 H, OCH₃), 4.16 (dd, J = 3.6, 8.5 Hz, 1 H, 1-H), 4.19–4.28 (m, 1 H, 10a-H), 4.57 (dd, J = 7.6, 8.5 Hz, 1 H, 1-H), 5.59 (s, 1 H, 5-H), 6.77 (d, J = 7.8 Hz, 1 H, 7-H), 6.78 (d, J = 8.2 Hz, 1 H, 9-H), 7.25 (dd, *J* = 7.8, 8.2 Hz, 1 H, 8-H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 32.9 (C-10), 48.8 (C-10a), 52.4 (C-5), 52.6 (CO₂*C*H₃), 55.6 (OCH₃), 68.4 (C-1), 108.6 (C-7), 119.1 (C-5a), 121.6 (C-9), 129.0 (C-8), 133.5 (C-9a), 156.47, 156.53 (C-3, C-6), 170.8 (CO₂CH₃) ppm. FTIR (ATR): v = 1739 (vs), 1585 (m), 1472 (m), 1443 (m), 1412 (m), 1381 (m), 1337 (m), 1263 (m), 1238 (m), 1194 (m), 1167 (s), 1076 (m), 1007 (m), 987 (m), 959 (m), 781 (m), 768 (m), 741 (m), 727 (m), 707 (m), 665 (m), 620 (m) cm⁻¹. MS (ESI): m/z (%) $= 577 (2) [2 M + Na]^{+}, 365 (28), 316 (6), 300 (100) [M + Na]^{+},$ 278 (2), 244 (1), 218 (1) [M - CO₂CH₃]⁺. HRMS (ESI): calcd. for $C_{14}H_{15}NNaO_5^+$ [M + Na]⁺ 300.0842; found 300.0839.

Methyl 9-Bromo-6-methoxy-3-oxo-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinoline-5-carboxylate (*cis*-13i)

Method A: To a solution of *trans*-**13i** (5.00 mg, 14.0 μ mol) in absolute MeOH (2 mL) was added 3% NaOMe/MeOH (2.63 μ L, 75.6 μ g, 1.40 μ mol), and the reaction mixture was stirred at room temperature for 2 d. Additional 3% NaOMe/MeOH (23.7 μ L,

680 µg, 12.6 µmol) was added, and the reaction mixture was heated at reflux for 2 d (*trans:cis*, 90:10 by GC). HCl-saturated MeOH (2 mL) was added, and the reaction mixture was concentrated. The residue was taken up in CHCl₃ (10 mL), washed with a saturated NaHCO₃ solution (3×10 mL) and brine (2×20 mL), dried (Na₂SO₄), and concentrated. The residue was chromatographed on SiO₂ (hexanes/EtOAc, 2:1) to give a mixture of *cis/trans*-13i as a colorless solid (4 mg, *trans/cis*, 90:10). The isomers were separated by preparative HPLC on a column Kromasil (250×20 mm, 100 Sil 5 µm) (MZ-Analysentechnik) with 2-PrOH in hexane (gradient from 0–10%, flow 7 mL min⁻¹).

Method B: To a solution of *trans*-**13i** (5.00 mg, 14.7 μ mol) in toluene (3 mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (2.23 μ L, 2.27 mg, 14.7 μ mol) by syringe, and the reaction mixture was heated at reflux for 24 h. After the addition of more DBU (20.1 μ L, 132 μ mol), the reaction mixture was heated at reflux for 24 h (7% conversion to *cis*-**13i**), which resulted in a mixture of *cis/trans*-**13i** in a *trans/cis* ratio of 85:15 (by GC).

Methyl 6-Methoxy-3-oxo-1,5,10,10a-tetrahydro[1,3]oxazolo[3,4-b]isoquinoline-5-carboxylate (*cis*-25): As described above under method b to give a mixture of *cis/trans*-25 in a *trans/cis* ratio of 85:15 (by GC).

Acknowledgments

Generous financial support by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg is gratefully acknowledged.

- [2] A. Pictet, T. Spengler, Ber. Dtsch. Chem. Ges. A 1911, 44, 2030– 2036.
- [3] Recent examples: a) S. Aubry, S. Pellet-Rostaing, R. Faure, M. Lemaire, J. Heterocycl. Chem. 2006, 43, 139-148; b) S. Aubry, S. Pellet-Rostaing, B. Fenet, M. Lemaire, Tetrahedron Lett. 2006, 47, 1319-1323; c) I. Matuszewska, A. Leniewski, P. Roszkowski, Z. Czarnocki, Chem. Phys. Lipids 2005, 135, 131-145; d) O. Koepler, S. Laschat, A. Baro, P. Fischer, B. Miehlich, M. Hotfilder, C. leViseur, Eur. J. Org. Chem. 2004, 3611-3622; e) A. Hegedues, Z. Hell, Tetrahedron Lett. 2004, 45, 8553-8555; f) T. R. Kane, C. Q. Ly, D. E. Kelly, J. M. Dener, J. Comb. Chem. 2004, 6, 564-572; g) V. Caubert, M.-C. Viaud-Massuard, Heterocycl. Commun. 2004, 10, 175-180; h) M. De Paolis, A. Chiaroni, J. Zhu, Chem. Commun. 2003, 2896–2897; i) E. R. Ashley, E. G. Cruz, B. M. Stoltz, J. Am. Chem. Soc. 2003, 125, 15000-15001; j) A. P. Venkov, P. A. Angelov, Synth. Commun. 2003, 33, 3025-3033; k) Y. Horiguchi, H. Kodama, M. Nakamura, T. Yoshimura, K. Hanezi, H. Hamada, T. Saitoh, T. Sano, Chem. Pharm. Bull. 2002, 50, 253-257; 1) P. Grieco, P. Campiglia, I. Gomez-Monterrey, E. Novellino, Tetrahedron Lett. 2002, 43, 6297-6299; m) S. M. Allin, S. L. James, M. R. J. Elsegood, W. P. Martin, J. Org. Chem. 2002, 67, 9464-9467; n) F. Musshoff in New and Upcoming Markers of Alcohol Consumption (Ed.: F. M. Wurst), Steinkopff-Springer, Darmstadt, 2001, pp. 112-132; o) J. Spengler, H. Schedel, J. Sieler, P. J. L. M. Quaedflieg, Q. B. Broxterman, A. L. L. Duchateau, K. Burger, Synthesis 2001, 1513-1518; p) Q. Sun, D. J. Kyle, Comb. Chem. High Throughput Screening 2002, 5, 75–81; q) C. Gremmen, M. J. Wanner, G.-J. Koomen, Tetrahedron Lett. 2001, 42, 8885-8888; r) L. Prat, R. Bureau, C. Daveu, V. Levacher, G. Dupas, G. Queguiner, J. Bourguignon, J. Heterocycl.

a) M. Chrzanowska, M. D. Rozwadowska, *Chem. Rev.* 2004, 104, 3341–3370; b) J. D. Scott, R. M. Williams, *Chem. Rev.* 2002, 102, 1669–1730; c) M. D. Rozwadowska, *Heterocycles* 1994, 39, 903–931.

FULL PAPER

Chem. **2000**, *37*, 767–771; s) A. R. Katritzky, H.-Y. He, R. Jiang, Q. Long, *Tetrahedron: Asymmetry* **2001**, *12*, 2427–2434; t) R. Grigg, W. S. MacLachlan, D. T. MacPherson, V. Sridharan, S. Suganthan, M. Thornton-Pett, J. Zhang, *Tetrahedron* **2000**, *56*, 6585–6594; u) P. Manini, M. d'Ischia, R. Lanzetta, M. Parrilli, G. Prota, *Bioorg. Med. Chem.* **1999**, *7*, 2525–2530.

- [4] A. Bischler, B. Napieralski, Ber. Dtsch. Chem. Ges. A 1893, 26, 1903–1908.
- [5] Recent examples: a) A. F. Ibanez, J. Heterocycl. Chem. 2005, 42, 109-111; b) W.-J. Huang, O. V. Singh, C.-H. Chen, S.-S. Lee, Helv. Chim. Acta 2004, 87, 167-174; c) E. Gößnitzer, A. Punkenhofer, Monatsh. Chem. 2003, 134, 909-927; d) M. Nicoletti, D. O'Hagan, A. M. Z. Slawin, J. Chem. Soc. Perkin Trans. 1 2002, 116-121; e) V. Jullian, J.-C. Quirion, H.-P. Husson, Eur. J. Org. Chem. 2000, 1319-1325; f) Y. Fukuda, H. Furuta, Y. Kusama, H. Ebisu, Y. Oomori, S. Terashima, J. Med. Chem. 1999, 42, 1448-1458; g) K. Takaba, K. Komori, J. Kunitomo, T. Ishida, Heterocycles 1996, 43, 1777-1786; h) R. C. Bernotas, C. E. Thomas, A. A. Carr, T. R. Nieduzak, G. Adams, D. F. Ohlweiler, D. A. Hay, Bioorg. Med. Chem. Lett. 1996, 6, 1105-1110; i) R. D. Larsen, R. A. Reamer, E. G. Corley, P. Davis, E. J. J. Grabowski, P. J. Reider, I. Shinkai, J. Org. Chem. 1991, 56, 6034–6038; j) J. Van der Eycken, J. P. Bosmans, D. Van Haver, M. Vandewalle, A. Hulkenberg, W. Veerman, R. Nieuwenhuizen, Tetrahedron Lett. 1989, 30, 3873-3876; k) A. Ishida, H. Fujii, T. Nakamura, T. Oh-Ishi, D. Aoe, Y. Nishibata, A. Kinumaki, Chem. Pharm. Bull. 1986, 34, 1994-2006; 1) A. K. Saxena, P. C. Jain, N. Anand, Ind. J. Chem. 1975, 13, 230-237; m) T. Kametani, T. Takahashi, K. Ogasawara, J. Chem. Soc. Perkin Trans. 1 1973, 1464-1466.
- [6] a) C. Pomeranz, Monatsh. Chem. 1893, 14, 116–119; b) P. Fritsch, Ber. Dtsch. Chem. Ges. 1893, 26, 419–422.
- [7] Recent examples: a) M. Boudou, D. Enders, J. Org. Chem. 2005, 70, 9486–9494; b) R. Hirsenkorn, Tetrahedron Lett. 1990, 31, 7591–7594; c) J. Kunitomo, Y. Miyata, M. Oshikata, Chem. Pharm. Bull. 1985, 33, 5245–5249; d) B. Umezawa, O. Hoshino, Y. Terayama, K. Ohyama, Y. Yamanashi, T. Inoue, T. Toshioka, Chem. Pharm. Bull. 1971, 19, 2138–2146.
- [8] For miscellaneous methods, see: a) J. Eustache, P. Van de Weghe, D. Le Nouen, H. Uyehara, C. Kabuto, Y. Yamamoto, J. Org. Chem. 2005, 70, 4043–4053; b) P. Magnus, K. S. Matthews, J. Am. Chem. Soc. 2005, 127, 12476–12477; c) P. Magnus, K. S. Matthews, V. Lynch, Org. Lett. 2003, 5, 2181–2184; d) E. Mannekens, M. Crisma, S. Van Cauwenberghe, D. Tourwé, Eur. J. Org. Chem. 2003, 3300–3307; e) S. Adam, X. Pannecoucke, J.-C. Combret, J.-C. Quirion, J. Org. Chem. 2001, 66, 8744–8750; f) S. M. Allin, S. L. James, W. P. Martin, T. A. D. Smith, M. R. J. Elsegood, J. Chem. Soc. Perkin Trans. 1 2001, 3029–3036; g) A. Monsees, S. Laschat, I. Dix, P. G. Jones, J. Org. Chem. 1998, 63, 10018–10021.
- [9] S. Tussetschläger, A. Baro, S. Laschat, Z. Naturforsch. 2006, 61b, 420–426.
- [10] S. Kwon, A. G. Myers, J. Am. Chem. Soc. 2005, 127, 16796– 16797.
- [11] T. Fukuyama, J. J. Nunes, J. Am. Chem. Soc. 1988, 110, 5196– 5198.
- [12] A. S. K. Hashmi, P. Haufe, C. Schmid, A. Rivas Nass, W. Frey, *Chem. Eur. J.* 2006, 12, 5376–5382.
- [13] a) T. Mecozzi, M. Petrini, R. Profeta, *Tetrahedron: Asymmetry* 2003, 14, 1171–1178; b) E. Marcantoni, M. Petrini, R. Profeta, *Tetrahedron Lett.* 2004, 45, 2133–2136.

- [14] For other approaches to azapodophyllotoxin, see: a) A. R. Katritzky, J. Cobo-Domingo, B. Yang, P. J. Steel, *Tetrahedron: Asymmetry* 1999, 10, 255–263; b) K. Tomioka, Y. Kubota, K. Koga, *Tetrahedron Lett.* 1989, 30, 2953–2954; c) J.-P. Bosmans, J. Van der Eycken, M. Vandewalle, A. Hulkenberg, R. Van Hes, W. Veerman, *Tetrahedron Lett.* 1989, 30, 3877–3880; d) K. Tomioka, Y. Kubota, K. Koga, J. Chem. Soc. Chem. Commun. 1989, 1622–1624.
- [15] a) M. E. Jung, T. I. Lazarova, J. Org. Chem. 1997, 62, 1553–1555; b) P. Chen, P. T. W. Cheng, M. Alam, B. D. Beyer, G. S. Bisacchi, T. Dejneka, A. J. Evans, J. A. Greytok, M. A. Hermsmeier, W. G. Humphreys, G. A. Jacobs, O. Kocy, P.-F. Lin, K. A. Lis, M. A. Marella, D. E. Ryono, A. K. Sheaffer, S. H. Spergel, C. Sun, J. A. Tino, G. Vite, R. J. Colonno, R. Zahler, J. C. Barrish, J. Med. Chem. 1996, 39, 1991–2007; c) B. Boitrel, V. Baveux-Chambenoît, New J. Chem. 2003, 27, 942–947.
- [16] a) S. Chandrasekhar, T. Ramachandar, M. V. Reddy, *Synthesis* 2002, 1867–1870; b) J. Jurczak, D. Gryko, E. Kobrzycka, H. Gruza, P. Prokopowicz, *Tetrahedron* 1998, 54, 6051–6064; c) L. Navarre, S. Darses, J. P. Genet, *Eur. J. Org. Chem.* 2004, 69–73.
- [17] CCDC-644451 (for 13a), -644452 (for 10), and -644453 (for 13i) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [18] M. Petrini, Chem. Rev. 2005, 105, 3949-3977.
- [19] H. Shiraishi, Y. Kawasaki, S. Sakaguchi, Y. Nishiyama, Y. Ishii, *Tetrahedron Lett.* 1996, 37, 7291–7294.
- [20] K. Verschueren, G. Toth, D. Tourwé, M. Lebl, G. Van Binst, V. Hruby, Synthesis 1992, 458–460.
- [21] For other debrominations, see: T. Itoh, K. Nagata, M. Miyazaki, K. Kameoka, A. Ohsawa, *Tetrahedron* 2001, 57, 8827– 8839.
- [22] Isolation and biological properties: a) F. Tomita, K. Takahashi,
 K. Shimizu, J. Antibiot. 1983, 36, 463–467; b) K. Takahashi,
 F. Tomita, J. Antibiot. 1983, 36, 468–470; c) F. Tomita, K. Takahashi, T. Tamaoki, J. Antibiot. 1984, 37, 1268–1272; d) K.
 Fujimoto, T. Oka, M. Morimoto, Cancer Res. 1987, 47, 1516–1522; e) R. Kanamaru, Y. Konishi, C. Ishioka, H. Kakuta, T.
 Sato, A. Ishikawa, M. Asamura, A. Wakui, Cancer Chemother. Pharmacol. 1988, 22, 197–200.
- [23] Synthetic studies: a) S. J. Danishefsky, P. J. Harrison, R. R. Webb, B. T. O'Neill, J. Am. Chem. Soc. 1985, 107, 1421–1423;
 b) P. Garner, W. B. Ho, H. Shin, J. Am. Chem. Soc. 1992, 114, 2767–2768;
 c) P. Garner, W. B. Ho, H. Shin, J. Am. Chem. Soc. 1993, 115, 10742–10753;
 d) T. Katoh, M. Kirihara, Y. Nagata, Y. Kobayashi, K. Arai, J. Minami, S. Terashima, Tetrahedron Lett. 1993, 34, 5747–5750;
 e) T. Katoh, M. Kirihara, Y. Nagata, Y. Kobayashi, K. Arai, J. Minami, S. Terashima, Tetrahedron Lett. 1993, 54, 5747–5750;
 e) T. Katoh, M. Kirihara, Y. Nagata, Y. Kobayashi, K. Arai, J. Minami, S. Terashima, Tetrahedron Lett. 1996, 6239–6258;
 f) T. Katoh, S. Terashima, Pure Appl. Chem. 1996, 68, 703–706;
 g) M. E. Flanagan, R. M. Williams, J. Org. Chem. 1995, 60, 6791–6797.
- [24] a) J. Matsuo, H. Kitagawa, D. Iida, T. Mukaiyama, *Chem. Lett.* 2001, 30, 150–151; b) Y.-S. Hon, S.-W. Lin, L. Lu, Y.-J. Chen, *Tetrahedron* 1995, 51, 5019–5034.
- [25] a) L. Field, F. A. Grunwald, J. Org. Chem. 1951, 16, 946–953;
 b) C. Malanga, L. A. Aronica, L. Lardicci, Synth. Commun. 1996, 26, 2317–2327.

Received: May 16, 2007 Published Online: September 25, 2007