

Tetrahedron Letters 44 (2003) 1425-1427

TETRAHEDRON LETTERS

Nitrilimine cycloaddition to 4-(pyrazol-5-yl)carbonyl-2azetidinone and 4-(pyrazol-4-yl)carbonyl-2-azetidinone

Paola Del Buttero,^{a,*} Giorgio Molteni^a and Tullio Pilati^b

^aUniversità degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, Via Golgi 19, 20133 Milano, Italy ^bConsiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133 Milano, Italy

Received 18 November 2002; revised 25 November 2002; accepted 18 December 2002

Abstract—The higly stereoselective nitrilimine cycloaddition onto the novel $3(R^*)$ -phenyl- $4(S^*)$ -cinnamoyl-2-azetidinone **2** gave 4-(4,5-dihydropyrazol-5-yl)carbonyl-2-azetidinone **5** as the major product and 4-(4,5-dihydropyrazol-4-yl)carbonyl-2-azetidinone **6** as the minor one. Ceric ammonium nitrate (CAN) oxidation of the cycloadducts gave the title compounds with good overall yield. © 2003 Elsevier Science Ltd. All rights reserved.

Due to their antibiotic or β -lactamase inhibitor activity, 2-azetidinone-based heterocycles represent a very attractive target of contemporary organic synthesis.¹ Furthermore, the pyrazole and 4,5-dihydropyrazole rings are found in several compounds which display biological activity as antiinflammatory² and anticoagulating³ factors. The present letter is concerned with the first synthesis of 4-(pyrazol-5-yl)carbonyl-2azetidinone and 4-(pyrazol-4-yl)carbonyl-2-azetidinone, which brings together the above-mentioned heterocyclic fragments, by means of a nitrilimine 1,3-dipolar cycloaddition.

First, we devised the novel $3(R^*)$ -phenyl- $4(S^*)$ -cinnamoyl-2-azetidinone 2^4 as a suitable starting building block, which was readily obtained in good overall yield from cinnamoylcarboxaldehyde.⁵ The two steps involved were: (i) condensation of the latter with 4methoxy aniline and (ii) Staudinger [2+2] cycloaddition between imine **1** and phenylketene, which was generated in situ by base treatment of phenylacetyl chloride (Scheme 1).

Next, hydrazonoyl chloride 3^6 was treated with an equimolecular amount of silver acetate in dry dioxane in the presence of **2**. Besides the recovery of unreacted **2** (15%), 1,3-dipolar cycloaddition of the labile nitrilimine intermediate **4** gave regioisomeric $(4R^*,5'S^*)$ -**5** and $(4R^*,4'R^*)$ -**6** in the ratio **5**:**6**=80:20 with a 70% overall yield (Scheme 2). Product separation was achieved on silica gel column chromatography with *t*BuOMe–light petroleum 55:45 as eluent, while analytical and spectroscopic data of the cycloadducts are in full agreement with the formulae depicted.⁷ The regioselectivity of the cycloaddition is not surprising and matches that usually observed in the reaction

Scheme 1.

^{*} Corresponding author. Fax: 0039-02-50314115; e-mail: paola.delbuttero@unimi.it

^{0040-4039/03/\$ -} see front matter @ 2003 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02874-5

Figure 1.

Scheme 2.

between nitrilimines and α,β -unsaturated carbonyl derivatives.⁸ On the other hand, both major product $(4R^*,5'S^*)$ -5 and minor product $(4R^*,4'R^*)$ -6 were detected as single stereoisomers, the cycloaddition being therefore fully stereoselective. Inspection of Dreiding stereomodels of 2 showed that (i) the phenyl ring in the

Table 1. AM1-calculated distances between $H{-}H_{\alpha}$ and $H{-}H_{\beta}{}^a$

Entry	anti s-cis	anti s-trans	syn s-cis	syn s-trans
$H-H_{\alpha}$	3.69	4.46	2.48	3.91
$H-H_{\beta}$	4.72	3.71	4.60	2.28

^a Distance in Å.

3-position of the 2-azetidinone fragment effectively hinders one of the two diastereofaces of the C=C dipolarophile, and (ii) due to unavoidable steric crowding, a free interchange between the four possible conformations of the cinnamoyl moiety in the 4-position is precluded. A pictorial representation of these conformations is given in Figure 1, while AM19 computed distances $H-H_{\alpha}$ and $H-H_{\beta}$ are summarised in Table 1. In the light of the observed NOE enhancement (6%) of H_{α} when irradiating H, it follows that the syn s-cis arrangement is the only reasonable candidate describing the ground state conformation of 2, thus allowing the stereoselective formation of $(4R^*, 5'S^*)$ -5 and $(4R^*, 4'R^*)$ -6. As a further step of our work, we submitted the latter cycloadducts to oxidation with ceric ammonium nitrate (CAN), and obtained 4-(pyrazol-5yl)carbonyl-2-azetidinone 7 and 4-(pyrazol-4-yl)carbonyl-2-azetidinone 8, respectively (Scheme 3).¹⁰ These compounds gave crystals suitable for X-ray diffractometric analyses (Fig. 2),¹¹ thus demonstrating unambiguously the regiochemical outcome of the nitrilimine cycloaddition. In conclusion, the present study provides the first insight into the regio- and stereoselectivity involved in the nitrilimine cycloaddition to higly-functionalised 2-azetidinones. Further developments are in progress.

Acknowledgements

We would like to thank MURST and CNR for financial support. We would also like to gratefully thank student Dr. Paolo Anesa.

Scheme 3.

Figure 2.

References

- (a) Southgate, R. Contemp. Org. Synth. 1994, 1, 417; (b) The Organic Chemistry of β-Lactams; Georg, G. I., Ed.; VCH: New York, 1993; (c) Sammes, P. G. Chem. Rev. 1976, 76, 113.
- (a) Copp, F. C.; Islip, P. J.; Tateson, J. E. *Biochem. Pharmacol.* **1984**, *33*, 339; (b) Frígola, J.; Colombo, A.; Parés, J.; Martínez, L.; Sagarra, R.; Roser, R. *Eur. J. Med. Chem.* **1989**, *24*, 435.
- Pinto, D. J. P.; Orwat, M. J.; Wang, S.; Fevig, J. M.; Quan, M. L.; Amparo, E.; Cacciola, J.; Rossi, K. A.; Alexander, R. S.; Smallwood, A. M.; Luettgen, J. M.; Liang, L.; Aungst, B. J.; Wright, M. R.; Knabb, R. M.; Wong, P. C.; Wexler, R. R.; Lam, P. Y. S. *J. Med. Chem.* 2001, 44, 566.
- 4. Selected data for **2**: mp 202°C (from ethanol); IR (Nujol): v_{max} 1740, 1690 cm⁻¹; ¹H NMR (CDCl₃): δ 3.72 (3H, s), 4.93 (1H, d, *J*=6.5), 5.07 (1H, d, *J*=6.5), 6.46 (1H, d, *J*=16.0), 6.8–7.2 (15 H, m).
- 5. Le Corré, M. Bull. Soc. Chim. Fr. 1974, 1951.
- El-Abadelah, M. M.; Hussein, A. Q.; Kamal, M. R.; Al-Adhami, K. H. *Heterocycles* 1988, 27, 917.
- 7. Selected data for $(4R^*,5'S^*)$ -5 and $(4R^*,4'R^*)$ -6. $(4R^*,5'S^*)$ -5: mp 200°C (from *i*Pr₂O); IR (Nujol): v_{max} 1745, 1730, 1685 cm⁻¹; ¹H NMR (CDCl₃): δ 2.14 (3H, s, CH₃C₆H₄-), 3.67 (1H, d, J=4.2, C'_4-H), 3.71 (3H, s, CH₃OC₆H₄-), 3.90 (3H, s, CH₃OOC-), 4.89 (1H, d, J=

6.6, C₃-<u>H</u>), 5.32 (1H, d, J=4.2, C'₅-<u>H</u>), 5.80 (1H, d, J=6.6, C₄-<u>H</u>), 6.8–7.5 (18 H, m, aromatics). (4*R**,4′*R**)-6: mp 207°C (from *i*Pr₂O); IR (Nujol): ν_{max} 1760, 1730, 1700 cm⁻¹; ¹H NMR (CDCl₃): δ 2.35 (3H, s, C<u>H</u>₃C₆H₄-), 3.70 (3H, s, C<u>H</u>₃OC₆H₄-), 3.77 (3H, s, C<u>H</u>₃OOC-), 4.10 (1H, d, J=3.2, C'₄-<u>H</u>), 4.57 (1H, d, J=3.2, C'₅-<u>H</u>), 4.79 (1H, d, J=6.3, C₃-<u>H</u>), 5.07 (1H, d, J=6.3, C₄-<u>H</u>), 6.7–7.4 (18 H, m, aromatics).

- Shimizu, T.; Hayashi, T.; Nishi, T.; Teramura, K. Bull. Chem. Soc. Jpn. 1984, 57, 787.
- 9. As implemented in the HyperChem Professional 6.03 version, 2000.
- Selected data for 7 and 8. 7: mp 183°C (from *i*Pr₂O); IR (Nujol): ν_{max} 1750, 1730, 1685 cm⁻¹; ¹H NMR (CDCl₃): δ
 2.32 (3H, s, CH₃C₆H₄-), 3.74 (3H, s, CH₃OC₆H₄-), 3.79 (3H, s, CH₃OOC-), 4.42 (1H, d, *J*=6.5, C₃-H), 4.78 (1H, d, *J*=6.5, C₄-H), 6.3–7.7 (18 H, m, aromatics). 8: mp 209°C (from *i*Pr₂O); IR (Nujol): ν_{max} 1740, 1715, 1685 cm⁻¹; ¹H NMR (CDCl₃): δ 2.28 (3H, s, CH₃C₆H₄-), 3.77 (3H, s, CH₃OC₆H₄-), 4.08 (3H, s, CH₃OOC-), 4.82 (1H, d, *J*=6.6, C₃-H), 6.07 (1H, d, *J*=6.6, C₄-H), 6.9–7.5 (18 H, m, aromatics).
- Crystallographic data (excluding structure factors) for structures 7 and 8 have been deposited with the Cambridge Crystallographic data Centre as supplementary publication numbers CCDC 197536 and CCDC 197535, respectively.