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Abstract: A Brønsted acid and a novel thiourea derivative co-cata-
lyze the addition of b-enamino esters to a,b-unsaturated aldehydes
leading to functionalized 1,4-dihydropyridines with moderate to
good enantioselectivity. A regioselective synthesis of 1,2-dihydro-
pyridines from a,b-unsaturated aldehydes is also described.
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1,4-Dihydropyridines (1,4-DHP) and their derivatives are
important bioactive molecules in the field of drugs and
pharmaceuticals. These compounds are well-known calci-
um channel blockers that are used for the treatment of
hypertension1 and have a broad range of other pharmaco-
logical activities such as HIV protease inhibition,2 non-
competitive inhibition of topoisomerase I,3 MDR
reversal,4 and radioprotection.5 These examples clearly
indicate the noteworthy potential of novel dihydropyri-
dine derivatives as seeds for valuable drug candidates. In
addition, 1,4-DHP can be used as effective hydrogen
sources in the field of synthetic chemistry.6

Due to the importance of 1,4-DHP derivatives from phar-
maceutical and synthetic points of view, various methods
have been reported for their preparation.7 The best known
procedure for the preparation of symmetrical 1,4-DHP is
the classical Hantzsch method,8 but N-substituted DHP
that do not bear substituents on the 5- and/or 6-positions
cannot be synthesized with this protocol. Recently, syn-
thetic methods leading to such unsymmetrical DHP have
been reported.9 However, there have been only a few re-
ports on the catalytic enantioselective synthesis of 1,4-
DHP.10,11 These methods can be classified into two syn-
thetic pathways, as shown in Scheme 1.

Gong et al. reported the highly enantioselective three-
component cyclization of cinnamaldehydes, arylamines,
and 1,3-dicarbonyl compounds catalyzed by a chiral phos-
phoric acid via pathway a.10 However, the substituent (R3)
of 1,3-dicarbonyl compounds is limited to methyl or ethyl.
So far, only a single asymmetric example that used the b-
enamino esters (route b) has been reported by Renaud et
al., who used a chiral phosphoric acid catalyst to obtain
the product in 50% ee.11 This preliminary result has not

been elaborated further. Herein, we describe Brønsted
acid–thiourea co-catalyzed asymmetric cycloadditions of
b-enamino esters and a,b-unsaturated aldehydes, which
afford functionalized 5,6-unsubstituted 1,4-DHP with
enantioselectivities of up to 80% ee.

The key to success for this strategy is how to activate b-
enamino esters as nucleophiles by aminothiourea 1, which
efficiently deprotonated b-keto esters in the asymmetric
reaction reported previously.12 Our working hypothesis is
shown in Scheme 2. When thiourea 1 and a Brønsted acid
are mixed in a 1:1 ratio, an ammonium salt complex A13

would be formed, in which the conjugate base is anchored
to the thiourea moiety by hydrogen bonds.14 This complex
can be considered as a new bifunctional catalyst; a,b-un-
saturated aldehyde 3 and enamino ester 2 should be acti-
vated by the ammonium proton and the conjugate base
(X–), respectively. As a result, 1,4-conjugated addition
would be promoted in a chiral environment to furnish the
desired 1,4-DHP 4, after subsequent intramolecular cy-
clization and dehydration. The merit of this strategy is that
the acidity and basicity of complex A can be tuned by ap-
propriate selection of the acid (HX).

Scheme 1 Possible synthetic routes to 1,4-DHP
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Figure 1 Structures of thiourea catalysts employed

The reaction of b-enamino ester 2a (E/Z = <5:95)15 and
aldehyde 3a was carried out with various ratios of HX and
thioureas 1a–d16 (Figure 1, Table 1). We first investigated
the reaction in the presence of 1a alone, but only recov-
ered the starting material (entry 1). Although the presence
of 10 mol% difluoroacetic acid (DFA) effectively promot-
ed the reaction even at ambient temperature to give 1,4-
DHP 4aa and 1,2-DHP 5aa in a ratio of 35:65, the same
reaction with a 1:1 mixture of 1a and DFA gave none of
the desired products (entries 2 and 3). This means that the
conjugate acid of 1a is too weak to activate the electro-

phile. We then examined N-arylthioureas 1b and 1c,
whose aniline moieties are weaker bases than the N,N-
dimethylamine moiety of 1a, in the presence of several
carboxylic acids. As expected, the use of 1b or 1c with
DFA in a 1:1 ratio provided 1,4-DHP 4aa in 59% or 72%
yield together with 1,2-DHP 5aa as a minor product (en-
tries 4 and 5). In both cases, moderate enantioselectivities
were observed for 4aa (28% and 39% ee). The use of TFA
instead of DFA with 1c decreased the enantioselectivity to
28% ee, while 78% ee was obtained with AcOH, albeit
with very low yield (entries 6 and 7). Unfortunately, we
could not improve both the chemical yield and enantiose-
lectivity despite screening a variety of conditions (solvent,
temperature, and additives).17 Finally, we found that the
slow addition of b-enamino ester 2a to a mixture of 3a,
DFA, and 1c improved the chemo- (4aa/5aa) and enantio-
selectivity (86%, 50% ee; entry 8). Notably, 1d, which has
a hydroxy group in place of the amine, exclusively gave
5aa in 51% yield with low enantioselectivity (12% ee) un-

Scheme 2 A mechanistic proposal for the reaction of b-enamino
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Table 1 Initial Screening of Reaction Conditionsa

Entry Brønsted Acid–
Thiourea

Time 
(h)

Yield 
of 4aa 
(%)b

ee of 4aa 
(%)c

Yield 
of 5aa 
(%)b

ee of 5aa 
(%)c

1 (R,R)-1a 48 0 0

2 DFA 24 (35)d (65)d

3 DFA–(R,R)-1a 48 0 0

4 DFA–(R,R)-1b 24 59 28 (S) 28 2

5 DFA–(S,S)-1c 24 72 39 (R) 17 0

6 TFA–(S,S)-1c 24 71 28 (R) 18 1

7 AcOH–(S,S)-1c 48 11 78 (R) trace

8e DFA–(S,S)-1c 12f 86 50 (R) 0

9e DFA–(R,R)-1dg 12f 0 51 12

a The reactions were carried out with 2a (0.1 mmol, E/Z = <5:95), 
3a (0.1 mmol), thiourea (10 mol%), and Brønsted acid (10 mol%) in 
toluene (1 mL) at r.t.
b Isolated yield.
c Determined by HPLC.
d Conversion as determined by 1H NMR.
e Slow addition of 2a (0.01 mmol/30 min).
f Stirred for 12 h after completion of the addition of 2a.
g Conditions: 20 mol% thiourea 1d was used.
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der otherwise the same conditions (entry 9). This is the
first example of a catalytic asymmetric synthesis of a 1,2-
DHP.

Next, we screened the substituent of the aniline moiety of
the thiourea (Table 2). When 2a was slowly added to a re-
action mixture of 3a, 1b, and DFA at room temperature,
both the chemical yield and enantioselectivity were pre-
dictably improved but lower than when 1c was used (entry
1). The use of b-enamino ester 2b resulted in a slight in-
crease in enantioselectivity (61% ee; entry 2).

Therefore, we evaluated thioureas 1e–g with both 2a and
2b, respectively. We found that thiourea 1g gave the best
results in terms of ee among the synthesized thiourea cat-
alysts (66% ee; entries 3–7). With this result, we estab-
lished that, optimally, the reaction should be carried out in
the presence of DFA and 1g and with the slow addition of
b-enamino esters.

With the optimized conditions in hand we examined sev-
eral substrates (2c–k and 3a–f, Table 3).18 No great differ-
ence was found between the use of tert-butyl ester and
ethyl ester (entry 1), but the use of enaminone 2d derived
from diketone led to low enantioselectivity (entry 2). A
phenyl group at the b-position (2e, R3 = Ph) also gave 4ea
with similarly good enantioselectivity, as was observed
for 2b (R3 = Me, entry 3). Moderate enantioselectivities
were observed in the reaction of 2f with various a,b-unsat-
urated aldehydes 3a–f with both electron-rich and -poor
aromatic groups (entry 4–9). In these cases, the removal
of an electron-withdrawing substituent or introduction of
an electron-donating group led to a decrease in enantiose-
lectivity (entries 5 and 6). In addition, we examined the
reaction of 3a with b-enamino esters 2g–k with different
N-substituents (entries 10–14). b-Enamino ester 2g and
2h with a para-chlorophenyl group on nitrogen led to a
decrease in enantioselectivity (entries 10 and 11). On the
other hand, the reaction of b-enamino esters with a benzyl
group at the nitrogen and a methyl group at the b-position
afforded the corresponding 1,4-DHP with good enantio-

selectivities (entries 13 and 14). These results indicate that
the substituents on nitrogen and at the b-position of the b-
enamino ester might be the most important factors in this
reaction. The absolute configuration of the products 4 was
determined by comparison of the specific rotation of 4ba
to that described in the literature.10

Table 2 Catalyst Screeninga

Entry Thiourea Enamino 
Ester

Product Yield (%)b ee (%)c

1 (R,R)-1b 2a 4aa 86 42 (S)

2 (S,S)-1c 2b 4ba 84 61 (R)

3 (R,R)-1e 2a 4aa 47 41 (S)

4 (S,S)-1f 2a 4aa 91 55 (R)

5 (S,S)-1f 2b 4ba 65 56 (R)

6 (S,S)-1g 2a 4aa 92 50 (R)

7 (S,S)-1g 2b 4ba 93 66 (R)

a Reaction conditions: slow addition (0.01 mmol/30 min) of 2a (0.1 
mmol, E/Z = <5:95) or 2b (0.1 mmol, E/Z = <5:95) to a mixture of 3a 
(0.1 mmol), thiourea (10 mol%), and DFA (10 mol%) in toluene (1 
mL) at r.t. The mixture was stirred for an additional 12 h after com-
pletion of the addition.
b Isolated yield.
c Determined by HPLC.
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In conclusion, we have developed a Brønsted acid–
thiourea co-catalyzed asymmetric cycloaddition of b-
enamino esters and a,b-unsaturated aldehydes to afford
1,3,4-trisubstituted and 1,2,3,4-tetrasubstituted 1,4-DHP,
using novel thiourea catalyst 1g as a source of chirality.
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rate 1.0 mL/min, 254 nm): tr(minor) = 12.0 min, tr(major) = 
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CHCl3).
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