JOURNAL OF THE Iranian Chemical Society

Silica-Supported LiHSO₄ as a Highly Efficient, Heterogeneous and Reusable Catalytic System for the Solvent-Free Synthesis of β-Enaminones and β-Enamino Esters

A. Hasaninejad^{a,*}, A. Zare^{b,*}, M.R. Mohammadizadeh^a and M. Shekouhy^a

^aDepartment of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran ^bDepartment of Chemistry, Payame Noor University (PNU), Iran

(Received 18 November 2008, Accepted 4 January 2009)

A highly efficient, simple and green procedure for the synthesis of β -enaminones and β -enamino esters is described. The reaction of aromatic and aliphatic amines with β -dicarbonyl compounds using catalytic amount of silica-supported LiHSO₄ (LiHSO₄/SiO₂) under solvent-free conditions at 80 °C affords the title compounds in high to excellent yields and in short reaction times.

Keywords: LiHSO₄/SiO₂, Solvent-free, β-Enaminone, β-Enamino ester, β-Dicarbonyl compound, Green chemistry

INTRODUCTION

In recent years, the use of solid-supported catalysts has gained considerable attention both in industrial and academia research due to their unique properties such as enhanced reactivity as well as selectivity, straightforward workup, recyclability of the catalyst and the eco-friendly reaction conditions [1,2]. Silica gel is one of the most interesting solidsupports because it has surface properties that suggest that very rich organic reactions may be at work. SiO₂ is an inexpensive, reusable. commercially available and environmentally benign which, accompanied with different catalysts, has been used in various organic transformations [2]. Nevertheless, most of the existing processes in organic synthesis involve toxic and volatile organic solvents as reaction media which are environmentally unacceptable from the green chemistry view point. One of the most effective techniques to solve this problem is solvent-free conditions

which makes synthesis simpler, saves energy, and prevents solvent waste, hazards, and toxicity [3]. Consequently, a safe catalysis in combination with solventless conditions would provide for a more suitable technique to facilitate the so-called "ideal synthesis". In this paper, we wish to introduce silicasupported LiHSO₄ as a new catalyst for organic synthesis. The strong oxophilicity of Li⁺ as well as H⁺ of HSO₄⁻ powerfully activate oxygen-containing electrophiles for nucleophilic attack [4].

β-Enaminone and β-enamino ester derivatives are significant because they have been extensively applied as synthons for the synthesis of various biologically active compounds, such as anti-epileptic [5], antibacterial [6a,b], anti-inflammatory [6b], anticonvulsant [6b,c], antitumor [6b,d], and other trapiutic agents [7]. Therefore, there is a great deal of interest in the synthesis of this class of compounds. The direct condensation of amines with βdicarbonyl compounds has been used as a useful synthetic route toward β-enaminones and β-enamino esters [8-23]. Several catalysts have been applied to achieve this transformation, including NaAuClO₄ [8], Bi(TFA)₃ [9],

^{*}Corresponding author. E-mail: ahassaninejad@yahoo.com; abdolkarimzare@yahoo.com

Hasaninejad et al.

Sc(OTf)₃ [10], Zn(ClO₄)₂.6H₂O/MgSO₄ [11], Yb(OTf)₃ [12], CeCl₃.7H₂O [13], [EtNH₃]NO₃ [14], ZrOCl₂.8H₂O [15], HClO₄.SiO₂ [16], I₂ [17], silica chloride [18], LaCl₃.7H₂O [19], Bi(TFA)₃/tetrabutylammonium bromide [20], heteropoly acids [21], ceric(IV) ammonium nitrate [22] and phoaphotungstic acid [23]. There are also some synthetic approaches to β-enaminones including condensation of methyl ketones with dimethylformamide dimethylacetal [24], cyclization of amino acids [25], aminolysis of dithioacetals [26], reductive cleavage of isoxazoles [27] and substitution of the imidoylbenzotriazoles with trimethylsilyl (TMS) enol ethers [28]. However, these reported methods are associated with one or more of the following drawbacks: (i) unsatisfactory yield, (ii) long reaction time, (iii) low selectivity, (iv) no generality, (v) the use of non-available and expensive reagents, (vi) tedious work-up procedure, and (vii) lack of agreement with the green chemistry protocols. Therefore, it seems highly desirable to find an efficient, simple, general, green, and cheap protocol for the synthesis of β -enaminones and β -enamino esters.

In this paper, we report a new, clean and highly efficient method for the synthesis of β -enaminones and β -enamino esters *via* β -enamination of β -dicarbonyl compounds using LiHSO₄/SiO₂ as a new, non-toxic, readily producible, heterogeneous and reusable catalytic system (Scheme 1).

EXPERIMENTAL

Chemicals and Apparatus

All chemicals were purchased from Merck or Fluka Chemical Companies. Plate silica gel, (Mesh 60, 15-40 μ m) was used as support. All known compounds were identified by comparison of their melting points and ¹H NMR data with those in the authentic samples. The ¹H NMR (250 MHz) and ¹³C NMR (62.5 MHz) were run on a Bruker Avance DPX-250, FT-NMR spectrometer. Microanalysis was performed on a Perkin-Elmer 240-B microanalyzer. Melting points were recorded on a Stuart Scientific Apparatus SMP3 (UK) in open capillary tubes.

General Procedure for the Preparation of LiHSO₄

A mixture of LiCl (0.848 g, 20 mmol) and H_2SO_4 (2.002 g, 20 mmol) was stirred under N_2 gas for 120 min to give

LiHSO₄ (2.080 g) as a white powder. The HCl gas produced was trapped with NaOH solution.

General Procedure for the Preparation of LiHSO₄/SiO₂ Catalytic System

A mixture of LiHSO₄ (0.5 g) and SiO₂ (9.5 g) was ground vigorously to give LiHSO₄/SiO₂ catalytic system as a white powder (10 g).

General Procedure for the Synthesis of β-Enaminone and β-Enamino Ester Derivatives

To a mixture of amine (1 mmol) and β -dicarbonyl compound (1 mmol) in a 10 ml round-bottomed flask connected to a reflux condenser was added LiHSO₄/SiO₂ (0.416 g, 20 mol%) and the resulting mixture was stirred in an oil-bath (80 °C). After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature. To the resulting mixture, was added EtOAc (15 ml), stirred for 5 min and filtered to separate the catalyst. The solvent of the filtrate was evaporated and the crude product was purified by recrystallization from EtOH/H₂O (1/1). The recycled catalyst was washed by EtOAc, dried and re-used.

Selected Spectral Data of the Products

4-(5,5-Dimethyl-3-oxocyclohex-1-enylamino)phenyl

acetate (Table 3, entry 4). White solid; ¹H NMR (CDCl₃): δ (ppm) 1.13 (s, 6H), 2.10 (s, 2H), 2.24 (s, 2H), 2.76 (s, 3H), 5.73 (s, 1H), 7.02 (d, *J* = 7.1 Hz, 2H), 7.12 (s, 1H), 7.84 (d, *J* = 7.1 Hz, 2H); ¹³C NMR (CDCl₃): δ (ppm) 26.4, 28.1, 32.8, 43.6, 50.3, 100.6, 115.8, 121.2, 140.3, 143.2, 158.8, 196.8, 198.4; Anal. Calcd. for C₁₆H₁₉NO₃: C, 70.31; H, 7.01; N, 5.12. Found: C, 70.14; H, 7.13; N, 5.02.

3-(Furan-2-ylmethylamino)-5,5-dimethylcyclohex-2enone (Table 3, entry 9). White solid; ¹H NMR (CDCl₃): δ (ppm) 1.05 (s, 6H), 1.90 (s, 2H), 1.97 (s, 2H), 4.23 (s, 2H), 4.88 (s, 1H), 5.06 (s, 1H), 6.25 (d, J = 7.7 Hz, 1H), 6.31 (m, 1H), 7.34 (d, J = 5.6 Hz, 1H); ¹³C NMR (CDCl₃): δ (ppm) 27.3, 31.5, 40.1, 43.3, 50.2, 96.3, 107.8, 110.5, 142.3, 149.8; 165.6, 196.8; Anal. Calcd. for $C_{13}H_{17}NO_2$: C, 71.21; H, 7.81; N, 6.39. Found: C, 71.10; H, 7.68; N, 6.47.

(Z)-4-(3-Oxo-1,3-diphenylprop-1-enylamino)phenyl acetate (Table 3, entry 18). ¹H NMR (CDCl₃): δ (ppm) 2.49 (s, 3H), 5.28 (s, 1H), 6.77 (d, J = 7.5 Hz, 2H), 7.39-7.51 (m, 8H), 7.97 (d, J = 7.5 HZ, 2H), 8.10 (d, J = 7.0 Hz, 2H), 12.88 (s, 1H); ¹³C NMR (CDCl₃): δ (ppm) 26.1, 99.0, 113.8, 121.6, 127.4, 128.9, 129.3, 130.1, 130.8, 131.8, 132.2, 135.5, 139.4, 144.1, 160.0, 190.3, 196.8; Anal. Calcd. for C₂₃H₁₉NO₃: C, 77.29; H, 5.36; N, 3.92. Found: C, 77.08; H, 5.24; N, 4.06.

RESULTS AND DISCUSSION

To optimize the reaction conditions, we first studied the

effect of different molar ratios of LiHSO₄/SiO₂ on βenamination of dimedone (1 mmol) with aniline (1 mmol) (Scheme 1) under solvent-free conditions at a range of 25-100 °C. The results are summarized in Table 1. As Table 1 indicates, the best results were observed when the reaction was performed in the presence of 20 mol% of LiHSO₄/SiO₂ at 80 °C.

The efficiency and capacity of the solvent-free procedure, in comparison to solution condition, was also studied. For thispurpose, a mixture of aniline (1 mmol), dimedone (1 mmol) and LiHSO₄/SiO₂ (20 mol%) was stirred in some solvents (10 ml) at 80 °C or under reflux conditions (Table 2). As it can be seen from Table 2, the solvent-free method afforded higher yield and shorter reaction time.

After optimization of the reaction conditions, different

Entry	Molar Ratio of LiHSO ₄ /SiO ₂ (%)	Temperature (°C)	Time (min)	Yield (%) ^a
1	5	80	45	37
2	10	80	12	85
3	20	80	4	94
4	30	80	3	91
5	20	25 (r.t.)	120	Trace
6	20	50	60	18
7	20	70	15	83
8	20	90	4	94
9	20	100	3	89

 Table 1. Effect of Different Molar Ratios of LiHSO₄/SiO₂ and Temperature on the Reaction of Aniline with Dimedone under Solvent-free Conditions

^aIsolated yield.

Table 2. Comparative the β-Enamination of Dimedone with Aniline using LiHSO₄/SiO₂ in Solution Conditions *vs.* the Solvent-free Method

Entry	Solvent	Temperature (°C)	Time (min)	Yield (%) ^a
1	Solvent-free	80	4	94
2	EtOH	Reflux	60	61
3	CH_2Cl_2	Reflux	60	54
4	CH ₃ CN	Reflux	60	35
5	THF	Reflux	60	24
6	H ₂ O	80	120	-

^aIsolated yield.

aromatic and aliphatic amines were condensed with some β dicarbonyl compounds to furnish the desired β -enaminones and β -enamino esters in high to excellent yields and in short reaction times (Table 3). It was observed that the presence of electron-releasing substituents or halogens on the aromatic ring of aromatic amines had no significant effect on the reaction results (Table 3, entries 2-5, 12, 18 and 20-22); however, electron-withdrawing substituents slightly decreased

Entry	Amine	Product	Time (min)	Yield (%) ^a	M.p. °C (Lit.)
1	NH ₂	✓—NH₂	4	94	184-186 (185) [29]
2	OMe	O OMe H	8	89	126-128 (129-131) [30]
3	MeO-NH2	MeO	3	95	192-194 (195) [29]
4	AcO	AcO	7	92	225-227
5	Br	Br. O H	6	93	219-220
6	NC NH2	NC	10	87	182-184
7	NH ₂	N N	4	95	128-129 (125) [29]
8	NH_2	N N N	5	93	118-119
9		N N N N N N N N N N N N N N N N N N N	6	94	149-151
10	NH ₂	~~~h	7	89	117-119

Table 3. Synthesis of β -Enaminones and β -Enamino Esters using LiHSO₄/SiO₂ under Solvent-Free Conditions at 80 °C

Silica-Supported	LiHSO ₄ as a	a Highly	Efficient	Catalytic	System
------------------	-------------------------	----------	-----------	-----------	--------

Table 3.	Continued
----------	-----------

11	NH ₂	NH O	10	91	47-49 (47) [31]
12	Me NH ₂	Me NH O	8	93	66-68 (65-67) [32]
13	H ₂ N NH ₂	O HN NH O	20	85	111-114 (112-114) [33]
14	NH ₂	NH O	12	91	109-111 (108) [12]
15	NH ₂	NH O	12	94	61-63 (59) [34]
16	H ₂ N NH ₂	O HN NH O	30	87	182-184 (180) [9]
17	NH ₂	NH O	30	87	100-103 (99-101) [35]
18		AcO NH O	40	84	149-150
19			27	88	Oil (Oil) [33]
20	MeO-NH2		18	91	45-47 (44.5-45) [31]
21	Me-	Me NH O OEt	24	89	Oil (Oil) [33]
22		CI NH O OEt	33	87	57-58 (53-54) [32]
23	NH2	NH O OEt	25	86	Oil (Oil) [33]

^aIsolated yield.

Entry	Cycle	Time (min)	Yield (%) ^a
1	1 st use	4	94
2	2 nd use	5	94
3	3 rd use	8	93
4	4 th use	10	90
5	5 th use	15	89

Table 4. The Condensation of Aniline with Dimedone in the Presence of Recycled LiHSO₄/SiO₂

^aIsolated yield.

the yields and increased the reaction times (Table 3, entry 6). The condensation of aliphatic amines as well as diamines with β -dicarbonyl compounds was also efficiently performed (Table 3, entries 7-10, 13, 15, 16 and 23).

Ease of recycling of the catalyst is the most significant advantage of our method. For the reaction of aniline with dimedone no significant loss of the product yield was observed when $LiHSO_4/SiO_2$ was reused after four times of recycling (please see Table 4).

CONCLUSIONS

In summary, we have introduced a new and highly efficient catalyst for β -enamination of β -dicarbonyl compounds. The significaant aspect of our methodology are efficiency, generality, high yield, short reaction time, ease of preparation of the catalyst, low cost, cleaner reaction profile, ease of product isolation, simplicity, potential for recycling of the catalyst, and finally agreement with the green chemistry protocols.

ACKNOWLEDGEMENTS

We appreciate Persian Gulf University and Payame Noor University (PNU) Research Councils for the financial support of this work.

REFERENCES

[1] a) S. Besoluk, M. Kucukislamoglu, M. Nebioglu, M.

Zengin, M. Arslan, J. Iran. Chem. Soc. 5 (2008) 62; b) A. Sharifi, M.S. Abaee, A. Tavakkoli, M. Mirzaei, J. Iran. Chem. Soc. 5 (2008) S113; c) J.H. Clark, C.N. Rhodes, Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents, 1st ed., Royal Society of Chemistry, 2000; d) R.A. Sheldon, H. van Bekkum, Fine Chemicals Through Heterogeneous Catalysis, 1st ed., Wiley-VCH, 2001; e) A.P. Kybett, D.C. Sherrington, Supported Catalysts and their Applications, 1st ed., Royal Society of Chemistry, 2001; f) M.S. Silva, R.G. Lara, J.M. Marczewski, R.G. Jacob, E.J. Lenardão, G. Perin, Tetrahedron Lett. 49 (2008) 1927; g) R. Hosseinzadeh, Y. Sarrafi, M. Mohadjerani, F. Mohammadpourmir, Tetrahedron Lett. 49 (2008) 840.

a) I. Mohammadpoor-Baltork, M. Moghadam, S. [2] Tangestaninejad, V. Mirkhani, M.A. Zolfigol, S.F. Hojati, J. Iran. Chem. Soc. 5 (2008) S65; b) M.A. Zolfigol, P. Salehi, M. Shiri, T.F. Rastegar, A. Ghaderi, J. Iran. Chem. Soc. 5 (2008) 490; c) M.A. Khalilzadeh, A. Hosseini, M. Tajbakhsh, F. Mohannazadeh, J. Iran. Chem. Soc. 5 (2008) 699; d) H. Alinezhad, M. Tajbakhsh, R. Soleimani, J. Iran. Chem. Soc. 6 (2009) 288; e) P. Salehi, M.A. Zolfigol, F. Shirini, M. Baghbanzadeh, Curr. Org. Chem. 10 (2006) 2171, (Review); f) A. Hasaninejad, A. Zare, H. Sharghi, M. Shekouhy, ARKIVOC xi (2008) 64; g) A. Hasaninejad, H. Sharghi, Phosphorus, Sulfur Silicon Relat. Elem. 182 (2007) 873; h) A. Khalafi-Nezhad, A. Parhami, M.N. Soltani Rad, M.A. Zolfigol, A. Zare, Tetrahedron Lett. 48 (2007) 5219; i) A. Khalafi-Nezhad, A. Zare, A. Parhami, M.N. Soltani Rad, G.R. Nejabat, J. Iran. Chem. Soc. 4 (2007) 271; j) A. Khalafi-Nezhad, A. Zare, A. Parhami, M.N. Soltani Rad, G.R. Nejabat, Can. J. Chem. 84 (2006) 979.

[3] a) F. Shirini, M.A. Zolfigol, A.-R. Abri, J. Iran. Chem. Soc. 5 (2008) 96; b) G.H. Imanzadeh, A. Khalafi-Nezhad, A. Zare, A. Hasaninejad, A.R. Moosavi Zare, A. Parhami, J. Iran. Chem. Soc. 4 (2007) 229; c) A. Zare, A. Hasaninejad, A.R. Moosavi Zare, A. Khalafi-Nezhad, A. Parhami, J. Iran. Chem. Soc. 5 (2008) 617; d) G.H. Imanzadeh, A. Zare, A. Khalafi-Nezhad, A. Hasaninejad, A.R. Moosavi Zare, A. Parhami, J. Iran. Chem. Soc. 4 (2007) 467; e) B. Tamami, H. Firouzabadi, F. Ebrahimzadeh, A. Fadavi, J. Iran. Chem. Soc. 6 (2009) 722; f) A. Khalafi-Nezhad, A. Zare, A. Parhami, A. Hasaninejad, A.R. Moosavi Zare, J. Iran. Chem. Soc. 5 (2008) S40; g) M. Hosseini-Sarvari, H. Sharghi, J. Iran. Chem. Soc. 5 (2008) 384; h) F. Shirini, M.A. Zolfigol, A. Shahriari, J. Iran. Chem. Soc. 5 (2008) 420; i) A. Zare, A. Hasaninejad, A. Khalafi-Nezhad, A. Parhami, A.R. Moosavi Zare, J. Iran Chem. Soc. 5 (2008) 100; j) S.R. Sarda, W.N. Jadhav, N.B. Kolhe, M.G. Landge, R.P. Pawar, J. Iran Chem. Soc. 6 (2009) 477; k) A. Khalafi-Nezhad, A. Parhami, A. Zare, A.R. Moosavi Zare, J. Iran. Chem. Soc. 5 (2008) 413; 1) K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, GmbH and KGaA, Weinheim, 2004; m) A. Loupy, in Organic Synthesis, Microwave Wiley-VCH, Weinheim, 2006.

- [4] a) A. Basak (née Nandi), M.K. Nayak, A.K. Chakraborti, Tetrahedron Lett. 39 (1998) 4883; b) A.K. Chakraborti, A. Basak (née Nandi), V. Grover, J. Org. Chem. 64 (1999) 8014.
- [5] a) I.O. Edafiogho, K.V. Ananthalakshmi, S.B. Kombian, Bioorg. Med. Chem. 14 (2006) 5266; b) M. Khurana, N.N. Salama, K.R. Scott, N.N. Nemieboka, K.S. Bauer, N.D. Eddington, Drug Dispos 24 (2003) 397.
- [6] a) Y.F. Wang, T. Izawa, S. Kobayashi, M. Ohno, J. Am. Chem. Soc. 104 (1982) 6465; b) J.P. Michael, C.B. Koning, G.D. Hosken, T.V. Stanbury, Tetahedron 57 (2001) 9635; c) I.O. Edafiogho, M.S. Alexander, J.A. Moore, V.A. Farrar, K.R. Scott, Curr. Med. Chem. 1 (1994) 159; d) D.L. Boger, T. Ishizaki, J.R.J. Wysocki, S.A. Munk, P.A. Kitos, O. Suntornwat, J. Am. Chem. Soc. 111 (1989) 6461.
- [7] a) J.D. White, D.C. Ihle, Org. Lett. 8 (2006) 1081; b)
 I.O. Edafiogho, S.B. Kombian, K.Y.V.V. Ananthalakshmi, N.N. Salama, N.D. Eddington, T.L. Wilson, M.S. Alexander, P.L. Jackson, C.D. Hanson, K.R. Scott, J. Pharm. Sci. 96 (2007) 2509.
- [8] A. Arcadi, G. Bianchi, S. Di Giuseppe, F. Marinelli, Green Chem. (2003) 64.
- [9] A.R. Khosropour, M.M. Khodaei, M. Kookhazadeh, Tetrahedron Lett. 45 (2004) 1725.
- [10] J.S. Yadav, V.N. Kumar, R.S. Rao, A.D. Priyadarshini, P.P. Rao, B.V.S. Reddy, K. Nagaiah, J. Mol. Catal. A:

Chem. 256 (2006) 234.

- [11] G. Bartoli, M. Bosco, M. Locatelli, E. Marcantoni, P. Melchiorre, L. Sambri, Synlett (2004) 239.
- [12] F. Epifano, S. Genovese, M. Curini, Tetrahedron Lett. 48 (2007) 2717.
- [13] M.M. Khodaei, A.R. Khosropour, M. Kookhazadeh, Synlett (2004) 1980.
- [14] R.S. Bhosale, P.A. Suryawanshi, S.A. Ingle, M.N. Lokhande, S.P. More, S.B. Mane, S.V. Bhosale, R.P. Pawar, Synlett (2006) 933.
- [15] Z.-H. Zhang, T.-S. Li, J.-J. Li, Catal. Commun. 8 (2007) 1615.
- [16] B. Das, K. Venkateswarlu, A. Majhi, M.R. Reddy, K.N. Reddy, Y.K. Rao, K. Ravikumar, B. Srihar, J. Mol. Catal. A: Chem. 246 (2006) 276.
- [17] S. Gogoi, R. Bhuyan, N.C. Barua, Synth. Commun. 35 (2005) 2811.
- [18] A.R. Gholap, N.S. Chakor, T. Daniel, R.J. Lahoti, K.V. Srinivasan, J. Mol. Catal. A: Chem. 245 (2006) 37.
- [19] R. Lenin, R.M. Raju, ARKIVOC xiii (2007) 204.
- [20] M.M. Khodaei, A.R. Khosropour, M. Kookhazadeh, Can. J. Chem. 83 (2005) 209.
- [21] E. Rafiee, M. Joshaghani, S. Eavani, S. Rashidzadeh, Green Chem. 10 (2008) 982.
- [22] M. Paira, R. Misra, S.C. Roy, Indian J. Chem.-Sec. B 47 (2008) 966.
- [23] G.-C. Li, J. Chem. Res. (2007) 696.
- [24] M.A.P. Martins, C.P. Frizzo, D.N. Moreira, F.A. Rosa, M.R.B. Marzari, N. Zanatta, H.G. Bonacorso, Catal. Commun. 9 (2007) 1375.
- [25] B.J. Turunen, G.I. Georg, J. Am. Chem. Soc. 128 (2006) 8702.
- [26] J. Kang, F. Liang, S.-G. Sun, Q. Liu, X.-H. Bi, Org. Lett. 8 (2006) 2547.
- [27] M. Calle, L.A. Calvo, A. Gonzales-Ortega, A. Gonzales-Nogal, Tetrahedron 62 (2006) 611.
- [28] A.R. Katritzky, A.E. Hayden, K. Kirichenko, P. Pelphrey, Y. Ji, J. Org. Chem. 69 (2004) 5108.
- [29] K.R. Scott, I.O. Edafiogho, E.L. Richardson, V.A. Farrar, J.A. Moore, E.I. Tietz, C.N. Hinko, H. Chang, A. El-Assadi, J.M. Nicholson, J. Med. Chem. 36 (1993) 1947.
- [30] H. Iida, Y. Yuasa, C. Kibayashi, J. Org. Chem. 45

Hasaninejad et al.

(1980) 2938.

- [31] W. Werner, Tetrahedron 27 (1971) 1755.
- [32] T. Potesil, J. Chromatogr. 312 (1984) 387.
- [33] Z.-H. Zhang, L. Yin, Y.-M. Wang, Adv. Synth. Catal. 348 (2006) 184.
- [34] C. Kibayashi, Y. Yuasa, H. Lida, J. Chem. Soc., Dalton Trans. 11 (1981) 2212.
- [35] D.F. Martin, G.A. Janusonis, B.B. Martin, J. Am. Chem. Soc. 83 (1961) 73.