Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Nickel-catalyzed, base-mediated amination/hydroamination reaction sequence for a modular synthesis of indoles

Lutz Ackermann*, Weifeng Song, René Sandmann

Institut für Organische und Biomolekulare Chemie, Georg-August-Universitaet, Tammannstrasse 2, 37077 Goettingen, Germany

ARTICLE INFO

Article history: Received 31 July 2010 Accepted 26 August 2010 Available online 16 October 2010

Keywords: Amination Base Hydroamination Indole Nickel

1. Introduction

The addition of nitrogen nucleophiles onto non-activated, unsaturated carbon-carbon multiple bonds represents one of the most attractive approaches to substituted amines and imines, largely because these hydroamination reactions [1] occur with ideal atom-economy.[2] Particularly, intramolecular hydroaminations set the stage for the preparation of various N-heterocycles.[3,4] Since indoles are omnipresent in biologically active compounds and natural products, a continued strong demand exists for broadly applicable syntheses of this structural motif.[5-11] Specifically, significant progress was accomplished with intramolecular addition reactions of ortho-alkynylanilines.[3,12] Contrarily, we devised transition-metal-catalysts for the selective conversion of easily accessible ortho-alkynylhaloarenes 1 to indole derivatives **4** through a reaction cascade comprising intermolecular aminations[13-15] of aryl halides and subsequent intramolecular hydroamin(d)ations [16] of alkynes (Scheme 1). Hence, palladium[17-21] and copper[17,22] complexes were found to enable the formation of indoles bearing inter alia aryl-, alkyl- or alkoxycarbonyl-substituents on nitrogen.[7] In continuation of our research program on sustainable catalysis for effective heterocycle syntheses, [23] we became interested in exploring the unprecedented use of inexpensive nickel catalysts^[24] for a modular indole synthesis starting from ortho-alkynylhaloarenes 1, the results of which we wish to disclose herein.

E-mail address: Lutz.Ackermann@chemie.uni-goettingen.de (L. Ackermann).

ABSTRACT

A catalytic system consisting of [Ni(cod)₂] and ligand dppf enabled an efficient synthesis of differently substituted indoles through a modular reaction sequence, which consists of intermolecular aminations and intramolecular hydroaminations with *ortho*-alkynylhaloarenes.

© 2010 Elsevier B.V. All rights reserved.

2. Results and discussion

At the outset of our studies, we probed representative ligands and nickel compounds for the envisioned amination/hydroamination sequential synthesis of indole **4a** (Table 1). Notably, no conversion of starting material **1a** to desired product **4a** occurred in the absence of a stabilizing ligand, irrespective of the oxidation state of the nickel precursors (entries 1, and 2). While monodentate phosphine ligands **5–8** provided only unsatisfactory catalysis (entries 3–6), improved isolated yields were obtained with precursors to N-heterocyclic carbenes (NHC) **9–11** (entries 7–9). However, nickel complexes derived from bidentate ligands proved to be superior (entries 10–13), with dppf (**16**) being optimal (entry 14). Generally, the use of additional base KO*t*-Bu proved beneficial to ensure quantitative cyclization of intermediate **3a** to the desired indole **4a** via a base-mediated or -catalyzed (entry **15**)[25] intramolecular hydroamination.

With an optimized catalytic system in hands, we probed its scope in the amination/hydroamination reaction sequence employing aniline derivatives (Table 2). Notably, differently substituted aromatic amines could be employed, bearing either electron-donating or electron-withdrawing substituents (entries 1–4). Further, the nickel catalyst was not restricted to the use of tolane derivatives. Indeed, substrates **1** displaying alkyl-substituted alkynes were converted with an efficacy being comparable to the one observed when using the corresponding aryl-substituted analogues (entries 5–7). Moreover, sterically hindered aniline derivatives **2** provided the desired indoles in high yields (entries 8, and 9), as did a nucleophile bearing a further Lewis-basic pyridyl moiety (entry 10).

^{*} Corresponding author. Fax: +49551 39 6777.

⁰⁰²²⁻³²⁸X/\$ – see front matter \odot 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2010.08.047

Scheme 1. Nickel-catalyzed sequential synthesis of substituted indoles 4.

2a 4a

Reaction conditions: 1a (1.0 equiv.), 2a (1.5 equiv.), [Ni] (5.0 mol%), ligand (5.0 mol%), NaOt-Bu (1.5 equiv), PhMe (2.0 mL), 105 °C, 16 h; b) KOt-Bu (3.0 equiv.), 120 °C, 6 h; isolated yields.

^b Ligand (10 mol%)

^c b) KOt-Bu (0.6 equiv.).

Moreover, the nickel catalyst derived from dppf (16) enabled also the preparation of indoles **4l-4o** when using benzyl or even more challenging *n*-alkyl amines **2** (Scheme 2).

Notably, the catalytic system was further not limited to aryl bromides as electrophiles, but also proved amenable to an efficient amination/hydroamination sequence with aryl iodide 1d as starting material (Scheme 3). As was observed for the corresponding bromoarenes **1a-1c**, the intermolecular amination as well as the intramolecular hydroamination occurred readily with both aniline derivatives and alkyl amines, thereby yielding the corresponding indoles **4b** and **4n**. respectively.

Finally, we exploited the excellent chemoselectivity of the dppf (16) derived catalyst for the synthesis of indoles 4p-4r highlighting 6-chloro-substituents, a valuable asset for further catalyzed functionalizations (Scheme 4).

3. Conclusion

We have devised a nickel catalyst for a sequential indole synthesis consisting of intermolecular aminations of aryl halides and subsequent intramolecular hydroaminations. Thus, an in-situ generated complex derived from ligand dppf allowed for efficient transformations of ortho-alkynylhaloarenes with aryl as well as alkyl-substituted amines, and enabled the chemoselective synthesis of chloro-substituted indoles.

4. Experimental section

4.1. General remarks

Catalytic reactions were carried out under a N₂ atmosphere using pre-dried glassware. ortho-Alkynylbromoarenes 1 were prepared as previously described [17-22]. Other starting materials were obtained from commercial sources, and were used without further purification. Yields refer to isolated compounds, estimated to be > 95% pure as determined by ¹H NMR and GC. Flash chromatography: Macherey-Nagel silica gel 60 (70-230 mesh). NMR: Spectra were recorded on Varian Mercury 300, Unity 300 or Inova 500 instruments in the solvent indicated; chemical shifts (δ) are given in ppm.

4.1.1. Representative procedure: nickel-catalyzed synthesis of 4a (Table 1, entry 14)

To a solution of [Ni(cod)₂] (6.9 mg, 0.025 mmol, 5.0 mol%), dppf (13.9 mg, 0.025 mmol, 5.0 mol%) and NaOt-Bu (96 mg, 0.750 mmol) in PhMe (2.0 mL) were added 1a (129 mg, 0.500 mmol) and 2a (80 mg, 0.750 mmol) at ambient temperature. The resulting mixture was stirred for 16 h at 105 °C. At ambient temperature, KOt-Bu (168 mg, 1.500 mmol) was added, and the resulting mixture was stirred for 6 h at 120 °C. EtOAc (5 mL) and H₂O (5 mL) were added to the cold suspension. The separated aqueous phase was extracted with EtOAc (3 \times 10 mL), the combined organic phases were washed with H₂O (10 mL) and brine (10 mL). Drying with Na₂SO₄ and purification by column chromatography on silica gel (n-hexane/EtOAc, 500/1) yielded 4a (125 mg, 88%) as a white solid

Table 2

Scope of nickel-catalyzed hydroamination-based indole synthesis with aniline derivatives 2.^a

Entry	R^1	1	<i>R</i> ²	4		Isolated Yield
1	Ph	1a	Н	Ph	4b	86%
2	Ph	1a	4-MeO	Ph N OMe	4c	98%
3	4-MeOC ₆ H ₄	1b	4-MeO	OMe	4d	89%
4	Ph	1a	3-CF ₃	Ph N CF ₃	4e	72%
5	n-Hex	1c	Н	n-Hex	4f	78%
6	n-Hex	1c	4-Me	N Me	4g	81%
7	n-Hex	1c	4-MeO	N OMe	4h	75%

(continued on next page)

 Table 2 (continued)

^a Reaction conditions: **1** (1.0 equiv.), **2** (1.5 equiv.), [Ni(cod)₂] (5.0 mol%), **16** (5.0 mol%), NaOt-Bu (1.5 equiv), PhMe (2.0 mL), 105 °C, 16 h; b) KOt-Bu (3.0 equiv.), 120 °C, 6 h; isolated yields.

(m.p. 97–98 °C). ¹H NMR (300 MHz, CDCl₃): δ 7.70 (dd, J = 5.7, 3.3 Hz, 1H), 7.44–7.03 (m, 12H), 6.81 (s, 1H), 2.41 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 140.8, 139.1, 137.0, 135.9, 132.6, 129.9, 128.9, 128.2, 128.1, 127.8, 127.2, 122.2, 120.5, 120.4, 110.7, 103.4, 21.1. IR (KBr): 3054, 3033, 2920, 1514, 1451, 1356, 1322, 1208, 1108, 1022, 741, 696 cm⁻¹. MS (EI) *m/z* (relative intensity) 283 (100) [M⁺], 267 (14), 165 (13), 133 (9). HR-MS (EI) *m/z* calcd for C₂₁H₁₇N 283.1361, found 283.1359. The spectral data are in accordance with those reported in literature[17].

4.1.2. 1,2-Diphenyl-1H-indole (**4b**).[17]

Following the general procedure, indole **4b** (115 mg, 86%) was obtained as a white solid (m.p. 83–84 °C) after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.73 (m, 1H), 7.48–7.14 (m, 13H), 6.85 (d, J = 0.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 140.7, 139.0, 138.5, 132.5, 129.2, 129.0, 128.3, 128.1, 128.0, 127.3, 127.2, 122.3, 120.7, 120.5, 110.6, 103.7. IR (KBr): 3056, 1597, 1495, 1451, 1377, 1352, 1321, 795, 755, 697 cm⁻¹. MS (EI) *m/z* (relative intensity) 269 (100) [M⁺], 268

(35), 165 (26), 133 (27), 127 (12). HR-MS (ESI) m/z calcd for $[C_{20}H_{15}N + H]^+$ 270.1277, found 270.1275.

4.1.3. 1-(p-Anisyl)-2-phenyl-1H-indole (4c).[17]

Following the general procedure, indole **4c** (146 mg, 98%) was obtained as a white solid (m.p. 143–144 °C) after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.74 (m, 1H), 7.42–7.12 (m, 10H), 6.97 (d, J = 8.9 Hz, 2H), 6.85 (s, 1H), 3.86 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 158.5, 140.8, 139.3, 132.6, 131.3, 129.1, 128.8, 128.1, 128.1, 127.2, 122.1, 120.5, 120.4, 114.4, 110.6, 103.1, 55.4. IR (KBr): 3054, 2956, 2835, 1612, 1512, 1460, 1294, 1175, 1031, 842, 754, 694 cm⁻¹. MS (EI) *m*/*z* (relative intensity) 299 (100) [M⁺], 284 (26), 256 (10), 254 (16). HR-MS (EI) *m*/*z* calcd for C₂₁H₁₇NO 299.1310, found 299.1313.

4.1.4. 1,2-Di-p-anisyl-1H-indole (4d)

Following the general procedure, indole **4d** (147 mg, 89%) was obtained as a yellow solid (m.p. 136–137 °C) after purification by column chromatography (*n*-hexane/EtOAc, 100/1). ¹H NMR

Scheme 2. Nickel-catalyzed indole synthesis with alkyl amines 2.

Scheme 3. Nickel-catalyzed indole synthesis with aryl iodide 1d.

(300 MHz, CDCl₃): δ 7.68 (m, 1H), 7.23–7.13 (m, 7H), 6.93 (dt, *J* = 9.8, 3.4 Hz, 2H), 6.80 (dt, *J* = 9.8, 3.1 Hz, 2H), 6.73 (d, *J* = 0.7 Hz, 1H), 3.86 (s, 3H), 3.79 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ = 158.9, 158.5, 140.8, 139.2, 131.4, 130.1, 129.2, 128.2, 125.1, 121.8, 120.4, 120.2, 114.4, 113.6, 110.5, 102.2, 55.4, 55.2. IR (KBr): 3000, 2933, 2838, 1608, 1541, 1513, 1456, 1361, 1249, 1116, 1031, 834, 740, 646 cm⁻¹. MS (EI) *m/z* (relative intensity) 329 (100) [M⁺], 314 (36), 298 (2), 283 (5), 271 (5), 254 (15), 242 (16), 215 (3), 190 (2). HR-MS (ESI) *m/z* calcd for [C₂₂H₁₉NO₂+H]⁺ 330.1489, found 330.1489.

4.1.5. 2-Phenyl-1-{m-(trifluoromethyl)phenyl}-1H-indole (4e)

Following the general procedure, indole **4e** (115 mg, 72%) was obtained as a white solid (m.p. 91–92 °C) after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.71 (m, 1H), 7.67–7.47 (m, 3H), 7.39 (d, *J* = 7.9 Hz, 1H), 7.34–7.16 (m, 8H), 6.83 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 140.6, 139.1, 138.6, 132.0, 131.8 (²*J*_{C,F} = 34 Hz), 131.2, 129.8, 129.0, 128.5, 128.3, 127.6, 124.7 (³*J*_{C,F} = 4 Hz), 123.7 (³*J*_{C,F} = 4 Hz), 122.8, 121.5 (¹*J*_{C,F} = 251 Hz), 121.2, 120.8, 110.2, 104.6. IR (KBr): 3059, 1597, 1496, 1456, 1375, 1326, 1129, 799, 752, 698 cm⁻¹. MS (EI) *m/z* (relative intensity) 337 (100) [M⁺], 336 (19), 267 (14), 165 (26), 133 (23). HR-MS (ESI) *m/z* calcd for [C₂₁H₁₄NF₃+H]⁺ 338.1151, found 338.1152.

4.1.6. 2-n-Hexyl-1-phenyl-1H-indole (4f).[17]

Following the general procedure, indole **4f** (108 mg, 78%) was obtained as a yellow oil after purification by column chromatog-raphy (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.71–7.47 (m, 4H), 7.42 (t, *J* = 4.2 Hz, 2H), 7.23–7.11 (m, 3H), 6.50 (s, 1H), 2.76–2.58 (t, *J* = 7.6 Hz, 2H), 1.71–1.58 (m, 2H), 1.40–1.20 (m, 6H), 0.93 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 142.0, 138.3, 138.1, 129.4, 128.3, 128.1, 127.8, 121.0, 119.9, 119.6, 109.9, 100.1, 31.5, 28.9, 28.6, 27.1, 22.5, 14.0. IR (KBr): 3056, 2927, 2857, 1596, 1498, 1459, 1392, 1211, 1016, 778, 762, 699 cm⁻¹. MS (EI) *m/z* (relative intensity) 277 (44) [M⁺], 220 (46), 207 (100), 191 (6), 178 (7), 165

(3), 152 (2), 128 (6). HR-MS (EI) m/z calcd for C₂₀H₂₃N 277.1830, found 277.1831.

4.1.7. 2-n-Hexyl-1-p-tolyl-1H-indole (4g).[17]

Following the general procedure, indole **4g** (117 mg, 81%) was obtained as a yellow oil after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.66 (m, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.29 (m, 2H), 7.20–7.10 (m, 3H), 6.48 (s, 1H), 2.70 (t, *J* = 7.8 Hz, 2H), 2.52 (s, 3H), 1.71–1.60 (m, 2H), 1.32 (m, 6H), 0.94 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 142.1, 138.4, 137.6, 135.4, 130.0, 128.1, 128.0, 120.8, 119.8, 119.5, 110.0, 99.8, 31.5, 28.9, 28.6, 27.0, 22.5, 21.2, 14.0. IR (KBr): 3054, 2954, 2926, 2858, 1608, 1514, 1459, 1394, 1211, 1017, 817, 741 cm⁻¹. MS (EI) *m/z* (relative intensity) 291 (46) [M⁺], 234 (29), 221 (100), 220 (66), 205 (34), 204 (44). HR-MS (EI) *m/z* calcd for C₂₁H₂₅N 291.1987, found 291.1978.

4.1.8. 1-(p-Anisyl)-2-n-hexyl-1H-indole (4h).[22]

Following the general procedure, indole **4h** (113 mg, 75%) was obtained as a yellow oil after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.61 (m, 1H), 7.33–7.23 (m, 2H), 7.19–6.99 (m, 5H), 6.43 (s, 1H), 3.91 (s, 3H), 2.67–2.57 (t, *J* = 7.4 Hz, 2H), 1.69–1.55 (m, 2H), 1.28 (s, 6H), 0.90 (t, *J* = 5.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 159.0, 142.3, 138.6, 130.7, 129.4, 128.0, 120.8, 119.7, 119.5, 114.5, 109.9, 99.6, 55.5, 31.5, 28.9, 28.6, 27.0, 22.5, 14.1. IR (KBr): 3050, 2928, 2857, 1580, 1547, 1460, 1294, 1211, 1036, 831, 778, 742 cm⁻¹. MS (EI) *m/z* (relative intensity) 307 (51) [M⁺], 250 (31), 237 (100), 205 (29), 192 (11), 43 (15). HR-MS (EI) *m/z* calcd for C₂₁H₂₅NO 307.1936, found 307.1936.

4.1.9. 1-Naphthyl-2-phenyl-1H-indole (4i)

Following the general procedure, indole **4i** (124 mg, 78%) was obtained as a yellow solid (m.p. 73–74 $^{\circ}$ C) after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR

Scheme 4. Nickel-catalyzed sequential synthesis of chloro-substituted indoles 4p-4r.

(300 MHz, CDCl₃): δ 7.98–7.88 (m, 2H), 7.74 (m, 1H), 7.55–7.42 (m, 3H), 7.42–7.30 (m, 2H), 7.26–7.04 (m, 7H), 6.94 (d, *J* = 0.8 Hz, 1H), 6.82 (dd, *J* = 8.2, 0.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 142.1, 140.2, 135.3, 134.3, 132.5, 131.3, 128.6, 128.3, 128.2, 128.2, 128.1, 127.3, 127.2, 127.1, 126.5, 125.5, 123.6, 122.2, 120.6, 120.5, 111.2, 103.2. IR (KBr): 3053, 1599, 1509, 1460, 1403, 1317, 1215, 1017, 796, 747, 695 cm⁻¹. MS (EI) *m/z* (relative intensity) 319 (100) [M⁺], 302 (4), 289 (3), 241 (8), 215 (5), 190 (2). HR-MS (EI) *m/z* calcd for C₂₄H₁₇N 319.1361, found 319.1364.

4.1.10. 1-Mesityl-2-phenyl-1H-indole (**4***j*).[17]

Following the general procedure, indole **4j** (124 mg, 81%) was obtained as a yellow oil after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.80 (dd, *J* = 6.2, 2.8 Hz, 1H), 7.43–7.18 (m, 7H), 7.03 (s, 2H), 7.00–6.90 (m, 2H), 2.42 (s, 3H), 1.93 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 140.5, 138.0, 137.9, 136.9, 133.9, 132.8, 129.2, 128.2, 128.2, 127.4, 127.2, 122.1, 120.4, 120.2, 110.5, 102.0, 21.1, 17.7. IR (KBr): 3054, 3027, 2919, 1604, 1486, 1371, 1209, 1030, 854, 793, 741, 696 cm⁻¹. MS (EI) *m/z* (relative intensity) 311 (100) [M⁺], 310 (17), 296 (20), 237 (13). HR-MS (ESI) *m/z* calcd for [C₂₃H₂₁N + H]⁺ 312.1747, found 312.1741.

4.1.11. 2-Phenyl-1-(3-pyridyl)- 1H-indole (4k)

Following the general procedure, indole **4k** (98 mg, 74%) was obtained as a white oil after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 8.70–8.55 (m, 2H), 7.73 (m, 1H), 7.55 (m, 1H), 7.41–7.18 (m, 9H), 6.87 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 148.9, 148.0, 140.6, 138.7, 135.2, 135.1, 131.8, 129.0, 128.5, 128.4, 127.6, 123.7, 122.8, 121.2, 120.7, 110.0, 104.7. IR (KBr): 3053, 1482, 1426, 1326, 1208, 1024, 798, 749, 703 cm⁻¹. MS (EI) *m/z* (relative intensity) 270 (100) [M⁺], 241 (8), 216 (3), 190 (4), 165 (12), 134 (11). HR-MS (EI) *m/z* calcd for C₁₉H₁₄N₂ 270.1157, found 270.1161.

4.1.12. 1-Benzyl-2-phenyl-1H-indole (41).[17]

Following the general procedure, indole **4I** (120 mg, 85%) was obtained as a white solid (m.p. 95–96 °C) after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.68 (dd, *J* = 5.9, 0.8 Hz, 1H), 7.36–7.14 (m, 11H), 7.07–7.02 (m, 2H), 6.66 (s, 1H), 5.37 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 141.8, 138.2, 138.0, 132.7, 129.2, 128.7, 128.5, 128.3, 128.0, 127.1, 126.0, 121.9, 120.5, 120.1, 110.5, 102.3, 47.7. IR (KBr): 3056, 3029, 2917, 1603, 1488, 1454, 1348, 1312, 1163, 730, 698, 670 cm⁻¹. MS (EI) *m/z* (relative intensity) 283 (50) [M⁺], 165 (12), 91 (100), 65 (9). HR-MS (ESI) *m/z* calcd for [C₂₁H₁₇N + H]⁺ 284.1434, found 284.1434.

4.1.13. 1-Benzyl-2-n-hexyl-1H-indole (4m).[21c]

Following the general procedure, indole **4m** (95 mg, 67%) was obtained as a white solid (m.p. 68–69 °C) after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.61 (m, 1H), 7.36–7.06 (m, 6H), 6.98 (d, *J* = 8.1 Hz, 2H), 6.38 (s, 1H), 5.34 (s, 2H), 2.69 (t, *J* = 7.8 Hz, 2H), 1.82–1.61 (m, 2H), 1.48–1.19 (m, 6H), 1.02–0.81 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 141.4, 138.0, 137.1, 128.7, 128.2, 127.2, 125.9, 120.7, 120.0, 119.4, 109.3, 99.3, 46.3, 31.6, 29.0, 28.4, 26.7, 22.5, 14.1. IR (KBr): 3031, 2953, 2921, 2851, 1650, 1541, 1453, 1352, 1309, 1250, 773, 733, 697 cm⁻¹. MS (EI) *m/z* (relative intensity) 291 (70) [M⁺], 234 (32), 221 (94), 130 (23), 91 (100), 65 (14). HR-MS (EI) *m/z* calcd for C₂₁H₂₅N 291.1987, found 291.1978.

4.1.14. 1-n-Hexyl-2-phenyl-1H-indole (4n).[17]

Following the general procedure, indole **4n** (102 mg, 74%) was obtained as a yellow oil after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.73 (d,

 $J = 7.6 \text{ Hz}, 1\text{H}), 7.62-7.43 \text{ (m, 6H)}, 7.32 \text{ (m, 1H)}, 7.26-7.19 \text{ (m, 1H)}, 6.62 \text{ (s, 1H)}, 4.29-4.15 \text{ (m, 2H)}, 1.86-1.70 \text{ (m, 2H)}, 1.30-1.22 \text{ (m, 6H)}, 0.91 \text{ (t, } J = 6.8 \text{ Hz}, 3\text{ H}). {}^{13}\text{C} \text{ NMR} (75 \text{ MHz}, \text{CDCl}_3): \delta$ 141.3, 137.3, 133.3, 129.4, 128.4, 128.2, 127.8, 121.4, 120.5, 119.7, 110.0, 102.0, 43.9, 31.2, 29.9, 26.4, 22.4, 13.9. IR (KBr): 3056, 2954, 2859, 1646, 1462, 1350, 1313, 1166, 744, 699 cm⁻¹. MS (EI) *m/z* (relative intensity) 277 (44) [M⁺], 221 (11), 206 (100), 204 (15), 178 (12), 165 (19). HR-MS (ESI) *m/z* calcd for [$C_{20}H_{23}N + H$]⁺ 278.1903, found 278.1900.

4.1.15. 1-n-Octyl-2-phenyl-1H-indole (40).[17]

Following the general procedure, indole **40** (120 mg, 80%) was obtained as a yellow solid after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.67 (d, *J* = 7.8 Hz, 1H), 7.59–7.36 (m, 6H), 7.26 (m, 1H), 7.15 (m, 1H), 6.55 (s, 1H), 4.16 (t, *J* = 7.7 Hz, 2H), 1.77–1.65 (m, 2H), 1.34–1.09 (m, 10H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 141.3, 137.3, 133.3, 129.4, 128.4, 128.2, 127.9, 121.4, 120.5, 119.7, 110.0, 102.0, 43.9, 31.7, 29.9, 29.1, 29.0, 26.7, 22.6, 14.1. IR (KBr): 3030, 2926, 2855, 1606, 1462, 1350, 1163, 1016, 786, 743, 700 cm⁻¹. MS (EI) *m/z* (relative intensity) 305 (43) [M⁺], 207 (16), 206 (100), 193 (13), 178 (12), 165 (9). HR-MS (ESI) *m/z* calcd for [C₂₂H₂₇N + H]⁺ 306.2216, found 306.2218.

4.1.16. 6-Chloro-2-phenyl-1-p-tolyl-1H-indole (4p)

Following the general procedure, indole **4p** (113 mg, 72%) was obtained as a white solid (m.p. 112–113 °C) after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.57 (d, *J* = 8.4 Hz, 1H), 7.30–7.19 (m, 8H), 7.16–7.05 (m, 3H), 6.75 (s, 1H), 2.41 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 141.5, 139.5, 137.5, 135.3, 132.1, 130.1, 128.8, 128.2, 128.0, 127.6, 127.5, 126.7, 121.2, 121.2, 110.7, 103.2, 21.2. IR (KBr): 3057, 3034, 1604, 1514, 1457, 1378, 1071, 927, 759, 732, 695 cm⁻¹. MS (EI) *m/z* (relative intensity) 317 (100) [M⁺], 281 (23), 267 (14), 239 (3), 179 (6), 165 (8). HR-MS (EI) *m/z* calcd for C₂₁H₁₆CIN 317.0971, found 317.0968.

4.1.17. 1-Benzyl-6-chloro-2-phenyl-1H-indole (4q)

Following the general procedure, indole **4q** (115 mg, 73%) was obtained as a white solid (m.p. 130–131 °C) after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.56 (d, *J* = 8.4 Hz, 1H), 7.44–7.35 (m, 12H), 6.61 (s, 1H), 5.31 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 142.6, 138.4, 137.6, 132.2, 129.2, 128.9, 128.6, 128.3, 127.7, 127.3, 126.9, 125.9, 121.4, 120.9, 110.5, 102.4, 47.8. IR (KBr): 3060, 3030, 1605, 1460, 1384, 1073, 916, 760, 732, 698 cm⁻¹. MS (EI) *m/z* (relative intensity) 317 (80) [M⁺], 226 (8), 199 (12), 91 (100), 65 (15), 43 (13). HR-MS (EI) *m/z* calcd for C₂₁H₁₆ClN 317.0971, found 317.0971.

4.1.18. 6-Chloro-1-n-octyl-2-phenyl-1H-indole (4r)

Following the general procedure, indole **4r** (91 mg, 53%) was obtained as a yellow oil after purification by column chromatography (*n*-hexane/EtOAc 500:1). ¹H NMR (300 MHz, CDCl₃): δ 7.60–7.34 (m, 7H), 7.10 (d, *J* = 8.4 Hz, 1H), 6.48 (s, 1H), 4.09 (t, *J* = 7.5 Hz, 2H), 1.69–1.63 (m, 2H), 1.32–1.10 (m, 10H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 142.1, 137.8, 132.8, 129.4, 128.5, 128.1, 127.3, 126.7, 121.3, 120.3, 110.0, 102.1, 44.1, 31.7, 29.8, 29.0, 28.9, 26.6, 22.6, 14.1. IR (KBr): 3062, 2926, 2856, 1607, 1463, 1341, 1302, 1068, 919, 810, 759, 699 cm⁻¹. MS (EI) *m/z* (relative intensity) 339 (81) [M⁺], 254 (11), 242 (38), 240 (100), 227 (23), 205 (88). HR-MS (ESI) *m/z* calcd for [C₂₂H₂₆ClN + H]⁺ 340.1827, found 340.1814.

Acknowledgements

Support by the DFG, and the Chinese Scholarship Council (fellowship to WS) is gratefully acknowledged.

Appendix. Supplementary material

Supplementary data related to this article can be found online at doi:10.1016/j.jorganchem.2010.08.047.

References

- Selected reviews on hydroamination reactions: (a) T.E. Müller, K.C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev. 108 (2008) 3795–3892;
 - (b) R.A. Widenhoefer, Chem. Eur. J. 14 (2008) 5382-5391;
 - (c) K.C. Hultzsch, Adv. Synth. Catal. 347 (2005) 367-391;
 - (d) M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem. Int. Ed. 43 (2004) 3368-3398;
 - (e) A.P. Duncan, R.G. Bergman, Chem. Rec. 2 (2002) 431–445.
- [2] (a) B.M. Trost, Science 254 (1991) 1471–1477;
- (b) B.M. Trost, Acc. Chem. Res. 35 (2002) 695–705.
- [3] G. Zeni, R.C. Larock, Chem. Rev. 104 (2004) 2285–2309.
- [4] F. Alonso, I.P. Beletskaya, M. Yus, Chem. Rev. 104 (2004) 3079-3159.
- [5] D.A. Horton, G.T. Bourne, M.L. Smythe, Chem. Rev. 103 (2003) 893-930.
- [6] G.R. Humphrey, J.T. Kuethe, Chem. Rev. 106 (2006) 2875–2911.
- [7] L. Ackermann, Synlett (2007) 507–526.
 [8] S. Cacchi, G. Fabrizi, Chem. Rev. 105 (2005) 2873–29
- [8] S. Cacchi, G. Fabrizi, Chem. Rev. 105 (2005) 2873–2920.
 [9] K. Krüger, A. Tillack, M. Beller, Adv. Synth. Catal. 350 (2008) 2153–2167.
- [10] I. Nakamura, Y. Yamamoto, Chem. Rev. 104 (2004) 2127–2198.
- [11] For selected recent examples, see: (a) L.C. Henderson, M.J. Lindon, M.C. Willis, Tetrahedron 66 (2010) 6632-6638;
 - (b) A. Boyer, N. Isono, S. Lackner, M. Lautens, Tetrahedron 66 (2010) 6468–6482;
 (c) S. Cacchi, G. Fabrizi, A. Goggiamani, A. Perboni, A. Sferrazza, P. Stabile, Org. Lett. 12 (2010) 3279–3281;
 - (d) S. Mehta, R.C. Larock, J. Org. Chem. 75 (2010) 1652-1658;
 - (e) L. Ackermann, A. Althammer, P. Mayer, Synthesis (2009) 3493-3503;
 - (f) R. Bernini, G. Fabrizi, A. Sferrazza, S. Cacchi, Angew. Chem. Int. Ed. 48 (2009) 8078–8081;
 - (g) Y. Ohta, H. Chiba, S. Oishi, N. Fujii, H. Ohno, J. Org. Chem. 74 (2009) 7052–7058; (h) J. Barluenga, A. Jimenez-Aquino, F. Aznar, C. Valdes, J. Am. Chem. Soc. 131
 - (11) J. Balidenga, A. Jinfenez-Aquino, F. Azitar, C. Valdes, J. Ani. Chem. Soc. 131 (2009) 4031–4041;
 - (i) K. Álex, A. Tillack, N. Schwarz, M. Beller, Angew. Chem. Int. Ed. 47 (2008) 2304–2307;
 - (j) D.R. Stuart, M. Bertrand-Laperle, K.M.N. Burgess, K. Fagnou, J. Am. Chem. Soc. 130 (2008) 16474–16475;
 - (k) Y.-Q. Fang, M. Lautens, J. Org. Chem. 73 (2008) 538-549;
 - (I) T. Jensen, H. Pedersen, B. Bang-Andersen, R. Madsen, M. Jørgensen, Angew. Chem. Int. Ed. 47 (2008) 888–890;
 - (m) H. Ohno, Y. Ohta, S. Oishi, N. Fujii, Angew. Chem. Int. Ed. 46 (2007) 2295-2298;
 - (n) B.M. Trost, A. McClory, Angew. Chem. Int. Ed. 46 (2007) 2074–2077;
 - (o) M. McLaughlin, M. Palucki, I.W. Davies, Org. Lett. 8 (2006) 3307-3310;
 - (p) A. Fürstner, P.W. Davies, J. Am. Chem. Soc. 127 (2005) 15024-15025;
 - (q) A.L. Odom, Dalton Trans. (2005) 225–233;
 - (r) M.C. Willis, G.N. Brace, I.P. Holmes, Angew. Chem. Int. Ed. 44 (2005) 403–406;
 (s) T. Shimada, I. Nakamura, Y. Yamamoto, J. Am. Chem. Soc. 126 (2004) 10546–10547;
 - (t) H. Siebeneicher, I. Bytschkov, S. Doye, Angew. Chem. Int. Ed. 42 (2003) 3042-3044;
 - (u) C. Koradin, W. Dohle, A.L. Rodriguez, B. Schmid, P. Knochel, Tetrahedron 59 (2003) 1571–1587;
 - (v) M.A. Campo, Y. Huang, T. Yao, Q. Tian, R.C. Larock, Direct C-H bond arylations on indoles, reviews, J. Am. Chem. Soc. 125 (2003) 11506-11507;
 - (w) L. Ackermann, R. Vicente, A. Kapdi, Angew. Chem. Int. Ed. 48 (2009) 9792–9826;
 - (x) L. Joucla, L. Djakovitch, an example from our laboratories, Adv. Synth. Catal. 351 (2009) 673-714;
 - (y) L. Ackermann, S. Barfüßer, Synlett (2009) 808-812 (and references cited therein).

- [12] For early examples, see: (a) K. Utimoto, H. Miwa, H. Nozaki, Tetrahedron Lett. 22 (1981) 4277–4278;
 - (b) K. Irtani, S. Matsubara, K. Utimoto, Tetrahedron Lett. 29 (1988) 1799–1802;

(c) A. Arcadi, S. Cacchi, F. Marinelli, Tetrahedron Lett. 30 (1989) 2581–2584;
(d) S. Cacchi, V. Carnicelli, F. Marinelli, J. Organomet. Chem. 475 (1994) 289–296.

- [13] B. Schlummer, U. Scholz, Adv. Synth. Catal. 346 (2004) 1599-1626.
- [14] B. Schlummer, U. Scholz, in: L. Ackermann (Ed.), Modern Arylation Methods (2009), pp. 69–120 Weinheim.
- [15] M. Kienle, S.R. Dubbaka, K. Brade, P. Knochel, Eur. J. Org. Chem. (2007) 4166–4176.
- [16] For select examples of hydroamination reactions from our laboratories, see:
 (a) L. Ackermann, R. Sandmann, L.T. Kaspar, Org. Lett. 11 (2009) 2031–2034;
 (b) D. Facoetti, G. Abbiati, L. d'Avolio, L. Ackermann, E. Rossi, Synlett (2009) 2273–2276;
 - (c) L. Ackermann, A. Althammer, Synlett (2008) 995–998;
 (d) L. Ackermann, L.T. Kaspar, J. Org. Chem. 72 (2007) 6149–6153;
 - (d) L. Ackermann, L.I. Kaspar, J. Org. Chem. 72 (2007) 6149-6153;
 (e) L. Ackermann, L.T. Kaspar, A. Althammer, Org. Biomol. Chem. 5 (2007) 1975-1978.
 - (f) L. Ackermann, A. Althammer, Synlett (2006) 3125–3129;
 - (g) LT. Kaspar, B. Fingerhut, L. Ackermann, Angew. Chem. Int. Ed. 44 (2005) 5972–5974:
 - (h) L. Ackermann, LT. Kaspar, C.J. Gschrei, Chem. Commun. (2004) 2824–2825;
 - (i) L. Ackermann, R. Born, Tetrahderon Lett. 45 (2004) 9541–9544; (j) L. Ackermann, Organometallics 22 (2003) 4367–4368.
- [17] L. Ackermann, Org. Lett. 7 (2005) 439–442.
- 17] L. Ackennidilli, Olg. Lett. 7 (2005) 459–442.
- [18] L.T. Kaspar, L. Ackermann, Tetrahedron 61 (2005) 11311–11316.
- [19] L. Ackermann, R. Sandmann, M.V. Kondrashov, Synlett (2009) 1219–1222.
 [20] L. Ackermann, R. Sandmann, M. Schinkel, M.V. Kondrashov, Tetrahderon 65 (2009) 8930–8939.
- [21] For applications of this method, see: (a) P.-Y. Yao, Y. Zhang, R.P. Hsung, K. Zhao, Org. Lett. 10 (2008) 4275–4278;
 (b) R. Sanz, M.P. Castroviejo, V. Guilarte, A. Perez, F.J. Fananas, J. Org. Chem. 72
 - (2007) 5113–5118;
- (c) Z.-Y. Tang, Q.-S. Hu, Adv. Synth. Catal. 348 (2006) 846–850.
 [22] L. Ackermann, S. Barfüßer, H.K. Potukuchi, Adv. Synth. Catal. 351 (2009) 1064–1072
- [23] For recent representative examples, see: (a) L. Ackermann, R. Jeyachandran, H.K. Potukuchi, P. Novák, L. Büttner, Org. Lett. 12 (2010) 2056–2059;
 (b) L. Ackermann, H.K. Potukuchi, A.R. Kapdi, C. Schulzke, Chem. Eur. J. 16 (2010) 3300–3303;
 (c) L. Ackermann, R. Vicente, N. Hofmann, Org. Lett. 11 (2009) 4274–4276;
 - (d) L. Ackermann, P. Novák, R. Vicente, N. Hofmann, Angew. Chem. Int. Ed. 48 (2009) 6045–6048.
- [24] For representative examples of nickel-catalyzed aminations of aryl (pseudo) halides, see: (a) T. Shimasaki, M. Tobisu, N. Chatani, Angew. Chem. Int. Ed. 49 (2010) 2929–2932;
 - (b) M. Tobisu, T. Shimasaki, N. Chatani, Chem. Lett. 38 (2009) 710-711;
 - (c) C.-Y. Gao, L.-M. Yang, J. Org. Chem. 73 (2008) 1624–1627;
 - (d) G. Manolikakes, A. Gavryushin, P. Knochel, J. Org. Chem. 73 (2008) 1429–1434;
 - (e) C. Chen, L.-M. Yang, J. Org. Chem. 72 (2007) 6324-6327;
 - (f) J.A. Miller, J.W. Dankwardt, J.M. Penney, Synthesis (2003) 1643-1648;
 - (g) S. Tasler, B.H. Lipshutz, J. Org. Chem. 68 (2003) 1190-1199;
 - (h) C. Desmarets, R. Schneider, Y. Fort, Tetrahedron 57 (2001) 7657–7664;
 (i) B. Gradel, E. Brenner, R. Schneider, Y. Fort, Tetrahedron Lett. 42 (2001) 5689–5692;
 - (j) B.H. Lipshutz, H. Ueda, Angew. Chem. Int. Ed. 39 (2000) 4492–4494;
 - (k) C. Desmarets, R. Schneider, Y. Fort, Tetrahedron Lett. 41 (2000) 2875–2879;
 - (l) E. Brenner, R. Schneider, Y. Fort, Tetrahedron 55 (1999) 12829-12842;
 - (m) J.P. Wolfe, S.L. Buchwald, J. Am. Chem. Soc. 119 (1997) 6054-6058;
 - (n) R. Cramer, D.R. Coulson, J. Org. Chem. 40 (1975) 2267–2273.
- [25] J. Seayad, A. Tillack, C.G. Hartung, M. Beller, Adv. Synth. Catal. 344 (2002) 795-813.