ORGANOMETALLICS

Steric and Electronic Effects in the Formation and Carbon Disulfide Reactivity of Dinuclear Nickel Complexes Supported by Bis(iminopyridine) Ligands

Amarnath Bheemaraju,[†] Jeffrey W. Beattie,[†] Erwyn G. Tabasan,[†] Philip D. Martin,[†] Richard L. Lord,^{*,‡} and Stanislav Groysman^{*,†}

[†]Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States

[‡]Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States

Supporting Information

ABSTRACT: We are developing bimetallic platforms for the cooperative activation of heteroallenes. Toward this goal, we designed a new family of bis(iminopyridine) ((N,N'-1,1'-(1,4-phenylene)bis(N-(pyridin-2-ylmethylene)methanamine) and N,N'-1,1'-(1,4-phenylene)bis(N-(1-(pyridin-2-yl)ethylidene)-methanamine)) dinickel complexes, synthesized their CS₂ compounds, and studied their reactivity. Bis(iminopyridine)

ligands L react with Ni(COD)₂ to form Ni₂(L)₂ complexes or Ni₂(L)(COD)₂ complexes as a function of the steric and electronic properties of the ligand precursor. Product structures disclosed an *anti* geometry in the Ni₂(L)(COD)₂ species and helical (*anti*) structures for Ni₂(L)₂ complexes. Carbon disulfide adducts Ni₂(L)(CS₂)₂ were obtained in good yields upon addition of CS₂ to Ni₂(L)(COD)₂ or in a one-pot reaction of L with 2 equiv of both Ni(COD)₂ and CS₂. Ni₂(L)(CS₂)₂ complexes are highly flexible, displaying both *syn* and *anti* conformations (shortest S- - -S separations of 5.0 and 9.5 Å, respectively) in the solid state. DFT calculations demonstrate virtually no energy difference between the two conformations. Electrochemical studies of the Ni₂(L)(CS₂)₂ complexes displayed two ligand-based reductions and a broad CS₂-based oxidation. Chemical oxidation with [FeCp₂]⁺ liberated free CS₂. The addition of NHC (NHC = 1,3-di-*tert*-butylimidazolin-2-ylidene) to Ni₂(L)(CS₂)₂ yielded Ni₂(NHC)₂(CS₂)₂, in which both carbon disulfide ligands are bridging two Ni centers.

■ INTRODUCTION

Dinuclear complexes offer an attractive strategy for the cooperative binding and activation of small molecules.^{1,2} In particular, heteroallene activation is a multielectron process and the cooperative action of several metals broadens the number of oxidation states available for the heteroallene reduction.^{3–6} Recently, several groups reported CO₂ activation and reduction using dinuclear and polynuclear complexes.^{7–9} Several different approaches were tested. Thomas and co-workers described a heterodinuclear system containing a metal–metal bond that oxidatively adds CO₂.⁷ Berben and co-workers described electrocatalytic reduction of CO₂ to formate by the tetrametallic cluster [HFe₄N(CO)₁₂]^{-.8} Hazari and co-workers have investigated insertion of CO₂ into Pd(I) bridging allyl dimers.⁹

We are designing homodinuclear metal complexes for the cooperative activation of heteroallenes $(CO_2 \text{ and } CS_2)$.¹⁰ Our systems feature metal centers that are positioned close to each other but are connected by a flexible linker and feature no direct metal–metal bond. Our goal is to achieve the reductive transformation of two heteroallene molecules by the cooperative action of two metal centers, brought together by a dinucleating ligand. Possible products of this bimetallic reductive transformation include oxalate (tetrathiooxalate) and carbonate (trithiocarbonate). This goal requires the design

of dinuclear systems in which the two heteroallene substrates are close enough to react with each other. Furthermore, the electronic structure of the heteroallene adduct is of primary importance as it determines its reactivity. The electronic structure of a bound heteroallene is determined in part by the ancillary ligand. The current investigation focuses on iminopyridine chelates. Our choice of the iminopyridine ancillary ligand results from its redox-active nature that helps to stabilize low-oxidation-state metal precursors and to mediate electron transfer upon binding and reduction of substrates.¹ Toward this goal, we have recently reported two dinucleating bis(iminopyridine) ligands, L^1 and L^2 (see Figure 1).¹⁰ We discovered that the treatment of the ligand with Ni(COD)₂ affords two different products: the expected complex $Ni_2(L^1)$ - $(COD)_2$ (1a) for L¹ and the bis(homoleptic) complex Ni₂(L²)₂ (2b/2c) for L^{2.10a} We also reported that Ni₂(L¹)(COD)₂ reacts with 2 equiv of carbon disulfide to form $Ni_2(L^1)(CS_2)_2^{-10b}$ To decipher the steric and electronic effects guiding the formation and the reactivity of the dinuclear nickel complexes, we designed several bis(iminopyridine) ligands featuring different substituents in the ligand's framework. In this work we interrogate the formation, properties, and reactivity of the

Received: March 6, 2013

Organometallics

open-chain Ni₂(L)(COD)₂-type complexes vs bis(homoleptic) Ni₂L₂-type complexes. In addition, we report the straightforward one-pot synthesis of Ni₂(L)(CS₂)₂ complexes that does not require prior isolation of the Ni₂(L)(COD)₂ complexes. Electrochemical properties and the reactivity of Ni₂(L)(CS₂)₂ complexes are presented. The structure of the *syn*-Ni₂(L)-(CS₂)₂-type complex is reported and compared with the structure of the *anti*-Ni₂(L)(CS₂)₂-type complex. The conformational stability of the arms in this bimetallic complex is interrogated using DFT.

EXPERIMENTAL SECTION

General Considerations. All reactions involving metal complexes were executed in a nitrogen-filled glovebox. p-Xylylenediamine, 6-(4methoxyphenyl)-2-pyridinecarboxaldehyde, 6-methoxy-2-pyridinecarboxaldehyde, 4-(6-formylpyridin-2-yl)benzonitrile, 2-bromopyridine-6-carboxaldehyde, 2,4,6-triisopropylphenylboronic acid, 6-(trifluoromethyl)pyridine-2-carboxaldehyde, bis(cyclooctadiene)nickel(0) (Ni(COD)₂), 1,3-di-*tert*-butylimidazolin-2-ylidene (NHC), carbon disulfide, and ¹³C-labeled carbon disulfide were purchased from Aldrich, Strem, or TCI America and used as received. L^1 and L^2 were synthesized as previously described.¹⁰ All solvents were purchased from Fisher Scientific and were of HPLC grade. The solvents were purified using an MBRAUN solvent purification system and stored over 3 Å molecular sieves. Compounds were routinely characterized by ¹H NMR, ¹³C{¹H} NMR (¹³C NMR thereafter), and ¹⁹F NMR spectroscopy, X-ray crystallography, and elemental analyses. Selected compounds were characterized by mass spectrometry (ESI). NMR spectra of all compounds were recorded at the Lumigen Instrument Center (Wayne State University) on a Varian Mercury 400 NMR spectrometer in C_6D_6 , $(CD_3)_2SO$ or CD_2Cl_2 at room temperature. Chemical shifts and coupling constants (J) are reported in parts per million (δ) and hertz, respectively. Low-resolution mass spectra were obtained at the Lumigen Instrument Center utilizing a Waters Micromass ZQ mass spectrometer (direct injection, with capillary at 3.573 kV and cone voltage of 20.000 V). Only selected peaks in the mass spectra are reported below. Elemental analyses were performed by Midwest Microlab LLC.

Synthesis and Characterization of Compounds. L^3 . A 50 mL methanol solution of 6-(4-methoxyphenyl)-2-pyridinecarboxaldehyde (3.61 g, 33.8 mmol) was added to a 50 mL methanol solution of *p*-xylylenediamine (2.3 g, 16.9 mmol). The resulting solution was stirred and refluxed for 4 h. The white cloudy reaction mixture was cooled to room temperature. A white solid was isolated by filtration and dried to give L³ (4.28 g, 81%). ¹H NMR (CD₂Cl₂, 400 MHz): δ 8.55 (s, 2H), 8.01 (d, *J* = 8.4, 4H), 7.92 (d, *J* = 6.4, 2H), 7.77 (t, *J* = 7.2, 2H), 7.71 (d, *J* = 7.6, 2H), 7.37 (s, 4H), 6.99 (d, *J* = 7.2, 4H), 4.87 (d, *J* = 1.6, 4H), 3.86 (s, 6H). ¹³C NMR (CD₂Cl₂, 75 MHz): δ 163.89, 161.21,

156.96, 155.03, 138.59, 137.70, 131.96, 128.85, 128.62, 121.03, 119.08, 114.55, 65.16, 55.86. HRMS (ESI): calcd for $[C_{34}H_{30}N_4O_2 + H]^+$ 527.2447, found 527.2438. Mp: 204 $^\circ C.$

6-(2,4,6-Triisopropylphenyl)-2-pyridinecarboxaldehyde. This compound was prepared in a way similar to that for the previously reported 4-fluoro-2',4',6'-triisopropylbiphenyl-3-carbaldehyde. Under a nitrogen atmosphere, 6-bromo-2-pyridinecarboxaldehyde (1.60 g, 8.60 mmol), 2,4,6-triisopropylphenylboronic acid (3.20 g, 12.89 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos; 0.60 g, 1.48 mmol), and K₃PO₄ (20 g, excess base) were added to a 250 mL Schlenk flask. The flask was evacuated and refilled with nitrogen three times. Toluene (35 mL) and Pd(OAc)₂ (0.38 g, 1.71 mmol) were added to the flask. The reaction mixture was heated to 110 °C for 48 h. After that, the reaction mixture was cooled to room temperature and diethyl ether (50 mL) was added. The resulting reaction mixture was filtered through a thin pad of silica gel, and the resulting filtrate was concentrated in vacuo. The crude product was purified by silica gel chromatography (5/95 ether/hexanes) to afford the product 6-(2,4,6-triisopropylphenyl)-2-pyridinecarboxaldehyde (0.80 g, 30%) as a white solid. ¹H NMR (C_6D_6 , 400 MHz): δ 10.16 (s, 1H), 7.63 (d, J = 7.2, 1H), 7.20 (s, 2H), 6.99 (d, J = 7.2, 1H), 6.96 (q, J = 7.6, 1H), 2.86 (m, 1H), 2.55 (m, 2H), 1.27 (d, J = 6.8, 6H),1.12 (t, J = 6.8, 12H). ¹³C NMR (C₆D₆, 75 MHz): δ 193.57, 161.57, 153.50, 149.98, 147.14, 136.89, 129.36, 128.73, 128.62, 128.14, 121.37, 119.47, 35.29. 31.31, 24.83, 24.71, 24.38; HRMS (ESI): calcd for $[C_{21}H_{27}NO + H]^+$ 310.2171, found 310.2181. Mp: 199 °C.

 L^4 . A 20 mL methanol solution of 6-(2,4,6-triisopropylphenyl)-2pyridinecarboxaldehyde (39 mg, 0.12 mmol) was added to a 20 mL methanol solution of *p*-xylylenediamine (85 mg, 0.06 mmol). The resulting solution was stirred and refluxed for 4 h. The reaction mixture was cooled to room temperature. White powder was separated from the solution by filtration, washed with cold methanol, and dried to give L⁴ (88 mg, 98%) as a white solid. ¹H NMR (CD₂Cl₂, 400 MHz): δ 8.48 (s, 2H), 8.03 (d, *J* = 8.0, 2H), 7.78 (t, *J* = 7.6, 2H), 7.37 (s, 4H), 7.28 (d, *J* = 7.6, 2H), 7.08 (s, 4H), 4.85 (s, 4H), 2.92 (m, 2H), 2.48 (m, 4H), 1.26 (d, *J* = 6.8, 12H), 1.07 (dd, *J* = 3.6, 2.8, 24H). ¹³C NMR (CD₂Cl₂, 75 MHz): δ 163.99, 160.18, 154.94, 149.69, 146.97, 138.72, 136.79, 136.73, 128.82, 126.69, 121.22, 119.08, 65.22, 35.07, 30.91, 30.27, 24.46, 24.28. HRMS (ESI): calcd for [C₅₀H₆₂N₄ + H]⁺ 719.5053, found 719.5063. Mp: 255 °C.

*L*⁵. A 20 mL solution of 4-(6-formyl-2-pyridinyl)benzonitrile (200 mg, 0.961 mmol) was added to a 20 mL methanol solution of *p*-xylylenediamine (65.7 mg, 0.481 mmol). The resulting solution was stirred and refluxed for 4 h. The reaction mixture was cooled to room temperature. White precipitate was separated from the solution by filtration, washed with cold methanol, and dried to give L⁵ (240 mg, 97%). ¹H NMR (CD₂Cl₂, 400 MHz): δ 8.56 (s, 2H), 8.19 (d, *J* = 8.4, 4H), 8.06 (dd, *J* = 6.4, 1.2, 2H), 7.87 (t, *J* = 7.6, 2H), 7.82 (dd, *J* = 8.0, 1.6, 2H), 7.77 (d, *J* = 8.4, 4H), 7.37 (s, 4H), 4.89 (d, *J* = 1.2, 4H). ¹³C NMR (CD₂Cl₂, 75 MHz): δ 163.30, 155.58, 155.18, 143.51, 138.52, 138.19, 133.14, 128.93, 127.94, 122.38, 121.02, 119.29, 113.15, 65.16. HRMS (ESI) calcd for [C₃₄H₂₄N₆ + H]⁺ 517.2141, found 517.2141. Mp: 206 °C.

¹*L*⁶. A 10 mL methanol solution of 6-methoxy-2-pyridinecarboxaldehyde (250 mg, 1.82 mmol) was added to a 10 mL methanol solution of *p*-xylylenediamine (124 mg, 0.910 mmol). The resulting solution was stirred and refluxed for 4 h. The reaction mixture was cooled to room temperature. White powder was separated from the solution by filtration, washed with cold methanol, and dried to yield L⁶ (308 mg, 91%) as a white solid. ¹H NMR (C₆D₆, 400 MHz): δ 8.36 (s, 2H), 7.79 (d, *J* = 7.6, 2H), 7.25 (s, 4H), 7.01 (t, *J* = 8.0, 2H), 6.54 (d, *J* = 8.0, 2H), 4.60 (s, 4H), 3.81 (s, 6H). ¹³C NMR (C₆D₆, 75 MHz): δ 164.66, 163.0, 153.43, 139.28, 138.76, 128.96, 114.52, 112.69, 64.21, 53.44. HRMS (ESI): calcd for [C₂₂H₂₂N₄O₂ + H]⁺ 375.1821, found 375.1821. Mp: 121 °C.

 L^7 . A 50 mL solution of 6-(trifluoromethyl)-2-pyridinecarboxaldehyde (1.00 g, 5.71 mmol) was added to a 50 mL methanol solution of *p*-xylylenediamine (0.389 g, 2.85 mmol). The resulting solution was stirred and refluxed for 4 h. The reaction mixture was cooled to room temperature. White precipitate was separated from the solution by filtration, washed with cold methanol, and dried to give L⁷ (1.01 g, 79%). ¹H NMR (C_6D_6 , 400 MHz): δ 8.26 (s, 2H), 7.94 (d, J = 8.0, 2H), 7.19 (s, 4H), 6.99 (d, J = 7.6, 2H), 6.82 (t, J = 8.0, 2H), 4.49 (d, J = 1.2, 4H). ¹³C NMR (C_6D_6 , 75 MHz): δ 161.95, 155.96, 148.40, 148.06, 138.42, 137.93, 129.02, 123.67, 121.43, 121.41, 65.02. ¹⁹F NMR (C_6D_6 , 400 MHz): δ -67.75. HRMS (ESI): calcd for [$C_{22}H_{16}N_4F_6$ +H]⁺ 451.1357, found 451.1362. Mp: 146 °C.

 $Ni_2(L^3)_2$ (**3b,c**). A suspension of L³ (62 mg, 0.12 mmol) in 3 mL of THF was added at room temperature to a 3 mL solution of bis(cyclooctadiene)nickel(0) (Ni(COD)₂; 65 mg, 0.24 mmol) in THF over the course of 2 h. The reaction mixture was stirred for 24 h to give a purple solution. The solvent was removed under vacuum. The resultant solid was washed with hexane (20 mL) and dissolved in THF (3 mL). The solvent was removed under vacuum to give a dark purple solid. The solid was dissolved in THF (1 mL), ether was added (5 mL), and the resulting mixture was kept at -40 °C for 2 days. The purple crystals that separated were washed with cold ether and dried to afford pure Ni₂(L³)₂ (42 mg, 0.072 mmol, 60%). ¹H NMR (C₆D₆, 400 MHz): isomer a, δ 9.12 (s, 4H), 8.63 (d, J = 8.0, 4H), 8.10 (d, J = 6.0, 4H), 7.99 (t, J = 7.2, 4H), 6.94 (s, 8H), 6.68 (d, J = 8.4, 8H), 6.55 (d, J = 10.4, 8H), 5.57 (s, 4H, 1,5-cyclooctadiene), 4.90 (d, J = 13.2, 4H), 3.96 (d, J = 13.4, 4H), 3.22 (s, 12H), 2.20 (s, 8H, 1,5-cyclooctadiene); isomer b, δ 8.86 (s, 4H), 8.51 (d, J = 8.8, 4H), 8.08 (d, J = 6.0, 4H), 7.94 (t, J = 6.8, 4H), 6.92 (s, 8H), 6.64 (d, J = 8.0, 8H), 6.53 (d, J =8.8, 8H), 4.06 (d, J = 13.6, 4H), 3.72 (d, J = 13.6, 4H), 3.27 (s, 12H). $^{13}\mathrm{C}$ NMR (C₆D₆, 75 MHz): δ 163.87, 163.54, 162.76, 159.58, 159.40, 144.73, 143.86, 138.78, 138.59, 135.44, 134.60, 133.58, 132.81, 129.03, 126.57, 126.12, 122.35, 121.68, 117.65, 116.98, 114.77, 113.0, 68.93, 68.30, 68.15, 66.25, 55.12, 55.07, 15.93. MS (ESI): calcd for Ni₂(L³)₂ $([C_{68}H_{60}N_8O_4Ni_2]^+)$ 1168.34, found 1168.51. Anal. Calcd for C68H60N8O4Ni2: C, 69.7; H, 5.1; N, 9.6. Found: C, 69.2; H, 5.5; N, 9.2

 $Ni_2(L^4)_2$ (4b). A suspension of L⁴ (70 mg, 0.10 mmol) in 3 mL of THF was added at room temperature to a 3 mL solution of Ni(COD)₂ (27 mg, 0.10 mmol) in THF. The reaction mixture was stirred for 24 h to give a purple solution. The solvent was removed under vacuum. The residue was dissolved in hexane (3 mL) and stored at $-30 \text{ }^{\circ}\text{C}$ to give black crystals in two crops (combined yield 21 mg, 0.027 mmol, 27% yield). ¹H NMR (C₆D₆, 400 MHz): δ 9.68 (s, 4H), 8.09 (t, J = 8.0, 4H), 7.92 (d, J = 6.8, 4H), 7.27 (d, J = 1.6, 4H), 7.26 (s, 8H), 6.59 (dd, J = 9.2, 1.2, 4H), 5.12 (d, J = 13.6, 4H), 4.51 (m, 4H), 3.93 (d, J = 13.6, 4H), 2.53 (m, 8H), 1.34 (m, 48H), 1.15 (m, 24H) (note: δ 8.60 (s, 2H), 8.16 (d, J = 7.6, 2H), 7.23 (s, 8H), 7.10 (t, J = 8.0, 2H), 7.00 (d, J = 7.6, 2H), 4.57 (s, 4H), 2.86 (p, J = 7.2, 6.8, 2H), 2.73 (p, J = 6.8, 6.8, 4H), 1.28 (d, J = 6.8, 12H), and 1.17 (dd, J = 11.6, 7.2, 24H) are peaks corresponding to free L⁴). MS (ESI): calcd for Ni₂(L⁴)₂ ([C100H124N8Ni2]+) 1552.87, found 1553.07. Anal. Calcd for C100H124N4Ni2: C, 77.2; H, 8.0; N, 7.2. Found: C, 76.9; H, 8.2; N, 7.0.

 $Ni_2(L^4)(COD)_2$ (4a). A suspension of L⁴ (33 mg, 0.046 mmol) in 3 mL of THF was added at room temperature to a 3 mL solution of Ni(COD)₂ (28 mg, 0.10 mmol) in THF. The reaction mixture was stirred for 24 h to give a dark purple solution. The solvent was removed under vacuum. The resulting solid was dissolved in hexane (10 mL), and the solvent was removed. Recrystallization of the product from ether at -35 °C over 2 days yielded Ni₂(L⁴)(COD)₂ as purple crystals (19 mg, 0.018 mmol, 39% yield). ¹H NMR (C₆D₆, 400 MHz): δ 8.56 (s, 2H), 7.44 (t, J = 7.6, 2H), 7.40 (s, 4H), 7.33 (dd, J = 5.6, 1.2, 2H), 7.30 (s, 4H), 6.91 (dd, J = 6.8, 0.8, 2H), 5.57 (s, 4H), 3.90 (s, 8H), 3.06 (m, 4H), 2.97 (m, 2H), 2.67 (m, 4H), 1.62-1.50 (m, 8H), 1.27 (dd, J = 20.0, 6.4, 24H), 1.13 (d, J = 6.4, 12H). ¹³C NMR (C₆D₆, 75 MHz): δ 161.68, 150.15, 149.04, 147.56, 146.03, 140.66, 138.12, 129.14, 128.85, 128.62, 128.14, 125.80, 125.35, 124.52, 121.50, 90.02, 83.10, 81.51, 66.28, 66.25, 35.53, 31.37, 31.20, 30.67, 30.52, 28.71, 27.50, 24.90, 22.01, 15.93. MS (ESI): calcd for Ni₂(L⁴)(COD) ([C₅₈H₇₄N₄Ni₂]⁺) 942.4620, found 942.5277. Anal. Calcd for C₆₆H₈₆N₄Ni₂: C, 75.3; H, 8.2; N, 5.3. Found: C, 75.1; H, 8.0; N. 5.4.

 $[Ni_2(L^1)_2]/[Ni_2(L^2)_2]/[Ni_2(L^1)(L^2)]$ (**1b**,*c*/2**b**,*c*/5**b**,*c*). A solution of L² (15 mg, 0.043 mmol) in toluene (5 mL) was added dropwise at room temperature to a stirred solution of Ni₂(L¹)(COD)₂ (30 mg, 0.046

mmol) in 5 mL of toluene. The reaction mixture was stirred for 2 h to give a purple solution. The solvent was removed under high vacuum. The resulting solid was dissolved in an additional 10 mL of THF, filtered, and dried in vacuo. The purple solid was washed with hexane (5 mL) and diethyl ether (5 mL) and dried to give the mixture of $Ni_2(L^1)_2$, $Ni_2(L^2)_2$, and $Ni_2(L^1)(L^2)$. ¹H NMR (C₆D₆, 400 MHz): $Ni_2(L^1)_2$ (isomer a), δ 10.17 (d, J = 5.6, 4H), 9.16 (s, 4H), 7.48–7.58 (m, 12H), 7.12 (s, 8H), 5.71 (d, J = 13.6, 4H), 4.85–5.0 (dd, J = 13.6, 4H) 10.0, 4H); Ni₂(L¹)₂ (isomer b), δ 10.14 (d, *J* = 4.8, 4H), 9.04 (s, 4H), 7.11 (s, 8H), 6.82-6.92 (m, 12H), 5.40 (d, J = 13.6, 4H), 4.85-5.0 $(dd, J = 13.6, 10.0, 4H); Ni_2(L^2)_2$ (isomer a), $\delta 10.36$ (d, J = 6.0, 4H),7.59 (m, 8H), 7.25 (s, 8H), 6.76 (d, J = 8.0, 4H), 6.58 (d, J = 14.4, 4H), 5.16 (d, J = 13.6, 4H), -0.41 (s, 12H); Ni₂(L²)₂ (isomer b), δ 10.32 (d, J = 6.4, 4H), 7.57 (m, 8H), 6.97 (s, 8H), 6.48 (d, J = 8.0, H4H), 6.45 (d, J = 7.2, 4H), 5.09 (d, J = 13.6, 4H), -0.52 (s, 12H); $Ni_2(L^1)(L^2)$ (isomer a), δ 10.39 (d, J = 5.6, 2H), 10.28 (m, 2H), 9.20 (s, 2H), 7.48-7.31 (m, 12H), 7.27 (s, 4H), 7.04 (s, 4H), 5.66 (d, J = 12.8, 4H), 5.28 (d, J = 14.8, 4H), -0.34 (s, 6H); Ni₂(L¹)(L²) (isomer b), δ 10.26 (m, 2H), 10.23 (m, 2H), 9.19 (s, 2H), 7.48-7.31 (m, 12H), 7.09 (s, 4H), 4.84 (d, J = 13.2, 4H), 4.78 (d, J = 13.6, 4H), -0.51 (s, 6H). MS (ESI): calcd for [Ni₂(L²)₂]⁺ 800.3, found 800.3; calcd for $[Ni_2(L^1)(L^2)]^+$ 772.2, found 772.2; calcd for $[Ni(L^2)_2]^+$ 742.3, found 742.3; calcd for [Ni(L¹)(L²)]⁺ 714.3, found 714.3; calcd for $[Ni(L^1)_2]^+$ 686.2, found 686.3; calcd for $[Ni(L^2) + H]^+$ 401.1, found 401.2; calcd for [Ni(L¹)]⁺ 372.1, found 372.3.

 $Ni_2(l^2)(CS_2)_2$ (2d). A solution of L² (50 mg, 0.15 mmol) in 3 mL of THF was added at room temperature to a 3 mL solution of Ni(COD)₂ (80 mg, 0.29 mmol) in THF. The resulting mixture was stirred for 2 h. After that, CS₂ was added (0.29 mmol, 0.34 mL, 0.83 M in THF), causing precipitation of a purple solid, and the resulting mixture was stirred overnight. Purple solid was separated from the solution, washed with ether (10 mL), and dried to yield pure Ni₂(L²)(CS₂)₂ (86 mg, 0.14 mmol, 94%). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 9.50 (m, 2H), 8.24 (t, *J* = 8.0, 2H), 8.09 (d, *J* = 8.0, 2H), 7.89 (t, *J* = 6.4, 2H), 7.48 (s, 4H), 5.32 (s, 4H), 2.46 (s, 6H). ¹³C NMR (DMSO-*d*₆, 75 MHz): δ 270.56 (corresponding to ¹³CS₂ in Ni₂(L²)(CS₂)₂). MS (ESI): calcd for Ni₂(L²)(CS₂) ([C₂₃H₂₂N₄Ni₂S₂ + H]⁺), 535.01 found 534.81. Anal. Calcd for C₂₄H₂₂N₄Ni₂S₄: C, 47.1; H, 3.6; N, 9.2. Found: C, 47.1; H, 3.7; N, 9.1.

 $Ni_2(L^3)(CS_2)_2$ (3d). A suspension of L³ (64 mg, 0.12 mmol) in 3 mL of THF was added at room temperature to a 3 mL solution of Ni(COD)₂ (65 mg, 0.24 mmol) in THF over the course of 1 h, and the reaction mixture was stirred for an additional 1 h. To the resulting purple solution was added CS₂ (0.095 mmol, 0.67 mL, 0.15 M in THF), leading to the formation of a dark precipitate. The reaction mixture was stirred for 12 h. Ether (10 mL) was added, and a dark brown solid was separated. The solid was washed with THF (15 mL) and ether (10 mL) and dried to afford Ni₂(L³)(CS₂)₂ (49 mg, 0.064 mmol, 53% yield). ¹H NMR (DMF- d_7 , 400 MHz): δ 8.62 (s, 2H), 8.17 (d, J = 8.0, 4H), 8.03 (m, 2H), 7.96 (m, 4H), 7.45 (s, 4H), 7.11 (d, J = 8.0, 4H), 4.94 (s, 4H), 3.89 (s, 6H). ¹³C NMR (DMSO- d_6 , 75 MHz): δ 264.41. Anal. Calcd for C₃₆H₃₀N₄Ni₂O₂S₄: C, 54.3; H, 3.8; N, 7.0. Found: C, 53.9; H, 3.5; N, 6.6.

 $Ni_2(L^4)(CS_2)_2$ (4d). A suspension of L⁴ (34 mg, 0.047 mmol) in 3 mL of THF was added at room temperature to a 3 mL solution of Ni(COD)₂ (26 mg, 0.095 mmol) in THF. To the resulting mixture was added CS₂ (0.095 mmol, 0.67 mL, 0.15 M in THF). The reaction mixture was stirred for 24 h to give a dark blue solution. The solvent was removed under vacuum. The resulting solid was washed successively with hexane (10 mL), ether (3 mL), and toluene (3 mL) and dried to afford Ni₂(L⁴)(CS₂)₂ (22 mg, 0.022 mmol, 47%). ¹H NMR (DMSO- d_6 , 400 MHz): δ 8.99 (s, 2H), 8.19 (t, J = 7.2, 2H), 7.95 (d, J = 8.0, 2H), 7.84 (d, J = 8.4, 2H), 7.45 (s, 4H), 7.07 (s, 4H), 5.40 (s, 4H), 2.91 (m, 2H), 2.24 (m, 4H), 1.15–1.25 (m, 24H), 1.00 (d, J = 8.0, 12H); ¹³C NMR (DMSO- d_6 , 75 MHz): δ 265.44 (also the peak for unbound ¹³CS₂ at δ 192.62 is due to decomposition of the product in DMSO- d_6). Anal. Calcd for C₅₂H₆₂N₄Ni₂S₄: C, 63.2; H, 6.3; N, 5.7. Found: C, 63.1; H, 6.2; N, 5.5.

Reaction of $Ni_2(L^2)({}^{13}CS_2)_2$ (2d) with (FeCp₂)(PF₆). A purple suspension of $Ni_2(L^2)({}^{13}CS_2)_2$ (16 mg, 0.026 mmol) in 2 mL of

CD₃CN was treated at room temperature with a blue solution of (FeCp₂)(PF₆) (1 equiv, 17 mg, 0.026 mmol) in CD₃CN (1 mL). The color changed to brown. The resulting mixture was stirred for 1 h. The reaction was followed by ¹H and ¹³C NMR. The ¹H NMR (CD₃CN, 400 MHz) spectrum showed a single resonance attributable to FeCp₂ at δ 4.16. The ¹³C NMR spectrum (CD₃CN, 75 MHz) showed two resonances, attributable to ¹³CS₂ and Fe(C₅H₅)₂, observed at δ 193.65 and 68.81 ppm, respectively.

Reaction of $Ni_2(L^2)({}^{13}CS_2)_2$ with $CoCp*_2$. The ¹H NMR (CD₃CN, 400 MHz) spectrum showed no peaks corresponding to Ni₂(L²)-({}^{13}CS_2)_2 or CoCp*₂. The ¹³C NMR (CD₃CN, 75 MHz) spectrum demonstrated two resonances (δ 263.6 and 282.9 ppm) attributable to the ¹³C-labeled carbons that originate in ¹³CS₂.

*Ni*₂(*NHC*)₂(*CS*₂)₂ (*6*). A purple suspension of Ni₂(L²)(*CS*₂)₂ (66 mg, 0.11 mmol) in 2 mL of CD₃CN was treated at room temperature with 1,3-di-*tert*-butylimidazolin-2-ylidene (NHC, 40 mg, 0.22 mmol) in THF (1 mL). The mixture changed to red-brown. The resulting mixture was stirred for 2 h and filtered, and the volatiles were removed. The residue was extracted with THF (5 mL), and the solution was concentrated to ca. 1 mL and layered with ether (10 mL). Recrystallization overnight at -33 °C formed Ni₂(NHC)₂(CS₂)₂ as purple crystals (24 mg, 0.038 mmol, 35% yield). ¹H NMR (C₆D₆, 400 MHz): δ 6.51 (s, 2H), 1.69 (s, 18H). ¹³C NMR (C₆D₆, 400 MHz, ¹³CS₂-labeled sample): δ 283.51. Anal. Calcd for C₂₄H₄₀N₄Ni₂S₄·C₄H₈O: C, 47.9; H, 6.9; N, 8.0. Found: C, 47.6; H, 6.6; N, 8.8.

X-ray Crystallographic Details. Structures of compounds 2d, 3b, 4a,b, 6, and L^2 were confirmed by X-ray analysis; the structures of 1d and **2b**,**c** were previously reported. Table S1 (Supporting Information) presents selected structural and refinement data for compounds L², 2d, 3b, 4a,b, and 6. The crystals were mounted on a Bruker APEXII/ Kappa three-circle goniometer platform diffractometer equipped with an APEX-2 detector. A graphic monochromator was employed for wavelength selection of the Mo K α radiation ($\lambda = 0.71073$ Å). The data were processed and refined using the program SAINT supplied by Siemens Industrial Automation. Structures were solved by direct methods in SHELXS and refined by standard difference Fourier techniques in the SHELXTL program suite (version 6.10, G. M. Sheldrick and Siemens Industrial Automation, 2000). Hydrogen atoms were placed in calculated positions using the standard riding model and refined isotropically; all other atoms were refined anisotropically. The asymmetric units of L^2 , 4a, and 6 contain only half of the centrosymmetric molecule. The structure of 3b was of somewhat low quality due to the poorly diffracting crystals. The structure contained two methoxy groups that were found to be disordered over two positions. The disorder was satisfactorily modeled. In addition, the structure contained one hexane molecule per asymmetric unit. The structure of 4a contained one ether molecule. The structure of 4b contained three partially disordered solvent molecules that were modeled as hexane (crystallization solvent) with partial occupancies. The structure of 2d was of very low quality due to the small crystal size, poor diffraction, and twinned nature of the crystals. Therefore, only the overall connectivity and the approximate metal-metal separation of 2d are discussed in the paper.

RESULTS AND DISCUSSION

Ligand Synthesis and Characterization. To evaluate steric and electronic effects in the bis(iminopyridine) framework, we have synthesized ligands L^1-L^7 (Figure 1). Electronic effects in the iminopyridine chelate were manipulated via substitution at two positions: the imino carbon position and the pyridine 2' (ortho)-position. Steric effects were evaluated by employing various bulky groups at the pyridine 2'-position. L^1 is a prototypical ligand featuring hydrogens only. L^2 has methyl groups at the imino carbons. L^3 and L^5 bear bulky electron-rich 4-methoxyphenyl and bulky electron-withdrawing 4-cyanophenyl groups at the pyridine 2'-position, respectively. L^4 has very bulky 2,4,6-triispropylphenyl groups at the pyridine 2'- position while L^6 and L^7 feature more compact, electronically diverse substituents at the 2'-position of the pyridine: the electron-rich OMe group and the electron-withdrawing CF₃ group, respectively. L^1 and L^2 have been previously reported, by us and others,^{10,13} while L^3-L^7 have not been previously synthesized. The synthesis of L^1-L^7 was accomplished by the reflux of 2 equiv of the respective aldehyde/ketone with 1,4phenylenedimethanamine. All the aldehydes were obtained commercially except for 6-(2,4,6-triisopropylphenyl)picolinaldehyde. This aldehyde was prepared as described in Figure 2. We have also attempted to synthesize L^8 , that features

Figure 2. Synthesis of 6-(2,4,6-triisopropylphenyl)picolinaldehyde.

an electron-withdrawing CF_3 group at the imino carbon position. However, although ligand formation occurs after prolonged reflux, we were not able to isolate it in a pure form. Therefore, this ligand will not be discussed.

The ligands were characterized by ¹H, ¹³C{¹H} (¹³C thereafter), and ¹⁹F (where applicable) NMR spectroscopy and by high-resolution mass spectrometry (HRMS); the spectra can be found in the Supporting Information. L² was also characterized by X-ray crystallography (Figure S1, Supporting Information). The structure of L² (alongside the previously reported structure of L¹)^{13a} provides information about the carbon–nitrogen (C4–N2, 1.275(4) Å) and the carbon–carbon (C3–C4, 1.496(5) Å) bond distances unperturbed by bound metals and therefore serves to calibrate redox effects on the iminopyridine chelate. As in the structure of L¹, L² displays an *anti* conformation for the nitrogens of the imine and the pyridine. The two sides of the ligands are also *anti*.

The ligand precursors were characterized by cyclic voltammetry (see section 5 of the Supporting Information for details). Figure 3 shows the cyclic voltammograms (CVs) of the ligand precursors in DMF (except for L⁴, due to insufficient solubility). The ligands' CVs exhibit two irreversible reduction waves at potentials higher than -2.3 V. Following the cathodic sweep, an irreversible oxidation is observed between -1.5 and -1.1 V depending on the ligand. Comparison of the reduction potentials of the ligands with sterically similar, but electronically diverse, substituents indicates that the ligands possessing electron-withdrawing groups are somewhat easier to reduce. Thus, the first reduction of L^1 peaks at -2.4 V (onset at -2.1V), whereas for L^2 the corresponding potential is -2.7 V (onset at -2.4 V). Such a difference may explain the disparity in the reactivity of these sterically comparable ligands with Ni- $(COD)_2$: whereas L¹ undergoes fast reaction with Ni $(COD)_2$ that forms $Ni_2(L^1)(COD)_2$, the reaction of L^2 is significantly slower and results in the formation of $Ni_2(L^2)_2$ species. Other ligands (L⁵ vs L³, L⁷ vs L⁶) display an overall similar trend, although ortho substitution results in less pronounced changes in the reduction potential.

Synthesis of the $Ni_2(L)(COD)_2$ and $Ni_2(L)_2$ Complexes. Figure 4 summarizes the syntheses and the reactivity of the

Article

Figure 3. Cyclic voltammograms of L^1-L^3 and L^5-L^7 ligand precursors in DMF (0.1 M [NBu₄](PF₆) supporting electrolyte, 25 °C, platinum working electrode, 100 mV/s scan rate).

metal compounds described in this paper; the abbreviations are shown in Table 1. Treatment of L^1 with 2 equiv of Ni(COD)₂ leads cleanly to the formation of $Ni_2(L^1)(COD)_2$ (1a) in 63% yield, whereas treatment of L^1 with 1 equiv of Ni(COD)₂ forms $Ni_2(L^1)_2$ (**1b**,c).^{10a} In contrast, treatment of L² with either 1 or 2 equiv of $Ni(COD)_2$ invariably forms the bis(homoleptic) complex $Ni_2(L^2)_2$ (2b,c). Since both ligands feature similar steric parameters, we postulated that the origin of the difference in their reactivity is electronic: the Me group in the imino carbon position creates a relatively electron-rich iminopyridine chelate. To further evaluate the impact of the electronic effects on L reactivity, we compared the reactivity of L^3 and L^5 . L^3 and L⁵ both contain comparatively bulky, but electronically diverse, *p*-methoxyphenyl and *p*-cyanophenyl groups at the 2'-position of the pyridine. L⁵ failed to lead to an isolable product, presumably undergoing activation of the cyano group at Ni(0). The electron-rich and more robust L³, on the other hand, led cleanly to the formation of the bis(homoleptic) complexes $Ni_2(L^3)_2$ (3b,c), independent of the ligand-to-metal ratio. NMR of the crude product contained only species attributable to $Ni_2(L^3)_2$ and $Ni(COD)_2$, implying that no other products were formed. The product can be recrystallized from THF/ether at -40 °C to give brown crystals of $Ni_2(L^3)_2$ in 60% yield. Next, we compared the reactivity of L^6 and L^7 , featuring an electronrich and electron-withdrawing OMe and CF₃ group at the pyridine 2'-position. The crude reaction mixture of L⁶ with 2 equiv of $Ni(COD)_2$ indicated the presence of the bis-(homoleptic) complexes. However, the products were not stable and could not be isolated. L⁷ underwent fast reaction with $Ni(COD)_{2i}$ as indicated by an immediate color change to violet. However, it failed to form either $Ni_2(L)(COD)_2$ or Ni₂(L)₂ species. Instead, it forms different diamagnetic products whose natures are still elusive to us. Finally, L⁴ tested mostly the steric effect, featuring 2,4,6-triisopropylphenyl

Organometallics

Figure 4. Schematic representation of the synthetic routes toward the dinickel compounds described in this paper.

Table 1. Designation of Compounds and	Their Abbreviation
$Ni_2(L^1)(COD)_2$	1a
<i>syn</i> -Ni ₂ (L^1) ₂	1b
anti-Ni ₂ (L^1) ₂	1c
$Ni_2(L^1)(CS_2)_2$	1d
syn-Ni ₂ (L ²) ₂	2b
anti-Ni ₂ (L^2) ₂	2c
$Ni_2(L_2)(CS_2)_2$	2d
syn-Ni ₂ (L ³) ₂	3b
anti-Ni ₂ (L^3) ₂	3c
$Ni_2(L^3)(CS_2)_2$	3d
$Ni_2(L^4)(COD)_2$	4a
$Ni_2(L^4)_2$	4b
$Ni_2(L^4)(CS_2)_2$	4d
syn-Ni ₂ (L ¹)(L ²)	5b
anti-Ni ₂ (L^1)(L^2)	5c
$Ni_2(NHC)_2(CS_2)_2$	6

groups at the 2'-position of the pyridine. The presence of the bulky groups leads to a well-behaved reactivity of the ligand

with Ni(COD)₂. Slow addition of L^4 to 2 equiv of Ni(COD)₂. in toluene forms mostly $Ni_2(L)(COD)_{2}$, on the basis of the NMR spectrum of the resulting product. Pure $Ni_2(L^4)(COD)_2$ was obtained by recrystallization from ether and isolated as purple crystals in 39% yield. Its structure was confirmed by Xray crystallography. Treatment of L⁴ with 1 equiv of Ni(COD)₂ forms mostly the bis(homoleptic) complex $Ni_2(L^4)_2$. $Ni_2(L^4)_2$ was obtained by recrystallization from hexane at -40 °C as blue-violet crystals in 27% yield, and its structure was also verified by X-ray crystallography. In addition, its purity was confirmed by elemental analysis. $Ni_2(L^4)_2$ is unstable in solution: analytically pure samples of $Ni_2(L^4)_2$ in C_6D_6 demonstrate progressive disappearance of the $Ni_2(L^4)_2$ attributed signals coupled with the increase in the intensity of free ligand signals. After eight hours at room temperature, ca. 30% of the complex remains.

Spectroscopic and Electrochemical Characterization of the Ni₂(L)(COD)₂ and Ni₂(L)₂ complexes. The complexes were characterized by NMR spectroscopy and mass spectrometry. Two isolated Ni₂(L)(COD)₂ complexes (1a and 4a) both display $C_{2\nu}/C_{2h}$ symmetry on the NMR time scale at room temperature: one set of signals is observed for both arms of the dinuclear system, the protons of the central benzene ring appear as a singlet, and the methylene bridge protons give rise to a singlet as well. COD protons, on the other hand, appear as three multiplets (broad signals are observed for 4a). Such a spectrum is consistent with the complex constantly residing in either the syn $(C_{2\nu})$, or the anti (C_{2h}) conformation or undergoing fast equilibration between syn and anti conformations (see below for DFT calculations of the stability of different conformers of Ni₂L(COD)₂ species). The lack of symmetry at a given Ni center causes COD signals to appear as three multiplets. $Ni_2(L)_2$ complexes, on the other hand, demonstrate AB signals for the methylene benzyl signals, being consistent with restricted rotation around the benzyl methylene bond. Two stereoisomers are observed in NMR spectra of the $Ni_2(L^2)_2$ and $Ni_2(L^3)_2$ complexes **2b**,c and **3b**,c. On the basis of the crystal structure of $Ni_2(L^2)_2$,^{10a} we previously correlated these stereoisomers with the syn and anti isomers. A single stereoisomer is observed for $Ni_2(L^4)_2$ (4b), possibly as a result of steric pressure that makes the syn isomer unstable. Molecular ions $[Ni_2(L)_2]^+$ are observed in the mass spectra of all the $Ni_2(L)_2$ compounds. For $Ni_2(L)(COD)_2$ compounds, the molecular ions appear to be unstable under ionizing conditions and are detected only at a very low intensity. Interestingly, $[Ni_2(L)(COD)]^+$ compounds are observed at significantly higher intensities.

Cyclic voltammograms of the homoleptic complexes $Ni_2(L)_2$ (L = L¹, L², L³) demonstrate similar features. Figure 5 shows

Figure 5. Cyclic voltammogram of $Ni_2(L^2)_2$ and $Ni_2(L^3)_2$ in THF (0.1 M [NBu₄](PF₆), 25 °C, platinum working electrode, 100 mV/s scan rate).

CVs of Ni₂(L²)₂ and Ni₂(L³)₂ complexes. Cyclic voltammetry of all species demonstrates reduction (between -2.3 and -2.6V) and reversible oxidation (-1.1 to -1.2 V). Comparison of these results with the electrochemical studies on the mononuclear bis(iminopyridine)Ni complex^{11a} suggests that these events are ligand-based. Wieghardt and co-workers have observed an additional reversible peak at -0.57 V for the mononuclear bis(iminopyridine)Ni complex,^{11a} which was attributed to the metal-centered oxidation (Ni^{II}/Ni^I). In our complexes, an additional oxidation is observed for the Ni₂(L³)₂ complex only. The Ni₂(L)(COD)₂ complexes show similar redox properties (see the Supporting Information for details). One reduction and two oxidation events are observed. However, $Ni_2(L)(COD)_2$ complexes demonstrate broader peaks, presumably due to the conformational lability of these complexes.

Ligand Lability As Demonstrated by the Reaction of $Ni_2(L^1)(COD)_2$ with L^2 . We have previously interrogated the nature of the L binding to the Ni centers by theoretical methods. DFT calculations demonstrated that each iminopyridine unit has a $^{1}/_{2}$ - charge in the bis(homoleptic) complexes of the Ni₂(L)₂ type.^{10a} This finding implies that the ligand should be relatively labile. We decided to probe the lability of the bis(iminopyridine) ligand by a ligand competition experiment. We treated the $Ni_2(L^1)(COD)_2$ complex with 1 equiv of L^2 . We postulated that if L^1 is strongly bound to Ni as a 1ligand, then the reaction should lead cleanly to the formation of $Ni_2(L^1)(L^2)$. Labile binding, on the other hand, should result in the formation of a mixture of products. The reaction outcome was analyzed by NMR spectroscopy and mass spectrometry (MS). NMR and MS both indicate that the formation of all possible products takes place. The ¹H NMR spectrum displays features consistent with the previously characterized $Ni_2(L^1)_2$ and $Ni_2(L^2)_2$ compounds (see the Supporting Information for details). It addition, it contains signals attributable to the syn and *anti* isomers of the mixed-ligand product, $Ni_2(L^1)(L^2)$. The mass spectrum provides further indication for the proposed mixture of products (Figure 6). The spectrum displays three

Figure 6. Mass spectrum of the reaction products $[Ni(L^2)_2]$, $[Ni_2(L^1)(L^2)]$, and $([Ni_2(L^1)_2] + [Ni(L^1)_2])$.

intense peaks. The peak at m/z 800.2 agrees with the predicted spectrum for Ni₂(L²)₂⁺, and the peak at m/z 772 corresponds to Ni₂(L¹)(L²)⁺. The peak at m/z 742.3 may correspond to the [Ni₂(L¹)(L²) - 2H]⁺ species or to the overlap of the mono-Ni Ni(L²)₂⁺ species (m/z 742.3) and Ni₂(L¹)₂⁺ (m/z 744.3).

Structures of the Ni₂(L)₂ and Ni₂L(COD)₂ Complexes. Selected compounds were characterized by X-ray crystallog-

Article

raphy. The structures are presented in Figures 7-9, and the relevant bond distances and angles are tabulated in Table 2.

Figure 7. Structure of $Ni_2(L^3)_2$ (3b), with 30% probability ellipsoids.

Figure 8. Structure of $Ni_2(L^4)_2$ (4b), with 50% probability ellipsoids.

The structures of the bis(homoleptic) $Ni_2(L^3)_2$ and $Ni_2(L^4)_2$ complexes are precedented by the structure of $Ni_2(L^2)_2$ (that is also included in Table 2). Unlike the structure of $Ni_2(L^2)_2$, which contained two stereoisomers, $Ni_2(L^3)_2$ exists as a single stereoisomer in the solid state (Figure 7). Dissolution of the crystals in C₆D₆ solution re-forms two stereoisomers. A single solid-state isomer of $Ni_2(L^4)_2$ (Figure 8) is consistent with a single isomer in solution. The structure of $Ni_2(L^4)(COD)_2$ (4a) represents the first example of a crystallographically characterized bis(COD) complex in our system (Figure 9). The two parts of the dinuclear complex are in the anti conformation, and the Ni centers are in an approximately tetrahedral geometry. Several trends can be discerned from Table 2. Whereas the Ni-N(imine) bonds are unaffected by the steric bulk of the iminopyridine chelate, Ni-N(pyridine) bonds gradually increase upon an increase in the steric bulk of the pyridine 2'-substituent. Similarly, the dihedral angle between

Figure 9. Structure of $\mathrm{Ni}_2(\mathrm{L}^4)(\mathrm{COD})_2$ (4a), with 50% probability ellipsoids.

Table 2. Selected Bond Distances (Å) and Angles (deg)						
	$C=N^{a}$	$C-C^{a}$	$IP-Ni-IP^{b}$	Ni-N _{im}	Ni-N _{py}	
2b,c	1.331(3)	1.426(4)	52(2)	1.908(3)	1.921(5)	
3b	1.31(1)	1.39(1)	63(3)	1.89(1)	1.95(1)	
4b	1.314(3)	1.415(3)	69 (1)	1.906(4)	1.999(9)	
4a	1.309(3)	1.422(3)		1.925(2)	2.008(2)	
L ²	1.275(4)	1.496(5)				
L^1	1.256(2)	1.472(2)				
-					1	

^{*a*}Average and standard deviation of all the relevant distances. ^{*b*}Average and standard deviation of (NCCN)–Ni–(NCCN) dihedral angle.

the iminopyridine planes increases for the bulkier groups. A comparison of the C=N and C-C bond distances in the metal complexes with the corresponding distances in L^1 and L^2 clearly indicates substantial reduction of the iminopyridine unit.¹¹

Synthesis and Structures of the $Ni_2(L)(CS_2)_2$ Complexes. We have previously reported that the reaction of $Ni_2(L^1)(COD)_2$ with 2 equiv of carbon disulfide forms $Ni_2(L^1)(CS_2)_2$ (1d) in high yield.^{10b} We were not able to isolate $Ni_2(L)(COD)_2$ for other ligands (except for L⁴). However, $Ni_2(L)_2$ complexes were shown to be labile in solution and the reaction of $Ni_2(L^2)_2$ with diphenylacetylene (DPA) was demonstrated to form $Ni_2(L)(DPA)_2$ as one of the products.^{10a} On the basis of these observations, we surmised that combining $Ni(COD)_2$, L, and CS_2 may still form the desired product. Gratifyingly, the addition of 2 equiv of carbon disulfide to a mixture of $Ni(COD)_2$ (2 equiv) and L^2 led to the formation of bright purple $Ni_2(L^2)(CS_2)_2$ (2d; 94% yield). A similar protocol formed purple-brown $Ni_2(L^3)(CS_2)_2$ (3d; 53% yield) and blue $Ni_2(L^4)(CS_2)_2$ (4d; 47% yield).

These CS₂ complexes were characterized by ¹H and ¹³C NMR spectroscopy, mass spectrometry, and elemental analysis. ¹³C NMR spectra of the ¹³CS₂-labeled samples display a resonance around 267 ppm that is characteristic of the metal-bound CS₂ group.^{6,10} In addition, the structure of Ni₂(L²)-(CS₂)₂ (2d) has been confirmed by an X-ray structure determination. The structure of 2d is of low quality, but it clearly demonstrates the connectivity pattern and the positions of the two metal centers. Figure 10 displays the structure of 2d, along with the previously reported structure of 1d.^{10b} Both

Organometallics

Figure 10. Structures of the bimetallic CS_2 complexes $Ni_2(L^1)(CS_2)_2$ (1d, top) and $Ni_2(L^2)(CS_2)_2$ (2d, bottom).

structures contain two distorted-square-planar nickel(II) centers each coordinating side-on-bound carbon disulfide. Whereas the structure of **1d** had an *anti* conformation of the two CS_2 -bound nickel centers, the heteroallene adducts in **2d** are *syn*. Accordingly, $C(CS_2)$ - - - $C(CS_2)$ separations are 11.2 Å for the *anti* (**1d**) species and 7.6 Å for the *syn* (**2d**) structure. This finding provides crystallographic evidence that the two heteroallenes bound by the bis(iminopyridine) dinickel system can be in the vicinity of each other.

Electrochemistry of CS₂ Complexes. $Ni_2(L)(CS_2)_2$ complexes were characterized by cyclic voltammetry. CVs of 1d, 2d, and 4d are presented in Figure 11. We were not able to obtain a reliable CV of 3d, due to its extremely low solubility. In the cathodic sweep, two ligand-based reduction events are observed for all of the complexes: a quasi-reversible reduction, followed by an irreversible reduction. The overall pattern of the electrochemical events described for 1d, 2d, and 4d is similar to that for the $Ni_2(L)_2$ and $Ni_2(L)(COD)_2$ complexes. The characteristic difference is that the first reversible event is a reduction in the case of $Ni_2(L)(CS_2)_2$ complexes but an oxidation for the $Ni_2(L)_2$ and $Ni_2(L)(COD)_2$ complexes. This difference results from the fact that the iminopyridine unit is fully oxidized in $Ni_2(L)(CS_2)_{2^1}^{10b}$ but partially reduced in $Ni_2(L)_2$ and $Ni_2(L)(COD)_2^{10a}$ In addition, an irreversible oxidation event is observed in all the $Ni_2(L)(CS_2)_2$ complexes. As the only possible location for the oxidation event is at the η^2 bound CS₂, we postulated that an oxidation of the reduced carbon disulfide leads to a chemical transformation.

Reactivity of CS₂ Complexes. Following the electrochemical experiments, we carried out chemical oxidation and reduction. For that purpose, we decided to use $Ni_2(L^2)({}^{13}CS_2)_2$ complexes: this complex has higher solubility than previously studied $Ni_2(L^1)({}^{13}CS_2)_2$ or $Ni_2(L^3)({}^{13}CS_2)_2$, and ${}^{13}C$ -labeled carbon disulfide enables convenient monitoring of the reaction by ${}^{13}C$ NMR spectroscopy. Oxidation of $Ni_2(L^2)({}^{13}CS_2)_2$, in

Figure 11. Cyclic voltammograms of $Ni_2(L^1)(CS_2)_2$, $Ni_2(L^2)(CS_2)_2$, and $Ni_2(L^4)(CS_2)_2$ in DMF (0.1 M [NBu₄](PF₆) supporting electrolyte, 25 °C, platinum working electrode, 100 mV/s scan rate).

CD₃CN with 2 equiv of (FeCp₂)(OTf) forms FeCp₂ and liberates $^{13}CS_2$. No free ligand was observed by NMR spectroscopy, suggesting that the $[\rm Ni_2(L)]$ fragment remains intact. These findings are consistent with our previous report on the oxidation of Ni₂(L¹)($^{13}CS_2$)₂ in DMSO.^{10b} Reduction of Ni₂(L²)($^{13}CS_2$)₂ in CD₃CN with 2 equiv of Co(Cp*)₂ leads to the formation of [Co(Cp*)₂]⁺ (identified by NMR spectroscopy) and the formation of a new ^{13}C NMR signal at 283 ppm. We were not able to identify the nature of the resulting Ni product.

We have also investigated the reaction of $Ni_2(L^2)({}^{13}CS_2)_2$ with N-heterocyclic carbene. Addition of 2 equiv of NHC (NHC = 1,3-di-tert-butylimidazolin-2-ylidene) to a stirred suspension of 2d forms a purple-pink solution. Recrystallization of the residue from THF/ether at -40 °C leads to the isolation of 6 in ca. 40% yield. The ¹H NMR spectrum of the product contains two resonances (both singlets) attributable to the NHC protons. The ¹³C NMR spectrum contains a new ¹³CS₂ resonance at 283 ppm. X-ray structure determination reveals a $[Ni_2(\mu_2-CS_2)_2]$ core supported by NHC ligands (Figure 12). The topology of the core has been precedented for the phosphine ligands¹⁴ but has not been isolated for the Nheterocyclic carbenes. Compound 6 demonstrates the shortest distance between the CS_2 carbons (3.15 Å) obtained so far in our research, and we are investigating its electronic structure and reactivity. It is worth noting that the reaction of $Ni(COD)_2$ with NHC and CS_2 in the absence of L^2 forms a mixture of two

L

Article

Figure 12. X-ray structure of 7, with 50% probability ellipsoids.

compounds, one of them being **6** (see Figures S41 and S42 in the Supporting Information). Therefore, the dinucleating ligand L^2 provides a template for the clean formation of the dinuclear complex **6**.

DFT Calculations. To evaluate the possible thermodynamic influence of ligand substituents on the reactivity of these bis(iminopyridine) complexes, we evaluated the thermodynamics of COD substituting one iminopyridine using density functional theory (see section 7 of the Supporting Information for details):

$$[Ni(L^m)_2] + COD \Leftrightarrow [Ni(L^m)(COD)] + L^m$$

Five ligands were studied: L^{1m} with $R_1 = R_2 = H$, L^{2m} with $R_1 = H$, $R_2 = Me$, L^{3m} with $R_1 = H$, $R_2 = CF_3$, L^{4m} with $R_1 = Me$, $R_2 = H$, and L^{5m} with $R_1 = CF_3$, $R_2 = H$ (see Figure 13). These

Figure 13. Model ligands with substituents.

data represent both electron-donating and -withdrawing groups at the 2'-position of pyridine (L^{4m}/L^{5m}) and the imine carbon (L^{2m}/L^{3m}) . A summary of the thermodynamics is included in Table 3. The displacement of an iminopyridine by COD is

Table 3. Thermodynamics of Ligand Exchange Predicted by DFT

reaction	energy (kcal/mol)
$[Ni(L^{1m})_2] + COD \Leftrightarrow [Ni(L^{1m})(COD)] + L^{1m}$	17.01
$[\mathrm{Ni}(\mathrm{L}^{2\mathrm{m}})_2] + \mathrm{COD} \leftrightarrows [\mathrm{Ni}(\mathrm{L}^{2\mathrm{m}})(\mathrm{COD})] + \mathrm{L}^{2\mathrm{m}}$	19.03
$[Ni(L^{3m})_2] + COD \Leftrightarrow [Ni(L^{3m})(COD)] + L^{3m}$	17.09
$[\mathrm{Ni}(\mathrm{L}^{4\mathrm{m}})_2] + \mathrm{COD} \leftrightarrows [\mathrm{Ni}(\mathrm{L}^{4\mathrm{m}})(\mathrm{COD})] + \mathrm{L}^{4\mathrm{m}}$	18.68
$[Ni(L^{5m})_2] + COD \Leftrightarrow [Ni(L^{5m})(COD)] + L^{5m}$	18.87

predicted to be unfavorable for each bis(iminopyridine) complex. However, the least unfavorable reaction is for the ligand with hydrogens at R₁ and R₂, which is most similar to the experimental ligand L¹. Both of the ligands with imine substituents show less favorable displacement by COD and the bis(iminopyridine) compounds show a noticeably longer $C_{pyr}-C_{im}$ bond length of ~1.45 (L^{2m}/L^{3m}) vs 1.43 Å (L^{1m}). Thus, any substituent that provides polarizability for the radical iminopyridine anion^{10a} seems to disfavor formation of the COD complex. The pyridyl substituents do not show a simple trend in the ligand displacement thermodynamics (L^{4m}/L^{5m}). These structures demonstrate much larger interligand dihedral angles due to the steric conflicts of the substituents. These sterics influence the ligand exchange thermodynamics in a nontrivial way.

We also explored the thermodynamics of various conformers of the dinuclear species $Ni_2(L)(COD)_2$ and $Ni_2(L)(CS_2)_2$. Details of these calculations are included in the Supporting Information, but we find no significant thermodynamic difference between the *syn* and *anti* conformers. This was expected for the bis-CS₂ complex, since both the *syn* and *anti* conformers were observed crystallographically. We speculated that the $Ni_2(L)(COD)_2$ complexes could experience steric conflicts in the *syn* conformer, since only the *anti* conformer was observed crystallographically. As Figure 14 demonstrates,

Figure 14. Image of the lowest energy syn conformer of $Ni_2(L^2)$ -(COD)₂.

however, there is sufficient flexibility in the bis(iminopyridine) ligands for the Ni-COD moieties to avoid one another. The Ni centers are well separated at 8.49 Å. The closest COD H…H separation occurs at 4.24 Å. This *syn* complex is computed to be 0.55 kcal/mol more stable than the lowest energy *anti* conformer. Within the limits of our DFT methodology this energy difference is insignificant and suggests that the observation of only the *anti* conformer experimentally may have more to do with packing effects than an intrinsic stability of one conformer vs the other.

SUMMARY AND CONCLUSIONS

In the present study we investigated (i) steric and electronic effects in the formation of $Ni_2(L)(COD)_2$ complexes vs $Ni_2(L)_2$ (ii) properties and the L ligand lability in the resulting species, (iii) formation, structures, and electrochemical properties of the $Ni_2(L)(CS_2)_2$ complexes, (iv) reactivity of the $Ni_2(L)(CS_2)_2$ complexes. Reactivity studies disclose that ligands featuring electron-donating groups react more slowly with $Ni(COD)_2$ and lead preferentially to the formation of $Ni_2(L)_2$ complexes. DFT calculations agree with the conclusion that the electron-withdrawing groups in the imine position provide some stabilization to Ni(L)(COD) complexes vs $Ni_2(L)_2$ complexes. Structural and theoretical data for $Ni_2(L)$ - $(COD)_2$ are consistent with the free rotation of the ligand chelating units vs each other. We also discovered that prior isolation of $Ni_2(L)(COD)_2$ complexes is unnecessary to form $Ni_2(L)(CS_2)_2$, as these species are formed in a one-pot reaction between 2 equiv of Ni(COD)₂, L, and 2 equiv of CS_2 . Spectroscopic, crystallographic, and theoretical data all agree with the lack of thermodynamic difference between syn and anti conformers in $Ni_2(L)(CS_2)_2$ complexes. Electrochemical studies of $Ni_2(L)(CS_2)_2$ reveal two ligand-based reductions and a CS₂-based oxidation. Chemical reduction results in the oxidation of $[CS_2]^{2-}$ to $[CS_2]^0$ followed by its liberation from

the metal. Reaction of Ni₂(L)(CS₂)₂ with the N-heterocyclic carbene NHC forms Ni₂(NHC)₂(CS₂)₂. Overall, this research indicates that the iminopyridine ligand is labile at Ni(I) and Ni(II) centers and does not provide necessary stabilization for Ni in the oxidation states required for the overall catalytic cycle (especially for Ni(II)). In addition, the bidentate nature of the iminopyridine enables formation of stable and unreactive η^2 adducts of CS₂, which may preclude its activation. Formation of Ni₂(NHC)₂(CS₂)₂ containing nearby positioned carbon disulfides represents a new promising avenue in this project. Its electronic structure and reactivity will be investigated. In addition, we are currently studying the formation and reactivity of the M₂(L)(CO₂)₂ and M₂(L)(oxalate)₂ complexes (M = Ni, Cu), hoping to shed light on the nature of CO₂ and oxalate binding and transformation in this system.

ASSOCIATED CONTENT

S Supporting Information

Figures, tables, and CIF files giving NMR spectra, X-ray data, and Cartesian coordinates for all computed structures. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Wayne State University (S.G.) and Grand Valley State University (R.L.L.) for funding, Dr. Lew Hryhorczuk for the experimental assistance, and Prof. H. B. Schlegel for helpful discussions. Computational resources were housed and maintained by the Wayne State Grid. Erwyn Tabasan thanks the Office of Undergraduate Research at Wayne State University for the Undegraduate Research and Creative Projects Award.

REFERENCES

(1) Thomas, C. M. Comments Inorg. Chem. 2011, 32, 14.

(2) For selected recent examples of the cooperative reactivity of dinuclear/multinuclear complexes in binding and activation of small molecules, see: (a) Alliger, G. E.; Müller, P.; Cummins, C. C.; Nocera, D. G. Inorg. Chem. 2010, 49, 3697. (b) Eames, E. V.; Harris, T. D.; Betley, T. A. Chem. Sci. 2012, 3, 407. (c) Huang, D.; Holm, R. H. J. Am. Chem. Soc. 2010, 132, 4693. (d) Lionetti, D.; Day, M. W.; Agapie, T. Chem. Sci. 2013, 4, 785. (e) Zhao, H. C.; Mello, B.; Fu, B.-L.; Chowdhury, H.; Szalda, D. J.; Tsai, M.-K.; Grills, D. C.; Rochford, J. Organometallics 2013, 32, 1832.

(3) For selected reviews on CO₂ activation, see: (a) Sakakura, T.; Choi, J.-C.; Yasuda, H. *Chem. Rev.* **2007**, 107, 2365. (b) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. *Chem. Soc. Rev.* **2009**, 38, 89.

(4) For selected reviews on CS_2 activation, see: (a) Ibers, J. A. Chem. Soc. Rev. **1982**, 11, 57. (b) Pandey, K. K. Coord. Chem. Rev. **1995**, 140, 37.

(5) For selected examples of CO₂ binding and activation, see: (a) Aresta, M.; Nobile, C. F.; Albano, V. G.; Forni, E.; Manassero, M. J. Chem. Soc., Chem. Commun. **1975**, 636. (b) Fachinetti, G.; Floriani, C.; Zanazzi, P. F. J. Am. Chem. Soc. **1978**, 100, 7405. (c) Field, J. S.; Haines, R. J.; Sundermeyer, J.; Woollam, S. F. J. Chem. Soc., Chem. Commun. **1990**, 985. (d) Wang, T.-F.; Hwu, C.-C.; Tsai, C.-W.; Lin, K.-J. Organometallics **1997**, 16, 3089. (e) Lee, C. H.; Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. **2007**, 129, 13802. (f) Lu, C. C.; Sauoma, C. T.; Day, M. W.; Peters, J. C. J. Am. Chem. Soc. **2007**, 129, 4. (g) Calabrese, J. C.; Herskovitz, T.; Kinney, J. B. J. Am. Chem. Soc. 1983, 105, 5914. (h) Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E. Science 2010, 327, 313.

(6) For selected examples of CS_2 binding and activation, see: (a) Poppitz, W. Z. Anorg. Allg. Chem. 1982, 489, 67. (b) Baird, M.; Hartwell, G., Jr.; Mason, R.; Rae, A. I. M.; Wilkinson, G. Chem. Commun. 1967, 92. (c) Bianchini, C.; Masi, D.; Mealli, C.; Meli, A. Inorg. Chem. 1984, 23, 2838. (d) Farrar, D. H.; Gukathasan, R. R.; Morris, S. A. Inorg. Chem. 1984, 23, 3258. (e) Leoni, P.; Pasquali, M.; Fadini, L.; Albinati, A.; Hofmann, P.; Metz, M. J. Am. Chem. Soc. 1997, 119, 8625. (f) Anderson, J. S.; Iluc, V. M.; Hillhouse, G. L. Inorg. Chem. 2010, 49, 10203. (g) Haack, P.; Limberg, C.; Tietz, T.; Metzinger, R. Chem. Commun. 2011, 47, 6374. (h) Livanov, K.; Madhu, V.; Balaraman, E.; Shimon, L. J. W.; Diskin-Posner, Y.; Neumann, R. Inorg. Chem. 2011, 50, 11273. (i) Maj, J. J.; Rae, A. D.; Dahl, L. F. J. Am. Chem. Soc. 1982, 104, 4278. (j) Mason, M. G.; Swepston, P. N.; Ibers, J. A. Inorg. Chem. 1983, 22, 411. (k) Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. Inorg. Chem. 1984, 23, 4125. (1) Matson, E. M.; Forrest, W. P.; Fanwick, P. E.; Bart, S. C. J. Am. Chem. Soc. 2011, 133, 4948. (m) Huang, N.; Li, X.; Xu, W.; Sun, H. Inorg. Chim. Acta 2013, 349, 446.

(7) Krogman, J. P.; Foxman, B. M.; Thomas, C. M. J. Am. Chem. Soc. 2011, 133, 14582.

(8) Rail, M. D.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 18577.
(9) (a) Hruszkewycz, D. P.; Wu, J.; Green, J. C.; Hazari, N.; Schmeier, T. J. Organometallics 2012, 31, 470. (b) Hruszkewycz, D. P.; Wu, J.; Hazari, N.; Incarvito, C. D. J. Am. Chem. Soc. 2011, 133, 328. (10) (a) Bheemaraju, A.; Lord, R. L.; Müller, P.; Groysman, S. Organometallics 2012, 31, 2120. (b) Bheemaraju, A.; Beattie, J. W.; Lord, R. L.; Martin, P. D.; Groysman, S. Chem. Commun. 2012, 48, 9595.

(11) (a) Lu, C. C.; Bill, E.; Weyhermüller, T.; Bothe, E.; Wieghardt, K. J. Am. Chem. Soc. 2008, 130, 3181. (b) Lu, C. C.; Weyhermueller, T.; Bill, E.; Wieghardt, K. Inorg. Chem. 2008, 48, 6005. (c) van Gastel, M.; Lu, C. C.; Wieghardt, K.; Lubitz, W. Inorg. Chem. 2009, 48, 2626. (d) McDaniel, A. M.; Tseng, H.-W.; Hill, E. A.; Damrauer, N. H.; Rappe, A. K.; Shores, M. P. Inorg. Chem. 2013, 52, 1368. (e) Myers, T. W.; Berben, L. A. Inorg. Chem. 2013, 52, 1368. (e) Myers, T. W.; Berben, L. A. Inorg. Chem. 2012, 51, 1480. (f) Summerscales, O. T.; Myers, T. W.; Berben, L. A. Organometallics 2012, 31, 3463. (g) Myers, T. W.; Kazem, N.; Stoll, S.; Britt, R. D.; Shanmugam, M.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 8662. (h) Nayek, H. P.; Arleth, N.; Trapp, I.; Loeble, M.; Ona-Burgos, P.; Kuzdrowska, M.; Lan, Y.; Powell, A. K.; Breher, F.; Roesky, P. W. Chem. Eur. J. 2011, 17, 10814. (i) Trifonov, A. A.; Gudilenkov, I. D.; Larionova, J.; Luna, C.; Fukin, G. K.; Cherkasov, A. V.; Poddel'sky, A. I.; Druzhkov, N. O. Organometallics 2009, 28, 6707.

(12) Aharoni, A.; Vidavsky, Y.; Diesendruck, C. E.; Ben-Asuly, A.; Goldberg, I.; Lemcoff, N. G. Organometallics **2011**, 30, 1607.

(13) (a) Li, C.; Sun, F.-A.; He, M.-Y.; Xu, H.; Chen, Q. Acta Crystallogr., Sect. E: Struct. Rep. 2009, 65, 286. (b) Chakraborty, B.; Halder, P.; Paine, T. K. Dalton Trans. 2011, 40, 3647. (c) Zhang, Z.-H.; Chen, S.-C.; He, M.-Y.; Li, C.; Chen, Q.; Du, M. Cryst. Growth Des. 2011, 11, 5171.

(14) Bianchini, C.; Ghilardi, C. A.; Meli, A.; Midollini, S.; Orlandini, A. *Chem. Commun.* **1983**, 753.