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A B S T R A C T   

Five novel donor-acceptor-donor (D-A-D) type monomers (VQ1 ~ VQ5) with a common V-shape configuration 
have been developed and further electropolymerized for electrochromic applications. The monomers were 
designed by introducing two triphenylamine groups into the 2- and 3- position of the quinoxaline derivates, 
respectively. These redox-active monomers could be electrodeposited robustly on the ITO electrodes in an 
electrolyte solution via the oxidative coupling reactions between triphenylamine radical cations. The obtained 
thin polymer films (PVQ1 ~ PVQ5) exhibited reversible redox behaviours and obvious color changes upon 
voltage variation. All these polymers exhibited excellent electrochromic performances involving high optical 
contrast (over 70%), short response time (less than 2 s) and high coloration efficiency (over 200 cm2 C− 1). 
Moreover, the optical properties of these polymers in both neutral state and oxidation state can be tuned by 
variation of the additional substituents on the quinoxaline parts, respectively.   

1. Introduction 

Electrochromic devices that can change colors under an applied 
voltage, have received considerable attention due to their potential 
applications in many fields, such as optical displays, smart windows, 
antiglare rearview mirrors, and so on [1–4]. During the past decades, 
tremendous research efforts have been devoted to the development of 
efficient electrochromic materials which play a crucial role in electro-
chromic devices, with the aim of low cost, high optic contrast, long-term 
stability and customized color variation [5–13]. So far, various kinds of 
electrochromic materials involving metal oxides, viologens, conjugated 
conducting polymers, and metal coordination complexes have been re-
ported [14–24]. 

Among them, organic electrochromic materials have been demon-
strated to be possessing many advantages including short switching 
times, easy color-tuning, and high coloration efficiency [25]. Polyaryl-
amine derivatives have been demonstrated as a kind of active electro-
chromic materials due to their unique reversible redox behaviour of the 
arylamine moieties, which can be colorized upon electro-oxidation 
process [26–30]. To improve the performance of polyarylamine-based 

electrochromic materials, a valid strategy in molecular engineering is 
to introduce an electron accepting moiety into the conjugated back-
bones [17]. The state-art linear D-A-D type configuration achieved the 
improvement of stability, switch speed and coloration efficiency [31]. 
However, the intrinsic strong intramolecular charge transfer transition 
in D-A-D type conjugated polymers lead to a broad and high absorption 
in visible region and reduce their light transmittance in their neutral 
states, which limited their practical application in smart window for 
energy saving-building [32–34]. On the other hand, the frequent use of 
noble metal catalysis for the coupling reaction between donor and 
acceptor parts during the synthesis of D-A-D type conjugated com-
pounds also reduced their cost performance [35]. Although the cut of 
the conjugation can obtain colorless electrochromic materials, it would 
result in the boundedness for color tuning and the probable deteriora-
tion of device performance [29]. Therefore, the development of color 
tunable conjugated D-A-D type electrochromic materials among color-
less and colorful is still a challenge [36–41]. 

Herein, we developed five novel D-A-D type monomers with a 
common V-shape configuration, in which two triphenylamine groups 
were introduced into the 2- and 3- position of the quinoxaline derivates, 
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respectively. The synthesis of V-shape monomers VQ1 ~ VQ5 can be 
easily achieved by condensation reactions between diketone and di-
amines, respectively. The corresponding D-A-D polymers PVQ1 ~ PVQ5 
were successfully prepared by electropolymerization, which exhibited 
efficient electrochromic properties and device performances. Further-
more, the color of the present D-A-D type electrochromic polymers in 
both neutral and oxidation states can be easily tuned by introducing 
addition substitutes on the quinoxaline parts, which guaranteed their 
potential applications in smart windows. 

2. Experimental 

All chemicals and reagents were used as received from chemical 
companies without further purification. Column chromatography was 
performed using silica gel as a stationary phase. UV–Vis spectra were 
measured in dichloromethane (DCM) solution or thin film on ITO glass 
using LAMBDA 365 Spectrophotometer (PerkinElmer). Cyclic voltam-
metry (CV) was performed on a CHI 760E potentiostat/galvanostat 
system. Platinum electrode was used as a working electrode, Ag/AgCl in 
saturated KNO3 (aq.) as a reference electrode, and a platinum wire as a 
counter electrode. The NMR measurements were performed by a DRX- 
400 spectrometer (Bruker BioSpin). Mass spectra were measured on a 
Shimadzu Biotech matrix-assisted laser desorption ionization (MALDI) 
mass spectrometer. TGA were characterized by TG 209F-1 (NETZSCH). 

Preparation of compound 1. To a stirred solution of triphenylamine 
(15 g, 61.22 mmol) in anhydrous CH2Cl2 (100 mL) was added anhydrous 
aluminum chloride (8.17 g, 10.28 mmol) portion wise at 0 ◦C under N2 
atmosphere. Oxalyl chloride (3.95 g, 25.48 mmol) was added dropwise 
and maintained the rection system below 0 ◦C. The reaction mixture was 
stirred at room temperature for 12 h, and then treated with water (50 
mL), extracted twice with CH2Cl2 (40 mL × 2). The combined organic 
layers were washed twice with water and once with brine, dried over 
anhydrous magnesium sulfate. After evaporation of the solvent under 
reduced pressure, The residue was treated with MeOH (15 mL), the solid 
was collected by filtration, and dried under vacuum to yield the desired 
product 2a as a white powder (7.07 g, 51%). 1H NMR (400 MHz, CDCl3) 
δ: 7.80 (d, J = 9.0 Hz, 2H), 7.38–7.34 (m, 4H), 7.21–7.17 (m, 6H), 6.98 
(d, J = 9.0 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ: 193.36, 153.43, 
145.96, 131.66, 129.75, 126.40, 125.28, 119.00. ESI (m/z): Calcd for 
C38H28N2O2, 544.22 (M)+; found, 544.21. 

Preparation of monomer VQ1. To a stirred solution of compound 1 
(163 mg, 0.3 mmol) in acetic acid (40 mL) was added benzene-1,2- 
diamine (33 mg, 0.3 mmol) at room temperature. The reaction 
mixture was stirred at 90 ◦C under N2 atmosphere for 12 h. Evaporation 
of the acetic acid under reduced pressure and the residue was treated 
with water (50 mL), extracted twice with CH2Cl2 (50 mL × 2). The 
combined organic layers were washed twice with water and once with 
brine, dried over anhydrous magnesium sulfate. After removing the 
solvent under reduced pressure, the residue was purified by chroma-
tography using hexane/EA (10/1, v/v) as an eluent to yield compound 
3a as an orange solid (130 mg, 71%). 1H NMR (400 MHz, CDCl3) δ: 8.13 
(dd, J1 = 6.4 Hz, J2 = 3.4 Hz, 2H), 7.73 (dd, J1 = 6.4 Hz, J2 = 3.4 Hz, 
2H), 7.44 (d, J = 8.8 Hz, 4H), 7.31–7.26 (m, 8H), 7.13 (d, J = 7.6 Hz, 
8H), 7.08–7.03 (m, 8H). 13C NMR (100 MHz, CDCl3) δ: 160.15, 156.43, 
155.82, 149.82, 149.11, 136.85, 130.46, 128.49, 123.75, 121.38, 
118.24, 114.87. ESI (m/z): Calcd for C44H32N4, 616.26 (M+); found, 

Scheme 1. Molecular structures and synthetic routes of V-shape monomers 
(VQ1 ~ VQ5) and the corresponding D-A-D type electrochromic polymers 
(PVQ1 ~ PVQ5). 

Fig. 1. a) Absorption spectra of V-shape D-A-D type monomers VQ1 ~ VQ5 in CH2Cl2; b) Cyclic voltammograms of monomers VQ1 ~ VQ5 in CH2Cl2/TBAPF6 (0.1 
M), [c] = 1 × 10− 4 mol L− 1, 293 K, scan rate = 100 mV s− 1. 

Table 1 
Optical and redox parameters of monomers VQ1 ~ VQ5a.  

Monomer aλmax (nm) bS+/0 (eV) cS+/* (eV) dE0-0 (eV) 

VQ1 401 0.93 − 1.65 2.58 
VQ2 399 0.91 − 1.72 2.63 
VQ3 410 0.95 − 1.55 2.50 
VQ4 420 0.96 − 1.47 2.43 
VQ5 460 0.97 − 1.18 2.15  

a The absorption spectra were measured in CH2Cl2 solution. 
b The S+/0 corresponding to the ground-state oxidation potential (vs NHE) in 

CH2Cl2 internally calibrated with ferrocene. 
c S+/* = S+/0 – E0-0, where E0-0 is the zero-zero transition energy. 
d E0-0 values were estimated from the onset of the absorption spectra in 

CH2Cl2. 
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616.26. 
Preparation of monomer VQ2. To a stirred solution of compound 1 

(163 mg, 0.3 mmol) in acetic acid (40 mL) was added 4,5-dimethoxy-
benzene-1,2-diamine (50 mg, 0.3 mmol) at room temperature. The re-
action mixture was stirred at 90 ◦C under N2 atmosphere for 12 h. 
Evaporation of the acetic acid under reduced pressure and the residue 
was treated with water (50 mL), extracted twice with CH2Cl2 (50 mL ×
2). The combined organic layers were washed twice with water and once 
with brine, dried over anhydrous magnesium sulfate. After removing the 
solvent under reduced pressure, the residue was purified by chroma-
tography using hexane/EA (10/1, v/v) as an eluent to yield compound 
3a as an orange solid (155 mg, 76%). 1H NMR (400 MHz, CDCl3) δ: 
7.48–7.42 (m, 6H), 7.29 (t, J = 7.8 Hz, 8H), 7.15 (d, J = 7.6 Hz, 8H), 
7.09–7.05 (m, 8H), 4.09 (s, 6H). 13C NMR (100 MHz, CDCl3) δ: 152.63, 
150.75, 148.10, 147.44, 138.17, 133.14, 130.69, 129.33, 124.79, 
123.27, 122.58, 106.70, 56.40. ESI (m/z): Calcd for C46H36N4O2, 676.28 
(M+); found, 676.28. 

Preparation of monomer VQ3. To a stirred solution of compound 1 
(163 mg, 0.3 mmol) in acetic acid (40 mL) was added 4,5-difluoroben-
zene-1,2-diamine (43 mg, 0.3 mmol) at room temperature. The reac-
tion mixture was stirred at 90 ◦C under N2 atmosphere for 12 h. 
Evaporation of the acetic acid under reduced pressure and the residue 
was treated with water (50 mL), extracted twice with CH2Cl2 (50 mL ×
2). The combined organic layers were washed twice with water and once 
with brine, dried over anhydrous magnesium sulfate. After removing the 
solvent under reduced pressure, the residue was purified by chroma-
tography using hexane/EA (10/1, v/v) as an eluent to yield compound 
3a as an orange solid (143 mg, 73%). 1H NMR (400 MHz, CDCl3) δ: 7.87 
(t, J = 9.2 Hz, 2H), 7.45 (d, J = 8.6 Hz, 4H), 7.30 (t, J = 7.8 Hz, 8H), 7.16 
(d, J = 7.8 Hz, 8H), 7.09 (t, J = 7.2 Hz, 4H), 7.06 (d, J = 8.6 Hz, 4H). 13C 
NMR (100 MHz, CDCl3) δ: 153.39, 150.96, 150.83, 148.84, 147.22, 
138.35, 138.29, 138.19, 131.78, 130.74, 129.45, 125.16, 123.68, 
121.90, 114.71, 114.65, 114.59, 114.53. ESI (m/z): Calcd for 
C46H36N4O2, 652.24 (M+); found, 652.24. 

Preparation of monomer VQ4. To a stirred solution of compound 1 
(163 mg, 0.3 mmol) in acetic acid (40 mL) was added 4-(tri-
fluoromethyl)benzene-1,2-diamine (53 mg, 0.3 mmol) at room tem-
perature. The reaction mixture was stirred at 90 ◦C under N2 atmosphere 
for 12 h. Evaporation of the acetic acid under reduced pressure and the 
residue was treated with water (50 mL), extracted twice with CH2Cl2 
(50 mL × 2). The combined organic layers were washed twice with 
water and once with brine, dried over anhydrous magnesium sulfate. 
After removing the solvent under reduced pressure, the residue was 
purified by chromatography using hexane/EA (10/1, v/v) as an eluent 
to yield compound 3a as an orange solid (142 mg, 69%). 1H NMR (400 
MHz, CDCl3) δ: 8.43 (s, 1H), 8.22 (d, J = 8.8 Hz, 1H), 7.88 (dd, J1 = 8.8 
Hz, J2 = 1.7 Hz, 1H), 7.47 (dd, J1 = 8.8 Hz, J2 = 7.0 Hz, 4H), 7.29 (t, J =
8.0 Hz, 8H), 7.15 (d, J = 8.2 Hz, 8H), 7.10 (d, J = 7.4 Hz, 4H), 7.04 (d, J 

= 8.5 Hz, 4H). 13C NMR (100 MHz, CDCl3) δ: 155.06, 154.51, 149.08, 
149.01, 147.16, 142.10, 140.00, 131.60, 130.84, 130.76, 130.12, 
129.44, 127.04, 125.21, 123.76, 121.77. ESI (m/z): Calcd for 
C45H31F3N4, 684.25 (M+); found, 684.25. 

Preparation of monomer VQ5. To a stirred solution of compound 1 
(163 mg, 0.3 mmol) in acetic acid (40 mL) was added 4-nitrobenzene- 
1,2-diamine (46 mg, 0.3 mmol) at room temperature. The reaction 
mixture was stirred at 90 ◦C under N2 atmosphere for 12 h. Evaporation 
of the acetic acid under reduced pressure and the residue was treated 
with water (50 mL), extracted twice with CH2Cl2 (50 mL × 2). The 
combined organic layers were washed twice with water and once with 
brine, dried over anhydrous magnesium sulfate. After removing the 
solvent under reduced pressure, the residue was purified by chroma-
tography using hexane/EA (10/1, v/v) as an eluent to yield compound 
3a as an orange solid (130 mg, 66%). 1H NMR (400 MHz, CDCl3) δ: 9.00 
(d, J = 2.4 Hz, 1H), 8.46 (dd, J1 = 9.0 Hz, J2 = 2.4 Hz, 1H), 8.20 (d, J =
9.0 Hz, 1H), 7.50 (dd, J1 = 10.6 Hz, J2 = 8.7 Hz, 4H), 7.30 (t, J = 7.6 Hz, 
8H), 7.15 (d, J = 7.8 Hz, 8H), 7.13–7.09 (m, 4H), 7.04 (dd, J = 8.6, 6.8 
Hz, 4H). 13C NMR (100 MHz, CDCl3) δ: 155.88, 155.30, 149.50, 149.32, 
147.48, 147.04, 146.97, 143.55, 139.73, 131.04, 130.94, 130.77, 
130.34, 129.49, 125.43, 125.36, 124.00, 123.91, 122.84, 121.47, 
121.29. ESI (m/z): Calcd for C44H31N5O2, 661.25 (M+); found, 661.24. 

3. Results and discussion 

The synthesis routes of five D-A-D type monomers VQ1 ~ VQ5 and 
corresponding polymers PVQ1 ~ PVQ5 were shown in Scheme 1. 
Briefly, the preparation of five monomers were achieved in high yields 
via condensation reactions between corresponding benzene-1,2-diamine 
derivates and a same intermediate diketone 1, respectively, which was 
synthesized by Friedel crafts acylation of triphenylamine. The structures 
of desired V-type monomers were characterized by NMR spectroscopy as 
well as mass spectrometry (Fig. S1 ~ S12). All these monomers exhibited 
high thermal stability, with decomposition temperatures around 410 ◦C 
at 5% weight loss (Fig. S13), which is higher than most of the triphe-
nylamine derivatives [42,43]. 

The absorption spectra of five monomers VQ1 ~ VQ5 in dichloro-
methane were shown in Fig. 1a, and the data were summarized in 
Table 1. All these monomers exhibited two or three distinct absorption 
bands: the longer wavelength absorption bands around the visible re-
gion (400–480 nm) that can be assigned to intramolecular charge 
transfer (ICT) transitions from the triphenylamine donating groups to 
the quinoxaline-based accepting moieties, [19]; the shorter and broad 
wavelength absorption bands in the UV region (300–400 nm) is mainly 
originated from the π-π* electron transitions of the conjugated mole-
cules. The absorption peak originated from ICT transition of VQ1 
located in 401 nm. It was noted that a linear D-A-D isomer with two 
triphenylamine group substituted in 5,8-positions of quinoxaline moiety 

Fig. 2. The HOMO and LUMO of monomers VQ1 ~ VQ5 calculated at B3LYP/6-31G** level.  
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exhibited a maximum ICT absorption peak around 413 nm reported by 
Zhou et al. previously [44]. The result implied that a blue-shift was 
achieved by constructed V-shape D-A-D configuration as compared to 
that with linear D-A-D type configuration. With the introduction of two 
methoxy groups on 6- and 7- positions of its quinoxaline moiety, the 
corresponding ICT absorption peak of VQ2 exhibited slight hypo-
chromatic shift, probably due to the weakened electron accepting ability 
of the quinoxaline-based acceptor. In contrast, with the introduction of 
one or more electron withdrawing groups in quinoxaline moiety, VQ3, 
VQ4 and VQ5 exhibited different degrees of redshift in comparison to 
VQ1. As a result, the absorption onset of VQ5 with additional strong 
electron-deficient group (-NO2) extent up to 580 nm. 

Cyclic voltammetry (CV) was carried out in CH2Cl2 containing 0.1 M 
tetrabutylammonium hexafluorophosphate (TBAPF6) as a supporting 

electrolyte to investigate the electrochemical properties of five new D-A- 
D type monomers VQ1 ~ VQ5 (Fig. 1b). As shown in Table 1, these five 
monomers exhibited similar first oxidation potentials due to the same 
electron donor parts in them. In order to gain further insight into the 
configurations of these five monomers and their frontier molecular or-
bitals, DFT calculations of monomers VQ1 ~ VQ5 are carried out at the 
B3LYP/6-31G** level. As shown in Fig. 2, LUMOs of these V-type 
monomers are mainly located on the quinoxaline parts, whereas their 
HOMOs show delocalized electron distributions through the two tri-
phenylamine moieties and their adjacent pyrazine group, respectively. 
Hence, both orbitals provide overlap between donor and acceptor to 
guarantee an intramolecular charge transfer transition. 

The polymer thin films PVQ1 ~ PVQ5 were successfully deposited 
on ITO/glass via electrochemical polymerization of these new mono-
mers (see Fig. 3), which was carried out by a conventional three- 
electrode system in the solution of monomers in a mixed solvent of 
methylbenzene/acetonitrile (4/1, v/v), using TBAPF6 as a supporting 
electrolyte, respectively [45]. As seen in Fig. 3a and 3e, a reversible 
oxidation peak at 1.2 V was observed for each sample during the first 
anodic scan, which was attributed to the oxidation of the corresponding 
triphenylamine moiety [46]. In the second scan an additional shoulder 
oxidation peak at 1.05 V appeared, which shifted to a higher potential 
after each successive cycle. The additional peak may be a typical 
oxidation wave of the tetraphenylbenzidine (TPB) group, suggesting the 
occurrence of the oxidative coupling between the triphenylamine units 
(Fig. S14) [47]. In the subsequent voltammetric cycles, the anodic peaks 
gradually shifted to higher potentials and the cathodic peaks shifted to 
lower potentials with the increasing intensity of the oxidation peaks. 
The increase of redox current intensities by successive CV scan implied 
the formation of the electrochemically active polymeric film on the 
electrode surface [48]. After ten repeated CV scans between 0 and 1.8 V, 
an electrochemically deposited thin film was observed on the electrode 
surface. All five monomers exhibited a similar phenomenon during the 
electrochemical polymerization process. 

Cyclic voltammograms (CVs) of the polymer films PVQ1 ~ PVQ5 on 
ITO was carried out in a three-electrode electrochemical system, in 
which the polymer films on ITO as working electrode, Pt wire as the 
counter electrode, Ag wire as the reference electrode, respectively. The 
cyclic voltammetry (CV) curves of electrodes at different scan rates 
between 20 and 200 mV s− 1 were recorded in 0.1 M TPAPF6/PC solu-
tions. As shown in Fig. 3f–3j, a pair of redox peaks of PVQ1 ~ PVQ5 
electrodes were observed, respectively. The plot of scan rate against the 
maximum current (I) shows the linear relationship (Fig. S15), indicating 
that the charge transfer process of the redox reaction of these electrode is 
not limited by the diffusion of counter ions. The result also suggested a 
good contact between the electro-generated polymeric films and ITO 
electrode. 

Then, we investigated the electrochromic properties of the present 
polymer PVQ1 ~ PVQ5 on ITO electrode by spectroelectrochemistry 
measurements, which were performed in a bath of 0.1 M TBAPF6/PC. 
For example, PVQ1 film in neutral form exhibited a broad absorption 
band with a peak value around 340 nm corresponding to the over-
lapping π-π* transition and ICT, of which the intensity decreased grad-
ually under the increasing working potential. Meanwhile, a new 
absorption peak around 500 nm was observed accompanying the in-
crease of the absorption intensity, which may be attributed from the 
formation of TPB radical cation [49]. Notably, when a working potential 
over 1.04 V was applied, the dication of TPB may be formed [50], 
resulting in a new intense absorption band extend to the near IR region 
with a peak around 750 nm was appeared, and its intensity reached a 
maximum value at around 1.2 V (Fig. 4a). As a result, The polymer 
PVQ1 exhibited multicolor change from light yellow to orange, and 
further to blue under certain applied voltage. As shown in Fig. 4b–4f, 
other four analogues PVQ2 ~ PVQ5 exhibited similar electrochromic 
behaviour. 

We further investigated the optical eletrochromism by 

Fig. 3. a~e) CV curves of five monomers in ACN:toluene (1:4, v/v, 2 mM) 
containing 100 mM TBAPF6 between 0 and 1.8 V for 10 cycles at scan rate of 
100 mV s− 1, respectively; f~j) CV of PVQ1 ~ PVQ5 thin films on ITO in 
TPAPF6/PC (0.1 M) at scan rate from 20 to 200 mV s− 1, respectively. 
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chronoamperometry with putting on square-wave potential between 
0 and the corresponding highest oxidation potentials for PVQ1 ~ PVQ5, 
respectively (see Fig. 5) [51]. While the films were switched, the 
transmittance at selected wavelengths was monitored as a function of 
time with UV–vis–NIR spectroscopy. The response time was calculated 
at 90% of the full-transmittance change, because it is difficult to 
perceive any further color change with the naked eye beyond this point 
[52]. As shown in Fig. 5a and 5e, the optical transmittance of PVQ1 ~ 
PVQ5 film at the longer wavelength peak (around 750 nm) was detected 
by applying potential between 0 and the corresponding highest oxida-
tion (around 1.2 V) potentials with a residence time of 10 s. As sum-
marized in Table 2, all these five polymers performed high optical 

contrast over 70% with coloration time (tc) less than 2 s and bleaching 
time (tb) less than 1s. Especially, the tc and tb of PVQ4 was 0.9 s and 0.7 
s, which is superior to the reported electrochromic materials based on 
triphenylamine derivatives [16,28,34,45,46,50]. The faster response 
time for these five films may be attributed to its D-A-D structure, which 
might be more favorable for electron transfer within molecules. As 
shown in Fig. 5f–5j, all these five electrochromic materials exhibited 
good stability with a little decrease of optical contrast about 5% after 20 
cycles switching. 

Chrono-absorptometric and chronoamperometric techniques were 
employed to evaluate the coloration efficiencies of these five novel D-A- 
D type polymers. The charge/discharge amount (Qd) was recorded by 

Fig. 4. Electronic absorption spectra of PVQ1 ~ PVQ5 thin films on ITO in TPAPF6/PC (0.1 M), respectively.  
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monitoring the change in current with time (Fig. 5f–5j). Then, we 
calculated the coloration efficiency (CE) of these five polymers by using 
the following equations [53]. 

CE = [log (Tb/Tc)]/Qd  

where Tb and Tc are the percent transmittance of bleaching and coloring 
state at the corresponding wavelength around 750 nm, respectively. As 
listed in Table 2, CE of these five new electrochromic materials were 
calculated to be 200 cm2/C for PVQ1, 224 cm2/C for PVQ2, 251 cm2/C 
for PVQ3, 232 cm2/C for PVQ4, 312 cm2/C for PVQ5, respectively. The 
electrochromic switch properties around 495 nm of these five polymer 
were also investigated by the same way, and the results were shown in 
Fig. S16 and Table S1. 

Finally, we fabricated electrochromic devices based on PVQ1 ~ 
PVQ5 films with a sandwich configuration. Briefly, a gel electrolyte 
containing 0.1 M TBAPF6 in PC solution and 20 wt% poly(methyl-
methacrylate) (PMMA) was spread on the top of the PVQ1 ~ PVQ5 films 
that were pre-deposited on ITO glass, respectively. Then, a bare ITO 
glass was covered on the top of electrolyte and sealed by a commercial 3 
M tape to prevent leakage [54]. As shown in Fig. 6 and Fig. S17-20, EC 
devices based on polymers PVQ1 ~ PVQ5 exhibited similar electro-
chromic phenomena with multicolor change from pale yellow to orange, 
and further to blue upon the increase of applied potentials, respectively. 
Electrochromic devices based on these five polymers exhibited highest 
optical contrast over 80% around 750 nm, and exhibited good redox 
stability after 20 cycles switching, respectively. Moreover, the diversi-
form color in both bleaching and coloring states of these five electro-
chromic devices suggested the successful molecular design of the present 
V-type D-A-D compounds toward tunable electrochromism. 

4. Conclusion 

In summary, we developed five novel D-A-D type monomers with a 
common V-shape configuration, in which two triphenylamine groups 
were introduced into the 2- and 3- position of the quinoxaline derivates. 
Five polymer films PVQ1 ~ PVQ5 were successfully deposited onto the 
ITO electrodes via electro-polymerization, which exhibited large optical 
contrast, short response time, high coloration efficiency and good redox 
stability, respectively. Electrochromic devices based on the present D-A- 
D polymers were also prepared and exhibited efficient electrochromic 
performance, which further demonstrated the rational structure design 
of V-shape monomers. Moreover, the multiple and tunable color change 
among the visible and near IR region guaranteed their potential appli-
cations in smart windows. 
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Fig. 5. a~e) Optical contrast and response time of PVQ1 ~ PVQ5 thin films 
around 750 nm, respectively; (f~j) Electrochromic switching stability for 
PVQ1 ~ PVQ5 thin films, respectively. 

Table 2 
Optical and electrochromic properties of PVQ1 ~ PVQ5 thin films monitored around 750 nma.  

Polymers Operation voltage 
(V) 

Transmittance change (ΔT, 
%) 

Bleaching time (tb, 
s) 

Coloration time (tc, 
s) 

Charge/discharge amount (Qd, 
mC⋅cm− 2) 

Coloration efficiency (CE, 
cm2⋅C− 1) 

PVQ1 0–1.22 V 76.5 0.5 2.0 2.47/1.76 200 
PVQ2 0–1.2 V 71.4 0.7 1.4 2.28/1.51 224 
PVQ3 0–1.25 V 78.7 0.5 1.3 2.35/1.24 251 
PVQ4 0–1.25 V 73.4 0.7 0.9 2.28/1.51 232 
PVQ5 0–1.2 V 76.2 0.7 1.8 2.35/1.24 312  
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