

ISSN: 1741-5993 (Print) 1741-6000 (Online) Journal homepage: https://www.tandfonline.com/loi/gsrp20

A convenient synthesis of thiazol-2(3*H*)-one skeletons from a reaction involving terminal alkynes, elemental sulfur, and isocyanates

Fahimeh Heydari-Mokarrar, Reza Heydari, Malek-Taher Maghsoodlou & Alireza Samzadeh-Kermani

To cite this article: Fahimeh Heydari-Mokarrar, Reza Heydari, Malek-Taher Maghsoodlou & Alireza Samzadeh-Kermani (2019): A convenient synthesis of thiazol-2(3*H*)-one skeletons from a reaction involving terminal alkynes, elemental sulfur, and isocyanates, Journal of Sulfur Chemistry, DOI: <u>10.1080/17415993.2019.1703987</u>

To link to this article: https://doi.org/10.1080/17415993.2019.1703987

Published online: 29 Dec 2019.

C	Ø

Submit your article to this journal \square

View related articles 🖸

View Crossmark data 🗹

Check for updates

A convenient synthesis of thiazol-2(3*H*)-one skeletons from a reaction involving terminal alkynes, elemental sulfur, and isocyanates

Fahimeh Heydari-Mokarrar^a, Reza Heydari^a, Malek-Taher Maghsoodlou^a and Alireza Samzadeh-Kermani^b

^aFaculty of Science, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran; ^bFaculty of Science, Department of Chemistry, University of Zabol, Zabol, Iran

ABSTRACT

An efficient copper-catalysed tandem reaction to synthesize thiazol-2(3*H*)-one structures from readily available raw materials is described. The protocol provides a cost-effective approach to a decent range of nitrogen and sulfur bearing heterocycles in acceptable yields. The transformation takes place with CuCl as catalyst, *N*-methylpiperidine as additive, and *t*-BuOK as base in anhydrous DMF as solvent.

ARTICLE HISTORY

Received 16 October 2019 Accepted 5 December 2019

KEYWORDS

Thiazol-2(3H)-one; elemental sulfur; copper-acetylide; isocyanate; cyclization

Introduction

During the last two decades, copper salts have been broadly utilized in catalytic multicomponent reactions to form a wide range of heterocyclic compounds [1–5]. In this regard, those reactions involving terminal alkynes have attracted considerable attention in preparation of synthetically important heterocycles [6–8]. The widespread application of copper salts with alkyne synthons relies on their ability to effectively activate the π -electrons of triple bonds, providing a partial positive charge on alkyne unit [9].

In this line, the additions of terminal alkynes on various type of electrophiles have been well documented [10–15]. Pioneered by Gewald [16], the nucleophilic additions of terminal alkynes on elemental sulfur in the presence of appropriate third coupling partners has emerged to form a diverse range of sulfur heterocycles [17–18].

Owing to their importance in chemical biology and medicinal chemistry, thiazole possessing molecules have attracted much attention [19–22]. Additionally, some thiazole bearing compounds like Plantazolicin exhibited pharmacologically important activity

2 🕞 F. HEYDARI-MOKARRAR ET AL.

[23–25]. A number of methods have been developed for the synthesize (US format) of thiazole building-blocks with condensation reactions being among the most documented transformations [26–27]. For instance, Ghazanfarpour disclosed an organocatalytic route to thiazolidine derivatives from a reaction involving aziridines and carbon disulphide [28]. Mehrabi reported a three-component reaction between arylglyoxals with acetylthiourea and Meldrum's acid to form thiazole derivatives [29]. Khurana' laboratory has developed a novel reaction using acetic acid as mediator to form such important heterocycles [30]. A domino reaction between alkynes, elemental sulfur, and aziridines has been applied to form thiazole building blocks [17]. Recently, Domling described an Ugi-type reaction to form thiazole structures through a cyclodehydration path [31]. The recent efforts on synthesis of thiazole skeletons are very well recapitulated in a review written by Mahesh [32]. In the light of previously published methods for the synthesis of sulfur heterocycles [33–39] and in continuation of our interest on multicomponent reactions involving terminal alkynes, elemental sulfur, and isocyanates to form thizaole derivatives.

Results and discussion

To evaluate the suitability of the proposed catalytic multicomponent reaction, an initial attempt was performed with phenylacetylene (1a), elemental sulfur (2a), and phenyl isocyanate (3a) in the presence of CuI and N-methylpiperidine (NMP) as a sulfur activator in THF. Stirring at 55 °C for 16 h only afforded the desired compound 4a in low yield together with S-(phenylethynyl) phenylcarbamothioate (5) in 73% yield. Increasing the reaction temperature or extending the reaction time did not affect the reaction outcome in appreciable manners. We thought that the presence of a base source may assist the reaction progress. Accordingly, the reaction with Cs_2CO_3 afforded the targeted compound 4a in 26% yield (not shown in Table 1). To further develop the reaction conditions, the reaction was performed with various catalysts, bases, and solvents and the results are shown in Table 1. Initially, the effect of base source on reaction outcomes was examined. Tetrabutylammonium acetate (TBAAc) as an ionic inorganic base resulted in formation of **4a** in low yield (entry 1). The study also indicated that common organic bases were not effective here and only DBU afforded 4a in acceptable yield (entries 2-6). Among the inorganic bases, *t*-BuOK exhibited much better activity in regards of the formation of **4a** (entries 7–11). Of the copper salts, CuCl was selected as the catalyst of choice based on the cost and efficiency (entries 12–19). In the cases of $Cu(CH_3CN)_4PF_6$, a higher catalyst loading was required to furnish the transformation in a similar yield (entry 15). Copper (II) salts were not suitable in this transformation (entries 17-19). Finally, the effect of solvent in this transformation was examined (entries 20–26). By comparison, the reaction in polar aprotic solvents likes DMSO, DMA, and MeCN exhibited much better productivity (entries 20-22). The reaction in protic solvent like EtOH did not afford 4a (entry 26). The reaction conducted at lower temperatures and shorter reaction times resulted in diminished yields (not shown in Table 1).

The substrates scope toward this catalytic multicomponent reaction was then evaluated using various terminal alkynes and isocyanates (Table 2). The reaction proceeds smoothly with **1a** to afford the targeted the product **4a** in 89% yield (entry 1). Alkynes bearing *p*-methyl and *p*-methoxy as motif on aryl ring **1b-1c** reacted with acceptable yields (entries

Ph—	≡ + S ₈ +	PhNCO		o≓ N Ph Ph	O N H S	
1a	2	3a		4a	5	
Entry	Catalyst	Base	Solvent	Yield of 4 (%)		
1	CuCl	TBAAc	DMF		25	
2	CuCl	Lutidine	DMF		Traces	
3	CuCl	Et ₃ N	DMF		27	
4	CuCl	(i-Pr) ₂ EtN	DMF		18	
5	CuCl	DBU	DMF		58	
6	CuCl	DABCO	DMF		31	
7	CuCl	K ₃ PO ₄	DMF		NR ^b	
8	CuCl	K ₂ CO ₃	DMF		NR	
9	CuCl	Cs ₂ CO ₃	DMF		56	
10	CuCl	t.BuOLi	DMF		70	
11	CuCl	t.BuOK	DMF		89	
12	Cul	t.BuOK	DMF	68		
13	CuBr.SMe ₂	t.BuOK	DMF	37		
14	CuOAc	t.BuOK	DMF	27		
15	Cu(CH ₃ CN) ₄ PF ₆	t.BuOK	DMF	90 ^c		
16	CuOTf	t.BuOK	DMF	92		
17	Cu(OTf) ₂	t.BuOK	DMF	Traces		
18	$Cu(BF_4)_2$	t.BuOK	DMF	Traces		
19	Cu(OAc) ₂	t.BuOK	DMF	Traces		
20	CuCl	t.BuOK	DMSO	71		
21	CuCl	t.BuOK	DMA	86		
22	CuCl	t.BuOK	MeCN		63	
23	CuCl	t.BuOK	THF	30		
24	CuCl	t.BuOK	Toluene	43		
25	CuCl	t.BuOK	DCM	16		
26	CuCl	t.BuOK	EtOH		_d	

Table 1. Optimization of reaction conditions^a.

Notes: ^aReaction conditions: **1a** (1.2 mmol), **2** (0.2 equiv. based on **3a**), **3a** (1.0 mmol), catalyst (0.05 mmol), additive (1.5 mmol), base (1.5 mmol), 250 mg of ground 3 Å molecular sieves, solvent (3.0 mL) at 55 °C for 16 h.

^bNo reaction.

^cWith 0.10 mmol of catalyst. ^dEthyl phenylcarbamate was isolated in 71% yield.

2–3). Electron-deficient alkyne **1d** afforded the corresponding product in lower yield however, a decent increase in the yield occurred by extending the reaction time (entry 4). Heteroaromatic terminal alkynes **1e-1f** were also tolerated, providing the corresponding thiazol-2(*3H*)-one skeletons with good success (entries 5–6). Gratefully, alkyl terminal alkynes **1g-1j** were also compatible with this three-component reaction (entries 7–10). The reaction was also performed with a number of aryl and alkyl isocyanates (entries 11–17). The reactions conducted with isocyanates bearing electron releasing groups such as Me- and MeO- at *para* position formed the desired products in acceptable yields (entries 11–12). Chloro group was compatible with this coupling reaction, opening the door for subsequent cross-coupling reaction (entry 13). The reactions with electron-deficient isocyanates **3e-3f** proceeded with moderate yields (entries 14–15). As is typified by substrates **3 g** and **3 h**, alkyl isocyanates afforded the corresponding products **4p-4q** in comparatively lower yields than that of **3a** (entries 16-17), likely due to the either lack of π -electrons of the phenyl group which could act as an auxiliary coordination site to copper catalyst or

R ¹ -=	≡ +	S ₈ + R ²	NCO —	<u>CuCl, <i>t</i>.BuOK</u> NMP, M.S 3Å MF,55 °C, 16h	$ \circ = \bigvee_{\substack{N \\ R^2}}^{S} R^1 $
1a-k	ζ.	2 3	Ba-h		4a-r
Entry	Alkyne	R ¹	lsocyanate	R ²	Yield (%) of 4
1	1a	Ph	3a	Ph	4a , 89
2	1b	4-Me-C ₆ H ₄	3a	Ph	4b , 81
3	1c	4-MeO-C ₆ H ₄	3a	Ph	4c , 78
4	1d	3-CF3-C6H4	3a	Ph	4d , 69 (87) ^b
5	1e	3-Pyridyl	3a	Ph	4e , 85
6	1f	2-Furyl	3a	Ph	4f , 81
7	1g	CH_3OCH_2	3a	Ph	4g , 87 ^c
8	1h	t-Bu	3a	Ph	4h , 81
9	1i	<i>n-</i> Bu	3a	Ph	4i , 70
10	1j	TMS	3a	Ph	4j , 61
11	1a	t-Bu	3b	4-Me-C ₆ H ₄	4k , 75
12	1a	t-Bu	3с	4-MeO-C ₆ H ₄	4I , 77
13	1a	t-Bu	3d	4-CI-C ₆ H ₄	4m , 87
14	1a	t-Bu	3e	4-MeOCO-C ₆ H ₄	4n , 71
15	1a	t-Bu	3f	4-NO2-C6H4	40 , 49
16	1a	t-Bu	3g	Су	4p , 79 ^d
17	1a	<i>t</i> -Bu	3h	<i>i</i> -Pr	4q , 75 ^d

Table 2. Scope of substrates^a.

Notes: ^aFor all entries except stated otherwise: **1** (1.2 mmol), **2** (0.2 equiv.), **3** (1.0 mmol), NMP (1.5 mmol), CuCl (0.05 mmol), *t*.BuOK (1.5 mmol), 3 Å molecular sieves (250 mg) dry DMF (3.0 mL), 55°C, 16 h under N₂.

^bThe digit in parentheses refers to the yield for 21 h.

^cFor entries 7–17, 0.1 mmol of CuCl was used.

^dThe yield at 70°C.

lower electrophilicity. The present transformation was not compatible with the presence of amine, hydroxyl, nitrile, and aldehyde as motif on alkynes and isocyanates structures.

To get insight on the mechanism of the reaction, the reaction was conducted in stepwise manner and the results are shown in Scheme 1. The reaction conducted with phenylacetylene and elemental sulfur to form phenylethynylthiolate **a** was unsuccessful and instead the Glaser coupling product **6** or the dimeric product **7** was obtained (Scheme 1, *a*). As such, sodium phenylacetylide **8** was prepared in a separate step using **1a** and **2** in the presence of NaH and was then reacted with isocyanate **3a**. The study indicated that the presence of copper catalyst and base was necessary to form **4a** (Scheme 1, *b*, *c*). Additionally, the reaction was conducted in competing mode with isocyanate **3a** and isothiocyanate **9** to explore the effect of electrophilicity of the third coupling partner in reaction outcome. Control experiment indicated that the reaction proceeded almost entirely through isocyanate **3a** which is most likely due to the greater potential of **3a** for nucleophilic attack of phenylethynylthiolate species **a** (Scheme 1, *d*).

Based on previous literature [15–17] and our control experiment results, a plausible mechanism is proposed in Scheme 2. Initially, species 11 was formed from phenylacetylene using CuCl and *t*-BuOK. Copper-acetylide 11 reacted with polysulfide 12 to provide alkyne polysulfide 13. This anionic adduct further reacted with isocyanate 3a to give the corresponding *S*-(phenylethynyl) phenylcarbamothioate complex 14. Subsequent electrophilic cyclization of 14 through a *5-endo* path afford intermediate 15 which further reacted to form compound 4a by the action of the conjugated acid of the base.

Scheme 1. Control experiments.

Conclusion

In this report, we have reported a novel catalytic three-component reaction involving terminal alkynes, elemental sulfur, and isocyanates. The reaction scope is wide and the reactions proceeded smoothly to form three covalent bonds in one pot. Control experiments were performed to explore the reaction intermediates and plausible path. A competing reaction with isocyanate and isothiocyanate was also conducted to get insight on the effect of electrophilicity of the third coupling partner on the products outcome.

Experimental

All transformations were performed in pre-dried glass tube (15 mL) under an inert atmosphere. All the substrates, copper catalysts, bases and additives were purchased from commercial sources. All the solvents were purchased from BAHERENERGY Pure Chemical Industries, and were dried before use. Melting points were recorded with Electrothermal-9100 apparatus. IR spectra were determined on a Nicolet 6700 spectrometer. ¹H and ¹³C

Scheme 2. Proposed mechanism.

NMR spectra spectra were taken on a Bruker DRX-500 AVANCE spectrometer. The spectra were obtained in CDCl₃ at 500 and 125 MHz, resp; δ in ppm, *J* in Hz. Mass spectra were recorded with a EIMS (70 eV): Finnigan-MAT-8430 mass spectrometer, in m/z. Elemental analyses were performed with a Heraeus Rapid analyser. Silica gel 60 (particle size 63–200 µm or 40–100 mesh) was used for column chromatography. TLC analyses were performed on commercial glass plates of Merck Silica gel 60 (Merck, item number 116835).

General Procedure for the Preparation of Compounds 4

A pre-dried glass vessel (15 mL) was charged with elemental sulfur (0.2 mmol, 51.0 mg), NMP (1.5 mmol), and anhydrous DMF (2.0 mL). The mixture was then stirred for 40 min and terminal alkyne (as stated in Table 2), isocyanate (1.0 mmol), CuCl (as stated in Table 2), *t*.BuOK (1.5 mmol), 3 Å molecular sieves (250 mg), and anhydrous DMF (2.0 mL) were then added to the above mixture, respectively. The reaction medium was evacuated and backfilled with N_2 (twice). The mixture was stirred under the conditions described in Table 2. After the dark greenish mixture being cooled to room temperature, the mixture was passed through an alumina pad and concentrated under reduced pressure. The residue was purified by flash column chromatography with silica gel (eluent gradient of EtOAc/hexane, see spectroscopic analysis section) to give the targeted products **4**.

3,4-Diphenylthiazol-2(3H)-one (4a)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 6/1, $R_{\rm f}$: 0.34) affording 0.22 g (89%) of **4a**; Pale yellow oil. IR (KBr): $\bar{V} = 3053$, 2976, 1637, 1472, 1232, 1123. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 6.79$ (1 H, s, CH), 7.37 (2 H, d, ${}^{3}J = 7.1$ Hz, 2 CH), 7.49 (2 H, t, ${}^{3}J = 7.3$ Hz, 2 CH), 7.56-7.63 (4 H, m, 4 CH), 7.76 (2 H, d, ${}^{3}J = 7.3$ Hz, 2 CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 112.8$ (CH), 127.6 (CH), 128.8 (2 CH), 129.7 (2 CH), 130.2 (2 CH), 133.2 (C), 135.8 (C), 149.3 (C), 172.5 (C). EI-MS (70 eV): m/z (%) = 253 (M⁺, 1), 176 (31), 100 (62), 85 (87),

77 (100). Anal. Calcd (%) for C₁₅H₁₁NOS (252.32): C, 71.12, H, 4.38, N, 5.53, S, 12.66. Found: C, 71.01, H, 4.55, N, 5.38, S, 12.52.

3-Phenyl-4-(p-tolyl)thiazol-2(3H)-one (4b)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 6/1, $R_{\rm f}$: 0.41) affording 0.22 g (81%) **4b**. Pale yellow oil. IR (KBr): $\bar{V} = 3017, 2962, 1632, 1231, 1098.$ ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 2.35$ (3 H, s, Me), 6.64 (1 H, s, CH), 7.18 (2 H, d, ${}^{3}J = 7.7$ Hz, 2 CH), 7.25 (2 H, d, ${}^{3}J = 7.7$ Hz, 2 CH), 7.38 (2 H, d, ${}^{3}J = 7.2$ Hz, 2 CH), 7.53 (2 H, t, ${}^{3}J = 7.2$ Hz, 2 CH), 7.64 (1 H, t, ${}^{3}J = 7.2$ Hz, CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 22.5$ (Me), 112.3 (CH), 127.5 (CH), 128.2 (C), 128.2 (2 CH), 129.4 (2 CH), 129.9 (2 CH), 130.3 (2 CH), 132.7 (C), 138.8 (C), 149.5 (C), 171.3 (C). EI-MS (70 eV): m/z (%) = 267 (M⁺, 3), 190 (24), 176 (31), 162 (57), 91 (72), 85 (87), 77 (100). Anal. Calcd (%) for C₁₆H₁₃NOS (267.35): C, 71.88, H, 4.90, N, 5.24, S, 11.99. Found: C, 71.70, H, 4.78, N, 5.39, S, 12.11.

4-(4-Methoxyphenyl)-3-phenylthiazol-2(3H)-one (**4c**)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 5/1, $R_{\rm f}$: 0.29) affording 0.22 g (78%) **4c**. Yellow oil. IR (KBr): $\bar{V} = 3031$, 2952,1628, 1413, 1232, 1065. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 3.76$ (3 H, s, OMe), 6.46 (1 H, s, CH), 6.91 (2 H, d, ${}^{3}J = 7.1$ Hz, 2 CH), 7.22 (2 H, d, ${}^{3}J = 7.1$ Hz, 2 CH), 7.39 (2 H, d, ${}^{3}J = 7.8$ Hz, 2 CH), 7.52 (2 H, t, ${}^{3}J = 7.8$ Hz, 2 CH), 7.63 (1 H, t, ${}^{3}J = 7.8$ Hz, CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 54.2$ (OMe), 107.7 (CH), 119.7 (2 CH), 124.2 (C), 127.1 (CH), 128.3 (2 CH), 129.2 (2 CH), 129.7 (2 CH), 135.3 (C), 148.6 (C), 160.4 (C), 174.1 (C). EI-MS (70 eV): m/z (%) = 283 (M⁺, 1), 206 (9), 191 (32), 107 (100), 85 (81), 77 (83). Anal. Calcd (%) for C₁₆H₁₃NO₂S (283.35): C, 67.82, H, 4.62, N, 4.94, S, 11.31. Found: C, 67.68, H, 4.80, N, 5.10, S, 11.45.

3-Phenyl-4-(3-(trifluoromethyl)phenyl)thiazol-2(3H)-one (4d)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 4/1, $R_{\rm f}$: 0.37) affording 0.28 g (87%) **4d**. Pale yellow oil. IR (KBr): $\bar{V} = 3015$, 2943, 1640, 1453, 1231, 1090. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 6.81$ (1 H, s, CH), 7.08 (1 H, t, ${}^{3}J = 7.5$ Hz, CH), 7.39 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 7.46 (2 H, d, ${}^{3}J = 7.1$ Hz, 2 CH), 7.50 (1 H, s, CH), 7.55 (2 H, t, ${}^{3}J = 7.1$ Hz, CH), 7.61 (1 H, t, ${}^{3}J = 7.1$ Hz, CH), 7.83 (1 H, d, ${}^{3}J = 7.5$ Hz, CH). ¹³C NMR (125.7 MHz, CDCl₃): 114.2 (CH), 122.9 (CH, q, ${}^{3}J = 5.2$ Hz), 125.1 (CF₃, q, ${}^{1}J = 276.1$ Hz), 126.8 (CH, q, ${}^{3}J = 5.1$ Hz), 127.2 (CH), 128.5 (2 CH), 128.9 (2 CH), 130.1 (CH), 132.4 (C, q, ${}^{2}J = 28.7$ Hz), 134.1 (C), 135.9 (C), 149.5 (C), 173.9 (C). EI-MS (70 eV): m/z (%) = 321 (M⁺, 1), 244 (37), 146 (25), 100 (73), 85 (81), 77 (100). Anal. Calcd (%) for C₁₆H₁₀F₃NOS (321.32): C, 59.81, H, 3.14, N, 4.36, S, 9.98, F, 17.74. Found: C, 59.70, H, 3.02, N, 4.51, S, 10.11, F, 17.83.

3-Phenyl-4-(pyridin-3-yl)thiazol-2(3H)-one (4e)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 4/1, $R_{\rm f}$: 0.21) affording 0.22 g (85%) **4e**. Yellow oil. IR (KBr): $\bar{V} = 3041, 2977, 1634, 1231, 1143.$ ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 6.72$ (1 H, s, CH), 7.34 (1 H, t, ${}^{3}J = 7.7$ Hz, CH), 7.42 (2 H, d, ${}^{3}J = 7.4$ Hz, 2 CH), 7.53 (2 H, t, ${}^{3}J = 7.4$ Hz, 2 CH), 7.64 (1 H, t, ${}^{3}J = 7.4$ Hz, CH), 7.78 (1 H, d, ${}^{3}J = 7.7$ Hz, CH), 8.24 (1 H, d, ${}^{3}J = 7.7$ Hz, CH), 8.53 (1 H, s, CH). ¹³C NMR (125.7 MHz, CDCl₃): 119.6 (CH), 124.7 (CH), 127.3 (CH), 128.6 (2 CH), 129.15 (2 CH), 132.1 (C), 134.3 (C), 134.9 (CH), 148.7 (C), 149.1 (CH), 149.3 (CH), 174.8 (C). EI-MS

8 🕞 F. HEYDARI-MOKARRAR ET AL.

(70 eV): m/z (%) = 254 (M⁺, 4), 177 (34), 100 (84), 85 (76), 77 (100). Anal. Calcd (%) for C₁₄H₁₀N₂OS (254.31): C, 66.12, H, 3.96, N, 11.02, S, 12.61. Found: C, 66.28, H, 3.82, N, 11.24, S, 12.80.

4-(Furan-2-yl)-3-phenylthiazol-2(3H)-one (4f)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 5/1, $R_{\rm f}$: 0.33) affording 0.20 g (81%) **4f**. Pale yellow oil. IR (KBr): $\bar{V} = 3017, 2957, 1628, 1543, 1241, 1067.$ ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 6.62$ (1 H, s, CH), 6.80 (1 H, t, ${}^{3}J = 6.7$ Hz, CH), 7.39 (2 H, d, ${}^{3}J = 7.8$ Hz, 2 CH), 7.50 (2 H, t, ${}^{3}J = 7.8$ Hz, 2 CH), 7.63 (1 H, t, ${}^{3}J = 7.8$ Hz, CH), 7.78 (1 H, d, ${}^{3}J = 6.7$ Hz, CH), 8.31 (1 H, d, ${}^{3}J = 6.7$ Hz, CH), 125.7 MHz, CDCl₃): 110.2 (CH), 114.9 (CH), 115.7 (CH), 127.3 (CH), 128.5 (2 CH), 129.1 (2 CH), 134.1 (C), 147.4 (CH), 156.2 (C), 158.7 (C), 173.1 (C). EI-MS (70 eV): m/z (%) = 243 (M⁺, 1), 176 (45), 166 (24), 100 (83), 85 (67), 77 (100), 67 (53). Anal. Calcd (%) for C₁₃H₉NO₂S (243.28): C, 64.18, H, 3.73, N, 5.76, S, 13.18. Found: C, 64.34, H, 3.60, N, 5.63, S, 13.32.

4-(Methoxymethyl)-3-phenylthiazol-2(3H)-one (4g)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 6/1, $R_{\rm f}$: 0.45) affording 0.19 g (87%) **4 g**. Colorless oil. IR (KBr): $\bar{V} = 3018, 2962, 1636, 1311, 1262, 1106.$ ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 3.41$ (3 H, s, OMe), 4.27 (2 H, s, CH₂), 6.41 (1 H, s, CH), 7.39 (2 H, d, ³J = 7.2 Hz, 2 CH), 7.53 (2 H, t, ³J = 7.2 Hz, 2 CH), 7.60 (1 H, t, ³J = 7.2 Hz, CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 55.7$ (OMe), 82.1 (CH₂), 101.3 (CH), 127.4 (CH), 128.6 (2 CH), 129.2 (2 CH), 134.8 (C), 153.9 (C), 171.7 (C). EI-MS (70 eV): m/z (%) = 221 (M⁺, 1), 190 (23), 114 (64), 100 (86), 85 (70), 77 (100). Anal. Calcd (%) for C₁₁H₁₁NO₂S (221.27): C, 59.71, H, 5.01, N, 6.33, S, 14.49. Found: C, 59.88, H, 5.15, N, 6.24, S, 14.62.

4-(tert-Butyl)-3-phenylthiazol-2(3H)-one (4h)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 1/6, $R_{\rm f}$: 0.31) affording 0.19 g (81%) 4 h. Colorless oil. IR (KBr): $\bar{V} = 3415$, 3047, 2976, 1726, 1638, 1543, 1346, 1218, 1076. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 1.38$ (9 H, s, 3 Me), 6.19 (1 H, s, CH), 7.38 (2 H, d, ³J = 7.1 Hz, 2 CH), 7.55 (2 H, t, ³J = 7.5 Hz, 2 CH), 7.63 (1 H, t, ³J = 7.5 Hz, CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 34.9$ (3 Me), 42.2 (C), 97.2 (CH), 126.9 (CH), 128.8 (2 CH), 129.7 (2 CH), 134.6 (C), 163.4 (C), 173.8 (C). EI-MS (70 eV): m/z (%) = 233 (M⁺, 1), 176 (31), 156 (53), 100 (81), 85 (61), 77 (84), 57 (100). Anal. Calcd (%) for C₁₃H₁₅NOS (233.33): C, 66.92, H, 6.48, N, 6.00, S, 13.74. Found: C, 67.11, H, 6.31, N, 6.17, S, 13.60.

4-Butyl-3-phenylthiazol-2(3H)-one (4i)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 7/1, $R_{\rm f}$: 0.21) affording 0.16 g (70%) 4i. Pale yellow oil. IR (KBr): $\bar{V} = 3026$, 2965, 1639, 1475, 1237, 1128. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 1.02$ (3 H, t, ³J = 5.8 Hz, Me), 134-1.42 (4 H, m, 2 CH₂), 2.11 (2 H, t, ³J = 5.6 Hz, CH₂), 6.19 (1 H, s, CH), 7.35 (2 H, d, ³J = 7.1 Hz, 2 CH), 7.49 (2 H, t, ³J = 7.1 Hz, 2 CH), 7.56 (1 H, t, ³J = 7.1 Hz, CH). ¹³C NMR (125.7 MHz, CDCl₃): 12.8 (Me), 26.3 (CH₂), 31.7 (CH₂), 37.7 (CH₂), 102.2 (CH), 127.8 (CH), 128.6 (2 CH), 129.4 (2 CH), 133.7 (C), 159.2 (C), 172.8 (C). EI-MS (70 eV): m/z (%) = 233 (M⁺, 1), 176 (34), 156 (21), 100 (100), 85 (61), 77 (84), 57 (36). Anal. Calcd (%) for C₁₃H₁₅NOS (233.33): C, 66.92, H, 6.48, N, 6.00, S, 13.74. Found: C, 66.80, H, 6.60, N, 6.17, S, 13.91.

3-Phenyl-4-(trimethylsilyl)thiazol-2(3H)-one (4j)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 8/1, $R_{\rm f}$: 0.41) affording 0.15 g (61%) **4j**. Colorless oil. IR (KBr): $\bar{V} = 3055$, 2932, 1630, 1456, 1321, 1207, 640. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 0.13$ (9 H, s, 3 Me), 6.49 (1 H, s, CH), 7.40 (2 H, d, ³J = 7.7 Hz, 2 CH), 7.52 (2 H, t, ³J = 7.7 Hz, 2 CH), 7.61 (1 H, t, ³J = 7.7 Hz, CH). ¹³C NMR (125.7 MHz, CDCl₃): 2.1 (3 Me), 117.3 (CH), 127.6 (CH), 128.9 (2 CH), 129.4 (2 CH), 131.8 (C), 134.5 (C), 173.3 (C). EI-MS (70 eV): m/z (%) = 249 (M⁺, 3), 176 (19), 173 (24), 157 (83), 100 (69), 85 (81), 77 (100). Anal. Calcd (%) for C₁₂H₁₅NOSSi (249.40): C, 57.79, H, 6.06, N, 5.62, S, 12.85, Si, 11.26. Found: C, 57.92, H, 6.23, N, 5.45, S, 12.96, Si, 11.35.

4-(tert-Butyl)-3-(p-tolyl)thiazol-2(3H)-one (4k)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 5/1, $R_{\rm f}$: 0.35) affording 0.18 g (75%) **4k**. Colorless oil. IR (KBr): $\bar{V} = 3051$, 2937, 1636, 1476, 1236, 1092. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 1.35$ (9 H, s, 3 Me), 2.42 (3 H, s, Me), 6.15 (1 H, s, CH), 7.23 (2 H, d, ³J = 7.1 Hz, 2 CH), 7.29 (2 H, d, ³J = 7.1 Hz, 2 CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 23.6$ (Me), 35.2 (3 Me), 43.5 (C), 98.5 (CH), 128.3 (2 CH), 129.5 (2 CH), 130.2 (C), 138.5 (C), 165.9 (C), 174.1 (C). EI-MS (70 eV): m/z (%) = 247 (M⁺, 1), 190 (56), 176 (40), 156 (23), 141 (34), 100 (83), 91 (51), 85 (86), 57 (100). Anal. Calcd (%) for C₁₄H₁₇NOS (247.36): C, 67.98, H, 6.93, N, 5.66, S, 12.96. Found: C, 67.82, H, 6.81, N, 5.80, S, 13.11.

4-(tert-Butyl)-3-(4-methoxyphenyl)thiazol-2(3H)-one (41)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 4/1, $R_{\rm f}$: 0.40) affording 0.20 g (77%) **41**. Yellow oil. IR (KBr): $\bar{V} = 3044$, 2966, 1641, 1511, 1470, 1232, 1176. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 1.37$ (9 H, s, 3 Me), 3.90 (3 H, s, OMe), 6.22 (1 H, s, CH), 7.04 (2 H, d, ³J = 7.1 Hz, 2 CH), 7.21 (2 H, d, ³J = 7.1 Hz, 2 CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 33.8$ (3 Me), 41.9 (C), 56.2 (OMe), 96.5 (CH), 115.3 (2 CH), 126.2 (C), 129.1 (2 CH), 160.2 (C), 166.3 (C), 173.5 (C). EI-MS (70 eV): m/z (%) = 263 (M⁺, 1), 206 (41), 156 (25), 192 (66), 107 (94), 100 (42), 85 (37), 77 (68), 57 (100). Anal. Calcd (%) for C₁₄H₁₇NO₂S (263.36): C, 63.85, H, 6.51, N, 5.32, S, 12.17. Found: C, 63.73, H, 6.68, N, 5.48, S, 12.34.

4-(tert-Butyl)-3-(4-chlorophenyl)thiazol-2(3H)-one (4 m)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 5/1, $R_{\rm f}$: 0.19) affording 0.23 g (87%) **4 m**. Pale yellow oil. IR (KBr): $\bar{V} = 3029$, 2953, 1632, 1478, 1234, 1131, 810. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 1.40$ (9 H, s, 3 Me), 6.19 (1 H, s, CH), 7.37 (2 H, d, ³J = 7.6 Hz, 2 CH), 7.46 (2 H, d, ³J = 7.6 Hz, 2 CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 35.2$ (3 Me), 43.2 (C), 98.2 (CH), 128.7 (2 CH), 129.4 (C), 132.5 (2 CH), 135.7 (C), 166.1 (C), 173.9 (C). EI-MS (70 eV): m/z (%) = 267 (M⁺, 1), 211 (34), 196 (78), 156 (19), 111 (65), 100 (87), 85 (56), 57 (100). Anal. Calcd (%) for C₁₃H₁₄ClNOS (267.77): C, 58.31, H, 5.27, N, 5.23, S, 11.97, Cl, 13.24. Found: C, 58.44, H, 5.30, N, 5.12, S, 12.08, Cl, 13.30.

Methyl 4-(4-(*tert-butyl*)-2-oxothiazol-3(2H)-yl)benzoate (**4n**)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 4/1, R_f : 0.38) affording 0.21 g (71%) **4n**. Colorless oil. IR (KBr): $\bar{V} = 3055$, 2976, 1736, 1646, 1466, 1324, 1255, 1123. ¹H NMR (500.1 MHz, CDCl₃): $\delta_H = 1.41$ (9 H, s, 3 Me), 3.95 (3 H, s,

10 🕞 F. HEYDARI-MOKARRAR ET AL.

OMe), 6.25 (1 H, s, CH), 7.31 (2 H, d, ${}^{3}J = 7.5$ Hz, 2 CH), 7.90 (2 H, d, ${}^{3}J = 7.5$ Hz, 2 CH). 13 C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 35.2$ (3 Me), 42.5 (C), 53.7 (OMe), 99.5 (CH), 126.8 (2 CH), 127.9 (C), 132.6 (2 CH), 138.5 (C), 166.1 (C), 167.4 (C), 173.8 (C). EI-MS (70 eV): m/z (%) = 291 (M⁺, 1), 260 (11), 156 (38), 105 (91), 100 (73), 85 (53), 57 (100). Anal. Calcd (%) for C₁₅H₁₇NO₃S (291.37): C, 61.83, H, 5.88, N, 4.81, S, 11.00. Found: C, 61.67, H, 5.72, N, 4.97, S, 11.13.

4-(tert-Butyl)-3-(4-nitrophenyl)thiazol-2(3H)-one (4o)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 2/1, $R_{\rm f}$: 0.43) affording 0.14 g (49%) **40**. Yellow solid, m.p = 132-134 °C. IR (KBr): \bar{V} = 3016, 2942, 1633, 1531, 1340, 1252, 1131. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H}$ = 1.43 (9 H, s, 3 Me), 6.22 (1 H, s, CH), 7.86 (2 H, d, ³*J* = 7.8 Hz, 2 CH), 8.33 (2 H, d, ³*J* = 7.8 Hz, 2 CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C}$ = 35.8 (3 Me), 42.9 (C), 97.2 (CH), 123.6 (2 CH), 131.8 (2 CH), 140.2 (C), 145.8 (C), 168.2 (C), 175.2 (C). EI-MS (70 eV): m/z (%) = 278 (M⁺, 1), 222 (35), 207 (13), 156 (52), 100 (86), 85 (61), 57 (100). Anal. Calcd (%) for C₁₃H₁₄N₂O₃S (278.33): C, 56.10, H, 5.07, N, 10.07, S, 11.52. Found: C, 56.24, H, 5.19, N, 10.22, S, 11.44.

4-(tert-Butyl)-3-cyclohexylthiazol-2(3H)-one (4p)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 5/1, $R_{\rm f}$: 0.21) affording 0.19 g (79%) of **4p**; Colorless oil. IR (KBr): $\bar{V} = 3008$, 2967, 1632, 1456, 1246, 1132. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 1.36$ (9 H, s, 3 Me), 1.40-1.95 (10 H, m, 5 CH₂), 3.72-3.77 (1 H, m, CH), 6.12 (1 H, s, CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 26.8$ (CH₂), 29.1 (2 CH₂), 34.7 (3 Me), 36.3 (2 CH₂), 42.1 (C), 70.2 (CH), 101.1 (CH), 160.6 (C), 177.8 (C). EI-MS (70 eV): m/z (%) = 239 (M⁺, 1), 182 (34), 156 (58), 100 (78), 85 (56), 83 (87), 57 (100). Anal. Calcd (%) for C₁₃H₂₁NOS (239.38): C, 65.23, H, 8.84, N, 5.85, S, 13.39. Found: C, 65.11, H, 8.67, N, 5.73, S, 13.53.

4-(tert-Butyl)-3-isopropylthiazol-2(3H)-one (4q)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 5/1, $R_{\rm f}$: 0.32) affording 0.15 g (75%) of **4q**; Colorless oil. IR (KBr): $\bar{V} = 3029$, 2943, 1639, 1435, 1251, 1126. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 1.40$ (9 H, s, 3 Me), 1.52 (6 H, d, ³*J* = 5.6 Hz, 2 Me), 4.55-4.60 (1 H, m, CH), 6.17 (1 H, s, CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 23.6$ (2 Me), 34.9 (3 Me), 43.1 (C), 66.7 (CH), 103.2 (CH), 159.2 (C), 176.8 (C). EI-MS (70 eV): m/z (%) = 199 (M⁺, 1), 156 (31), 140 (78), 122 (30), 100 (81), 85 (52), 57 (100). Anal. Calcd (%) for C₁₀H₁₇NOS (199.31): C, 60.26, H, 8.60, N, 7.03, S, 16.09. Found: C, 60.41, H, 8.47, N, 7.19, S, 16.24.

S-(*phenylethynyl*) *phenylcarbamothioate* (5)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 3/1, $R_{\rm f}$: 0.26) affording 0.23 g (91%) of **5**; Colorless solid, m.p = 101-103 °C. IR (KBr): $\bar{V} = 3361, 3046, 2971, 1630, 1252, 1072.$ ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 7.11$ (1 H, t, ${}^{3}J = 7.7$ Hz, CH), 7.27 (2 H, t, ${}^{3}J = 7.7$ Hz, 2 CH), 7.36-7.44 (3 H, m, 3 CH), 7.49 (2 H, d, ${}^{3}J = 7.1$ Hz, 2 CH), 7.65 (2 H, d, ${}^{3}J = 7.7$ Hz, 2 CH), 8.51 (1 H, br s, NH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 81.1$ (C), 94.3 (C), 119.1 (2 CH), 123.5 (C), 127.3 (CH), 127.9 (CH), 129.1 (2 CH), 129.7 (2 CH), 133.7 (2 CH), 137.7 (C), 167.4 (C). Anal. Calcd (%) for C₁₅H₁₁NOS (253.32): C, 71.12, H, 4.38, N, 5.53, S, 12.66. Found: C, 71.24, H, 8.21, N, 5.70, S, 12.47.

2-Benzylidene-4-phenyl-1,3-dithiole (7)

The crude product was purified by column chromatography (SiO₂; Hexane/EtOAc 12/1, $R_{\rm f}$: 0.31) affording 0.32 g (76%) of 7. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H} = 6.47$ (1 H, s, CH), 6.78 (1 H, s, CH), 7.25 (1 H, t, ³J = 7.7 Hz, CH), 7.30 (1 H, t, ³J = 7.0 Hz, CH), 7.42-7.50 (6 H, m, 6 CH), 7.67 (2 H, d, ³J = 7.0 Hz, 2 CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C} = 116.3$ (CH), 121.1 (CH), 126.8 (CH), 127.4 (CH), 128.5 (2 CH), 129.1 (2 CH), 129.6 (2 CH), 130.3 (2 CH), 135.9 (C), 137.3 (C), 140.1 (C), 143.8 (C). Anal. Calcd (%) for C₁₆H₁₂S₂ (363.41): C, 71.60, H, 4.51, S, 23.89. Found: C, 71.78, H, 4.63, S, 23.72.

References

- Gao K, Wu J. Synthesis of Functionalized 1,2-Dihydroisoquinolines via Multicomponent One-Pot Reaction of 2-Alkynylbenzaldehyde, Amine, Zinc, and Allylic Bromide or BenzylBromide. J. Org. Chem. 2007;72:8611–8613.
- [2] Evano G, Blanchard N, Toumi M. Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis. Chem. Rev. 2008;108:3054–3131.
- [3] Potuganti GR, Indukuri DR, Nanubolu JB, et al. Copper-catalyzed Domino Addition, Hydroamination and Cyclization: A Multicomponent Approach to Spiro Oxazolidinone Derivatives. J. Org. Chem. 2018;83:15186–15190.
- [4] Yang T, Lin C, Fu H, et al. Copper-Catalyzed Synthesis of Medium and Large-Sized Nitrogen Heterocycles via N-Arylation of Phosphoramidates and Carbamates. Organic Lett. 2005;7:4781–4784.
- [5] Guo XX, Gu DW, Wu Z, et al. Copper-Catalyzed C–H Functionalization Reactions: Efficient Synthesis of Heterocycles. Chem. Rev. 2015;11:1622–1651.
- [6] Ghazanfarpour-Darjani M, Babapour-Kooshalshahi M, Mousavi-Safavi SM, et al. Copper-Catalyzed Domino Addition-Cyclization Reaction between Terminal Alkynes, Carbon Disulfide, and Oxiranes. Synlett. 2016;27:259–261.
- [7] Samzadeh-Kermani A. Silver Salt Catalyzed Synthesis of 1,4-Oxathian-3-imine Derivatives. Tetrahedron. 2016;72:5301–5303.
- [8] Samzadeh-Kermani A, Ghasemi S. A Catalytic Route to Pyrrole Derivatives via Coppercatalyzed Multicomponent Reaction. J. Het. Chem. 2019;56:2202–2209.
- [9] Meldal M, Tornøe CW. Cu-Catalyzed Azide-Alkyne Cycloaddition. Chem. Rev. 2008;108: 2952–3015.
- [10] Ranjan A, Mandal A, Yerande SG, et al. Asymmetric Alkynylation/Hydrothiolation Cascade: Enantioselec tive Synthesis of Thiazolidine-2-imines from Imine, Acetylene and Isothiocyanate. Chem. Commun. 2015;51:14215–14219.
- [11] Knöpfel TF, Carreira EM. The First Conjugate Addition Reaction of Terminal Alkynes Catalytic in Copper: Conjugate Addition of Alkynes in Water. J. Am. Chem. Soc. 2003;125:6054–6055.
- [12] Varmazyar A, Nozad Goli-Kand A, Sedaghat S, et al. Copper Salt Catalyzed Synthesis of Functionalized 2H-Pyranes. J. Heterocyclic Chem. 2019;56:1850–1856.
- [13] Varmazyar A, Nozad Goli-Kand A, Sedaghat S, Khalaj M, Arab-Salmanabadi S. Domino ring opening/cyclization of oxiranes for synthesis of functionalized 2H-pyran-5-carboxylate. 2019...
- [14] Li C, Mo F, Li W, et al. AuPPh₃Cl/AgOTf-catalyzed reaction of terminal alkynes: nucleophilic addition to activated CO bond. Tetrahedron Letters. 2009;50:6053–6056.
- [15] Dorel R, Echavarren AM. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015;115:9028–9072.
- [16] Mayer R, Gewald K. The Action of Carbon Disulfide and Sulfur on Enamines. Ketimines, and CH Acids. Angew. Chem. internat. Edit. 1967;6:294–306.
- [17] Khalaj M, Sadeghpour M, Mousavi Safavi SM, et al. Copper-catalyzed synthesis of thiazolidine derivatives via multicomponent reaction of terminal alkynes, elemental sulfur, and aziridines. Monatshefte für Chemie – Chemical Monthly. 2019;150:1085–1091.

12 🕞 F. HEYDARI-MOKARRAR ET AL.

- [18] Samzadeh-Kermani A. A Novel Three-Component Reaction Involving Terminal Alkynes, Elemental Sulfur, and Strained Heterocycles. Synlett. 2015;26:643–645.
- [19] Jin Q, Fu Z, Guan L, et al. Syntheses of Benzo[d]Thiazol-2(3H)-One Derivatives and Their Antidepressant and Anticonvulsant Effects. Mar. Drugs. 2019;17:430–439.
- [20] Wang S, Chen Y, Zhao S, et al. Synthesis and biological evaluation of a series of benzoxazole/benzothiazole-containing 2,3-dihydrobenzo[b][1,4] dioxine derivatives as potential antidepressants. Bioorg. Med. Chem. Lett. 2014;24:1766–1770.
- [21] Liu DC, Zhang HJ, Jin CM, et al. Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticonvulsant agents. Molecules. 2016;21:1635–1652.
- [22] Nicolaou KC, Yin J, Mandal D, et al. Total Synthesis and Biological Evaluation of Natural and Designed Tubulysins. J. Am. Chem. Soc. 2016;138:698–1708.
- [23] Wilson ZE, Fenner S, Ley SV. Total syntheses of linear polythiazole/oxazole plantazolicin A and its biosynthetic precursor plantazolicin B. Angew. Chem. Int. Ed. 2015;54:1284–1288.
- [24] Fürstner A, Langemann K. Total Syntheses of (+)-Ricinelaidic Acid Lactone and of (-)-Gloeosporone Based on Transition-Metal-Catalyzed C-C Bond Formations. J. Am. Chem. Soc. 1997;119:9130-9136.
- [25] Rist Q, Grimstrup M, Receveur JM, et al. Novel selective thiazoleacetic acids as CRTH2 antagonists developed from in silico derived hits. Part 1. Bioorganic & Medicinal Chemistry Letters. 2010;20:1177–1180.
- [26] Wipf P, Venkatraman S. A New Thiazole Synthesis by Cyclocondensation of Thioamides and Alkynyl(Aryl)Iodonium Reagents. J. Org. Chem. 1996;61:8004–8005.
- [27] Weiß KM, Wei S, Tsogoeva SB. Novel one-pot process for the synthesis of 1,3-thiazoles*via* organocatalysed epoxidation of nitro-olefins. Org. Biomol. Chem. 2011;9:3457–3461.
- [28] Ghazanfarpour-Darjani M, Khodakarami A. Organocatalytic one-pot synthesis of functionalized 1,3-oxathiolanes and 1,3-thiazolidines. Monatshefte für Chemie – Chemical Monthly. 2016;147:829–835.
- [29] Alizadeh-Bami F, Mehrabi H, Ranjbar-Karimi R. One-pot three-component reaction of arylglyoxals with acetylthiourea and Meldrum's acid or barbituric acid for synthesis of new 2-acetamido-4-arylthiazol-5-yl derivatives. Journal of Sulfur Chemistry. 2019;40: 469-478.
- [30] Saroha M, Khurana JM. Acetic acid mediated regioselective synthesis of 2,4,5-trisubstituted thiazoles by a domino multicomponent reaction. New J. Chem. 2019;43:8644–8650.
- [31] Vishwanatha TV, Kurpiewska K, Kalinowska-Tłusćik J, et al. Cysteine Isocyanide in Multicomponent Reaction: Synthesis of Peptido-Mimetic 1,3-Azoles. J. Org. Chem. 2017;82:9585–9594.
- [32] Mahesh TC, Shivani P, Palmi M, et al. Thiazole: A Review on Chemistry, Synthesis and Therapeutic Importance of its Derivatives. Current Topics in Medicinal Chemistry. 2016;16:2841–2862.
- [33] Nguyen TB, Retailleau P. Sulfur-Promoted Decarboxylative Sulfurative Hexamerization of Phenylacetic Acids: Direct Approach to Hexabenzylidyne Tetrasulfides. Org. Lett. 2019;21:279–282.
- [34] Nguyen TB, Retailleau P. Cooperative Activating Effect of Tertiary Amine/DMSO on Elemental Sulfur: Direct Access to Thioaurones from 2'-Nitrochalcones under Mild Conditions. Org. Lett. 2018;20:186–189.
- [35] Nguyen TB, Retailleau P. Sulfurative self-condensation of ketones and elemental sulfur: a threecomponent access to thiophenes catalyzed by aniline acid–base conjugate pairs. Green Chem. 2018;20:387–390.
- [36] Nguyen TB, Retailleau P. DIPEA-Promoted Reaction of 2-Nitrochalcones with Elemental Sulfur: An Unusual Approach to 2-Benzoylbenzothiophenes. Org. Lett. 2017;19:4858–4860.
- [37] Nguyen LA, Ngo QA, Retailleauc P, et al. Elemental sulfur as a polyvalent reagent in redox condensation with o-chloronitrobenzenes and benzaldehydes: three-component access to 2arylbenzothiazoles. Green Chem. 2017;19:4289–4293.
- [38] Nguyen TB. Recent Advances in Organic Reactions Involving Elemental Sulfur. Adv. Synth. Catal. 2017;359:1066–1130.

- [39] Nguyen TB, Pasturaud K, Ermolenko L, et al. Concise Access to 2-Aroylbenzothiazoles by Redox Condensation Reaction between o-Halonitrobenzenes, Acetophenones, and Elemental Sulfur. Org. Lett. 2015;17:2562–2565.
- [40] Samzadeh-Kermani A. Copper Catalyzed Synthesis of Thiomorpholine Derivatives: A New Entry of Multicomponent Reaction Between Terminal Alkynes, Isothiocyanates, and Aziridines. J. Het. Chem. 2019;56:450–455.
- [41] Samzadeh-Kermani A. Silver Iodide Catalyzed Three-Component Reaction between Terminal Alkynes, Carbon Disulfide, and Aziridines. Journal of Sulfur Chemistry. 2019;40:554–564.