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Enhanced anti-influenza A virus activity of (�)-epigallocatechin-
3-O-gallate fatty acid monoester derivatives:

Effect of alkyl chain length
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Abstract—A series of fatty acid monoester derivatives of (�)-epigallocatechin-3-O-gallate (EGCG) were prepared by one-pot lipase-
catalyzed transesterification. The introduction of long alkyl chains enhanced anti-influenza A/PR8/34 (H1N1) virus activity 24-fold
relative to native EGCG.
� 2008 Elsevier Ltd. All rights reserved.
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Figure 1. Structure of EGCG (1) and EGCG-peracetate (2).
A major polyphenol component of green tea, (�)-epigal-
locatechin-3-O-gallate (EGCG; 1), has received much
attention due to its various biological activities such as
antiviral,1 antimicrobial,2 and anticancer.3 In particular,
the anti-influenza activity of 1 has been investigated by
several groups;1a–c the results show that 1 has the most
potent antiviral activity among tea polyphenols. How-
ever, relatively high concentrations of 1 were required
to observe significant antiviral activity, probably due
to the compound’s poor lipid membrane permeability,4

low chemical stability,5 and rapid metabolism.5

Several strategies for increasing these biological proper-
ties have been investigated. For example, the introduc-
tion of alcoxyl groups to 1 improved lipid-membrane
permeability4 and metabolic stability,6 and peracetyla-
tion of 1 (Fig. 1) increased its chemical stability under
physiological conditions.7 Furthermore, the elimination
of hydroxyl groups from the A-ring of 1 moderately en-
hanced anti-influenza virus activity.8
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We hypothesized that the introduction of straight-chain
fatty acids to the phenolic hydroxyl groups of 1 would
further enhance its anti-influenza virus activity.

A series of EGCG fatty acid monoester derivatives (3–7)
were prepared by lipase-catalyzed transesterification
(Scheme 1). EGCG-monoesters modified with butanoyl,
octanoyl, lauroyl, palmitoyl, and eicosanoyl groups are
represented as EGCG-C4, EGCG-C8, EGCG-C12,
EGCG-C16, and EGCG-C20, respectively. Although 1
has been reported to interfere with the catalytic activity
of lipases,9 we succeeded in preparing 3–7 by lipase-cat-
alyzed transesterification in polar organic solvents such
as N,N-dimethylformamide or acetonitrile.10,11 In con-
trast, the transesterification did not proceed in nonpolar
organic solvents such as tetrahydrofuran or diisopropy-
lether. The key to success with this approach might be
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Scheme 1. Preparation of EGCG monoester derivatives by lipase-catalyzed transesterifications.
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enhancement of the conformational flexibility of the
lipase and elimination of nonspecific interactions
between the lipase and 1 in polar organic solvents.
Our lipase method affords 3–7 in 35–39% yield, whereas
a conventional chemical method12 affords them in less
than 23% yield. As shown in Scheme 1, EGCG-monoes-
ters (3–7) are composed of a mixture of four regioisom-
ers, each with acyl groups at either the meta-position or
para-position of the B- or D-ring. We confirmed the
ratio of each EGCG-monoester regioisomer by 1H
NMR spectroscopy; the results are summarized in Table
1. Interestingly, this lipase-catalyzed method afforded
B-ring modified esters as the major products, whereas
the conventional chemical method afforded D-ring mod-
ified esters as the major products. The purification of
each regioisomer was not accomplished as they have
very similar chemical properties. However, the lipase
method afforded EGCG-monoesters in a consistent
ratio of regioisomers, regardless of the alkyl chain length
(Table 1).

We investigated the antiviral protective effects of 1,
EGCG-peracetate (2),13 and EGCG-monoesters (3–7)
against influenza A/PR8/34 (H1N1) infection in MDCK
cells. Briefly, a monolayer of MDCK cells was transfec-
ted with 1–7 2 h prior to infection with the virus. The
cell monolayer was rinsed to remove remaining EGCG
derivative in the cell culture medium, then the virus
was introduced. The antiviral activities of each sample
were assessed by the plaque formation assay.14
Table 1. Mixture ratio of regioisomers in EGCG monoester deriva-

tives prepared by lipase-catalyzed transesterifications

Compound Regioisomer ratio B/Da

EGCG-C4 3a:3b:3c:3d 35:44:8:12 79/21

EGCG-C8 4a:4b:4c:4d 35:39:6:20 74/26

EGCG-C12 5a:5b:5c:5d 30:39:9:22 69/31

EGCG-C16 6a:6b:6c:6d 38:35:7:20 73/27

EGCG-C20 7a:7b:7c:7d 38:36:8:19 73/27

EGCG-C16Chem
b 6a:6b:6c:6d 20:18:18:44 38/62

a Ratio of B- and D-ring modified EGCG monoester derivatives.
b Prepared by a conventional chemical method.
All compounds (1–7) inhibited virus infection in a dose-
dependent manner (Fig. 2). The EC50 values of each
compound are summarized in Table 2 (cell-based antivi-
ral effect) and show that the antiviral activities of
EGCG-monoesters were enhanced in an alkyl chain
length-dependent manner. In particular, the EC50 of
EGCG-C16 was approximately 4 lM and its inhibitory
effect was 24-fold higher than 1. This remarkable
enhancement in antiviral activity can be attributed to
the high efficiency of cellar uptake of EGCG-C16 as a
result of its improved cell membrane permeability. In
contrast, EGCG-C20 and EGCG-peracetate exhibited
lower antiviral activities compared to EGCG-C16, pre-
sumably due to decreased water solubility resulting from
their increased hydrophobicity.

The antiviral activity of EGCG-monoesters may vary
depending on the position of the acyl groups. Therefore
we prepared mixtures of EGCG-monopalmitate, com-
posed of four regioisomers (6a–d) in different propor-
tions, by both the lipase-catalyzed (EGCG-C16) and
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Figure 2. Inhibitory effects of EGCG monoester derivatives prepared

by lipase-catalyzed transesterification on plaque formation in the cell

based inhibition assay. Each data point represents the mean ± SD

from at least three independent experiments.



Table 2. Anti-influenza effects and cytotoxicities of EGCG derivatives

Entry CC50
a (lM) Cell-based antiviral effect Direct antiviral effect

EC50
b (lM) SIc EC50

b (lM) SIc

EGCG 275.0 (±6.0) 94.60 (±11.10) 2.91 0.3910 (±0.0560) 703

EGCG-C4 309.0 (±4.0) 63.70 (±10.10) 4.85 0.8320 (±0.0910) 363

EGCG-C8 195.0 (±9.0) 39.00 (±3.10) 5.01 0.6200 (±0.0910) 276

EGCG-C12 42.0 (±3.9) 5.81 (±0.87) 7.23 0.1180 (±0.0230) 353

EGCG-C16 86.2 (±12.5) 4.02 (±0.48) 21.40 0.0204 (±0.0069) 4230

EGCG-C20 318.0 (±55.0) 66.90 (±8.30) 4.75 2.2500 (±0.1900) 127

EGCG-peracetate NDd 77.00 (±12.60) — 8.4900 (±3.3500) —

a CC50 represents the concentration of compound required to reduce cell viability by 50% relative to the control well without test compound.
b EC50 represents the concentration of compound required to reduce plaque number by 50% relative to the control well without test compound.
c SI (Selectivity index) is the ratio of CC50 to EC50.
d CC50 of EGCG-peracetate was not determined due to its low water solubility.
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conventional chemical methods (EGCG-C16Chem). The
antiviral activities of these two sets of products were
examined. However, no distinct difference in antiviral
activity was apparent (EC50 of EGCG-C16Chem =
4.12 lM). This result suggested that the position of the
acyl groups of EGCG derivatives does not affect their
antiviral activities.

The cytotoxicities of each EGCG derivative to MDCK
cells, given as CC50, are summarized in Table 2.15

EGCG-C12 and EGCG-C16 exhibited relatively higher
cytotoxicities than other derivatives. However, their
antiviral activities were significantly enhanced and there-
by resulted in increased selectivity index values.

In addition, we studied the direct interaction between
EGCG derivatives and influenza viral particles.16 Each
EGCG derivative was incubated with influenza virus
solution for 30 min prior to infection, followed by the
post-inoculation procedure described above. All com-
pounds inhibited virus infection at much lower concen-
trations compared to the CC50 and the EC50 obtained
from the cell-based antiviral assay (Table 2, direct anti-
viral effect). Interestingly, EGCG-C12 and -C16 also
exhibited remarkable enhancement of their direct anti-
viral effect in a manner similar to their cell-based anti-
viral effect. To clarify if these enhanced antiviral effects
were simply brought about by their detergent effects,
we investigated the antiviral effect of conventional
non-ionic detergents, n-dodecyl-b-DD-maltoside and sor-
bitan monopalmitate. However, both detergents did
not exhibit apparent direct antiviral effects up to
10 lM (data not shown). A possible mechanism to ex-
plain the enhanced antiviral effect of EGCG derivatives
is that the acyl portion increases the accessibility of
EGCG to the viral membrane as well as the cell
membrane.

In conclusion, we prepared a series of EGCG fatty acid
monoester derivatives using lipase-catalyzed transesteri-
fication and demonstrated that the introduction of long
acyl groups, such as lauroyl or palmitoyl, to EGCG
drastically enhanced its anti-influenza virus activity.
Our simple and robust methodology should expand
the utility of EGCG, an abundant natural tea ingredi-
ent, as a novel anti-influenza agent.
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