

WILEY-VCH

Room Temperature Ni(0)/PCy₃-Catalyzed Coupling Reactions of Aryl Arenesulfonates with Bis(pinacolato)diboron

Jie Dong,^[a] Hui Guo^[a] and Qiao-Sheng Hu*^[a]

Abstract: Room temperature Ni(0)/PCy₃-catalyzed cross-coupling reactions of aryl arenesulfonates with bis(pinacolato)diboron are described. The Ni(0)/PCy₃ catalysts, generated from Ni(COD)₂ and PCy₃, or air-stable 4-MeOC₆H₄Ni(II)(PCy₃)₂OTs, were efficient catalyst systems for the Miyaura borylation reactions of a variety of aryl arenesulfonates with bis(pinacolato)diboron. The mild reaction condition, the easy availability of the catalysts and good yields make these reactions potentially useful in organic synthesis.

Introduction

Arylborons have been extensively employed for bond-forming reactions including the Suzuki cross-coupling reaction.¹ In the past decades, transition metal-catalyzed coupling reactions of aryl (pseudo)halides with diborons has become one of attractive ways for the preparation of arylborons,²⁻⁶ While aryl halides and aryl triflates have been the most common substrates for this borylation reaction, readily available aryl tosylates and mesylates have rarely been used as coupling partners for this reaction.⁷ In the few reports of borylation reaction with aryl tosylates or mesylates as substrates, elevated temperatures, 80 °C or higher, were generally needed for the reaction.⁷

In our laboratory, we have been interested in employing aryl arenesulfonates as reaction partners for transition metalcatalyzed bond-forming reactions, particularly under mild reaction conditions. We have documented room temperature Ni(0)/PCy₃-calayzed cross-coupling reaction of aryl/alkenyl arenesulfonates with arylboronic acids.⁸ The mild reaction condition and our understanding of the reaction mechanism prompted us to wonder whether the borylation reaction of aryl arenesulfonates with diborons could be achieved at room temperature with Ni(0)/PCy₃ as the catalyst. Herein our study on room temperature Ni(0)/PCy₃-catalyzed cross-coupling reactions of aryl arenesulfonates with bis(pinacolato)diboron is reported. **Results and Discussion**

We have previously showed that $Ni(0)/PCy_3$ readily undergoes oxidative addition with aryl tosylates and this step should not be a rate-determining step,^{8c} we reasoned that the transmetalation of ArNi(II)(PCy₃)₂OTs with bis(pinacolato)diboron might likely be the key step for the generation of arylborates. Since the transmetalation step has been reported to be influenced by the base employed,¹ we started our study by examining different bases and our results are listed in Table 1. As KOAc was the best base in reported Pd(OAc)₂/DPPF system,^{3a} KOAc was first tested, but a low conversion was observed (Table 1, entry 1). Other common inorganic bases, K₃PO₄, K₂CO₃, KF and *t*-BuOK, were then tested and K₃PO₄ was found to give a better result (Table 1, entries 2-5). Because the existence of a small amount of water in the reaction system helped Ni(0)/PCy3-catalyzed Suzuki cross-coupling reactions,^{8b} we next examined the reaction with only degassed, but not dried THF, higher conversions were observed except for the reaction with t-BuOK as the base (Table 1, entries 6-10), with K_3PO_4 as the best base (Table 1, entry 7). Two other solvents, toluene and dioxane, were also tested and THF was found to be the best solvent (Table 1, entries 6, 11-12). Reducing the amount of the base hindered the reaction and 3-4 equivalents of base gave the best results (Table 1, entries 13-15). The use of 1.5 equivalents of bis(pinacolato)diboron led to a lower conversion (Table 1, entry 16). As a comparison, the reaction without Ni(COD)₂/PCy₃ was also carried out and no product was observed (Table 1, entry 17).

Table 1. Room Temperature Ni(COD)_2/PCy₃-Catalyzed Borylation Reaction of p-Tolyl Tosylate with Bis(pinacolato)diboron ^a

 Initial(s), Surname(s) of Author(s) including Corresponding Author(s) Department of Chemistry College of Staten Island of the City University of New York Staten Island, New York, 10314 and the Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, New York, NY 10016 E-mail: qiaosheng.hu@csi.cuny.edu

Supporting information for this article is given via a link at the end of the document.

WILEY-VCH

\neg	$\rightarrow OTs + OB - BOC + SOC + OCS + OCS$	1000000000000000000000000000000000000	$ = -B_{O}^{O} + $
Entry	Base	Solvent Conv	version (%)
1	KOAc (3 equiv.)	THF (dried & degassed)	6
2	K ₃ PO ₄ (3 equiv.)	THF (dried & degassed)	33
3	K ₂ CO ₃ (3 equiv.)	THF (dried & degassed)	6
4	KF (3 equiv.)	THF (dried & degassed)	13
5	KO-t-Bu (3 equiv.)	THF (dried & degrassed)	0
6	KOAc (3 equiv.)	THF (degassed)	10
7	K ₃ PO ₄ (3 equiv.)	THF (degassed)	77
8	K ₂ CO ₃ (3 equiv.)	THF (degassed)	23
9	KF (3 equiv.)	THF (degassed)	29
10	KO-t-Bu (4 equiv.)	THF (degassed)	0
11	K ₃ PO ₄ (3 equiv.)	Toluene (degassed)	12 ^c
12	K ₃ PO ₄ (3 equiv.)	Dioxane (degassed)	44 ^c
13	K ₃ PO ₄ (1 equiv.)	THF (degassed)	18 ^c
14	K ₃ PO ₄ (2 equiv.)	THF (degassed)	47.5 ^c
15	K ₃ PO ₄ (4 equiv.)	THF (degassed)	95
16	K ₃ PO ₄ (4 equiv.)	THF (degassed)	46 ^d
17	K ₃ PO ₄ (4 equiv.)	THF (degassed)	0 ^e

b

a. Reaction conditions: to sylate (1.0 equiv.), diboron (3.0 equiv.), $\mathrm{Ni}(\mathrm{COD})_2$

(5 mol%), PCy3 (20 mol%), base (1-4 equiv.), THF (2 mL), room temperature. b. Conversions based on ¹H NMR analysis. c. Ground base was used. d. 1.5 equiv. of

diboron was used, e. 0% of Ni(COD)/PCv3was used.

By using 4 equivalents of K_3PO_4 as the base and degassed THF as the solvent, we next examined a variety of aryl tosylates for the room temperature Ni(0)/PCy₃-catalyzed borylation reaction. Our results are summarized in Table 2. As shown in Table 2, the Ni(COD)₂/PCy₃ system was found to be a general catalyst for both activated and deactivated aryl tosylates, including those with *ortho*-, *meta*- and *para*-substituents. Complete conversions and good isolated yields were observed for all aryl arenesulfonates employed (Table 2, entries 1-14). Aryl benzenesulfonates were also found to be suitable substrates for the reaction and good yields were observed (Table 2, entry 15-17). An aryl mesylate was observed to be less reactive than aryl tosylates, and the reaction involving it as the coupling partner required longer reaction time to go to completion (Table 2, entry 18).

Table 2. Room Temperature Ni(COD)_2/PCy_3-Catalyzed Borylation Reaction of Aryl Arenesufonates with Bis(pinacolato)diboron $^{\rm a}$

4=-080	$\rightarrow 0$ $0 \neq 3\%$ Ni(0	3%Ni(COD) ₂ /12% PCy ₃ 0 /	
Ar-OSC	$V_2 A r + O O O K_3 PO$	AI -B. O	
Entry	Ar-OSO ₂ Ar'	Yield (%) ^b	
1	- $OTs(1a)$	87	
2	OTs (1b)	85	
3	MeO - OTs (1c)	88	
4	OTs (1d)	79 ^c	
5	$\rightarrow OTs$ (1e)	82	
6	\sim OTs(1f)	87	
7	O - O - OTs (1g)	90	
8	OT_{a}	83	
9		82 ^c	
10	O O $OTs(1j)$	87	
11	$Ph - OTs(\mathbf{1k})$	85	
12	$F_{3}C$ (11)	87	
13	MeO_2C $OTs^{(1m)}$	88	
14	$\frac{\text{MeO}_2\text{C}}{\text{MeO}} \rightarrow \text{OTs}^{(1n)}$	85	
15		80	
16	SOSO ₂ Ph (1p)	77	
17	$MeO - OSO_2Ph$ (1q)	82	
18	-OMs (1r)	73 ^c	

a. Reaction conditions: aryl sulfonates (0.2 mmol), bis(pinacolato)diboron (3 equiv.), K₃PO₄ (4 equiv.), THF (1 mL), room temperature. b. Isolated yields. c. Reaction time: 24 h.

As Ni(COD)₂/PCy₃, especially Ni(COD)₂, are very air-sensitive, we wondered whether air-stable Ni(II) complexes could be employed as operationally convenient catalysts for this Miyaura borylation reaction. Because 4-MeOC₆H₄Ni(II)(PCy₃)₂OTs, the oxidative addition adduct of 4-MeOC₆H₄OTs with Ni(COD)₂/PCy₃, is readily accessible and air-stable, and has been established as Ni(0)/PCy₃ source for the cross-coupling reactions of aryl acids,8 arylboronic arenesulfonates with 4-MeOC₆H₄Ni(II)(PCy₃)₂OTs naturally emerged as our choice for this exploration. We found that by using 4-MeOC₆H₄Ni(II)(PCy₃)₂OTs as the catalyst, the cross-coupling reactions of aryl arenesulfonates with bis(pinacolato)diboron occurred smoothly and good to high yields were obtained (Table 3). These results suggested that 4-MeOC₆H₄Ni(II)(PCy₃)₂OTs as well as its analogs could be an operationally convenient substitute for the Ni(COD)₂/PCy₃ catalyst system for the room temperature cross-coupling reactions of aryl arenesulfonates with bis(pinacolato)diboron.

Table 3. Room Temperature 4-MeOC_6H_4Ni(II)(PCy_3)_2OTs-Catalyzed Cross-Couplings of Aryl Arenesulfonates with Bis(pinacolato)diboron $^{\rm a}$

Ar-OSO	$_{2}\text{Ar'}$ + 0 $_{O}\text{B}$ -B $_{O}$ + $\frac{5\% 4 \cdot \text{MeOC}_{e}\text{H}_{4}\text{Ni}(II)(\text{PC})}{K_{3}\text{PO}_{4}, \text{THF},}$ r, 12-24 h	$Ar = B_0^{O}$
Entry	Ar-OSO ₂ Ar'	Yield (%) ^b
1		89
2	OTs (1b)	87
3	$MeO \langle - \rangle OTs (1c)$	95
4	\bigcirc -OTs (1d)	72
5	\rightarrow -OTs (1e)	80
6	\sim OTs(1f)	86
7	$0 \rightarrow 0 \text{ or } 1g$	81
8	$OTs(\mathbf{lh})$	81
9	OTs (1i)	83 ^c
10	O O $OTs(1j)$	81
11	Ph = O OTs(1k)	79
12	\sim OTs (1m)	78
13	$\frac{\text{MeO}_2\text{C}}{\text{MeO}} - \frac{1}{\sqrt{2}} - OTs(1n)$	80
14	$\frac{\text{MeO}_2\text{C}}{\text{OTs}(10)}$	77
15		78
16	∠>OSO ₂ Ph (1q)	79
17	$MeO \sim OSO_2 Ph$ (1r)	92
18	- OMs (1s)	70 ^c

a. Reaction conditions: aryl sulfonates (0.2 mmol), bis(pinacolato)diboron (3 equiv.), K₃PO₄ (4 equiv.), THF (1 ml), room temperature. b. Isolated yields. c. Reaction time: 48 hours.

Conclusions

We have demonstrated that room temperature Miyaura borylation reaction of readily available aryl arenesulfonates with bis(pinacolato)diboron occurred smoothly with the Ni(0)/PCy₃ catalyst system. Ni(COD)₂/PCy₃ was found to be an efficient catalyst system for the Miyaura borylation reactions of a variety of aryl arenesulfonates with bis(pinacolato)diboron. To circumvent the air-sensitivity issue associated with the Ni(COD)₂/PCy₃ catalyst system, we explored to use air-stable 4-MeOC₆H₄Ni(II)(PCy₃)₂OTs, the oxidative addition adduct of Ni(COD)₂/PCy₃ with 4-MeOC₆H₄OTs, as the catalyst for the borylation reaction. We found 4-MeOC₆H₄Ni(II)(PCy₃)₂OTs was as efficient as Ni(COD)₂/PCy₃. The mild reaction condition, the easy availability of the catalyst systems, and good coupling yields make this Ni(0)/PCy3-catalyzed borylation reaction potentially useful in organic synthesis.

Experimental Section

WILEY-VCH

General Procedure for Ni(COD)₂/PCy₃-Catalyzed Cross-Coupling Reactions of Aryl Arenesulfonates with Bis(pinacolato)diboron: In a alovebox with an N₂-atmosphere, to а vial containing bis(pinacolato)diboron (1.5 mmol, 3 equiv.), potassium phosphate (2.0 mmol, 4 equiv.), THF (5 mL), bis(1,5-cyclopentadiene) nickel(0) (0.025 mmol, 5 mol%) and tricyclohexylphosphine (0.1 mmol, 20 mol%), aryl tosylate or aryl benzenesulfonate (0.5 mmol, 1.0 equiv.) was added. The mixture was allowed to react at the room temperature for 6-24 h. After quenching with water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with brine and then evaporated under vacuum. Flash chromatography on silica gel yielded the desired products.

Acknowledgements

We gratefully thank the NSF (CHE01519311) for funding. Partial support from PSC-CUNY Research Award Program is also gratefully acknowledged.

Keywords: aryl arenesulfonates • bis(pinacolato)diboron • nickel(0) • tricyclohexylphosphine • cross-coupling

For recent reviews on Suzuki cross-coupling reactions: a) S. Diez-Gonzalez, N. Marion, S. P. Nolan, *Chem. Rev.* 2009, *109*, 3612–3676.
 b) S. Darses, J.–P. Genet, *Chem. Rev.* 2008, *108*, 288–325. c) L. Yin, J. Liebscher, *Chem. Rev.* 2007, *107*, 133–173. d) N. Miyaura, *Topics in Current Chem.* 2002, *219*, 11-59. e) A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 2002, *41*, 4176-4211. f) Suzuki, A. J. Organomet. Chem. 1999, *576*, 147-168.

[2] For recent reviews on transition metal-catalyzed borylation of aryl halides with diborons: a) E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, T. B. Marder, *Chem. Rev.* **2016**, *116*, 9091-9161. b) W. K. Chow, O. Y. Yuen, P. Y. Choy, C. M. So, C. P. Lau, W. T. Wong, F. Y. Kwong, *RSC Adv.* **2013**, *3*, 12518-12539.

[3] For selected examples of transition metal-catalyzed Miyaura borylation:
a) T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508-7510. b) A. Fürstner, G. Seidel, Org. Lett. 2002, 4, 541-543. c) W. Zhu, D. Ma, Org. Lett. 2006, 8, 261-263. d) K. L. Billingsley, T. E. Barder, S. L. Buchwald, Angew. Chem. Int. Ed., 2007, 46, 5359-5363. e) G. A. Molander, S. L. J. Trice, S. D. Dreher, J. Am. Chem. Soc. 2010, 132, 17701-17703. f) S. Kawamorita, H. Ohmiya, T. Iwai, M. Sawamura, Angew. Chem. Int. Ed. 2011, 50, 8363-8366. g) K. Huang, D.-G. Yu, S.-F. Zheng, Z.-H. Wu, Z.-J. Shi, Chem. Eur. J. 2011, 17, 786-791. h) T. Yamamoto, T. Morita, J. Takagi, T. Yamakawa, Org. Lett. 2011, 13, 5766-5769. i) C. Kleeberg, L. Dang, Z. Lin, T. B. Marder, Angew. Chem. Int. Ed. 2009, 48, 5350-5354. j) G. A. Molander, S. L. J. Trice, S. M. Kennedy, S. D. Dreher, M. T. Tudge, J. Am. Chem. Soc., 2012, 134, 11667-11673. k) W. K. Chow, O. Y. Yuen, C. M. So, W. T. Wong, F. Y. Kwong, J. Org. Chem. 2012, 77, 3543-3548. l) Y. Nagashima, R. Takita, K. Yoshida, K. Hirano, M. Uchiyama, J. Am. Chem. Soc. 2013, 135, 18730-18733; m) F. Labre, Y. Gimbert, P. Bannwarth, S. Olivero, E. Duñach, P. Y. Chavant, Org. Lett. 2014, 16, 2366-2369; n) L. Xu, P. Li, Chem. Commun. 2015, 51, 5656-5659; o) J. Hu, H. Sun, W. Cai, X. Pu, Y. Zhang, Z. J. Shi, J. Org. Chem. 2016, 81, 14-24. p) X. W. Liu, J. Echavarren, C. Zarate, R. Martin, J. Am. Chem. Soc. 2015, 137, 12470-12473; q) P. B. Dzhevakov, M. A. Topchiy, D. A. Zharkova, O. S. Morozov, A. F. Asachenko, M. S. Nechaev, Adv. Synth. Catal. 2016, 358, 977-983.

[4] For selected references on synthesis of arylboronic acids via metal/halogen exchange or directed ortho metalation: (a) Dennis G.

WILEY-VCH

Hall, Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine; Wiley-VCH: Weinheim, **2005**. (b) Leermann, T.; Leroux, F. R.; Colobert, F. Org. Lett. **2011**, 13, 4479-4481. (b) Alessi, M.; Larkin, A. L.; Ogilvie, K. A.; Green, L. A.; Lai, S. L., S.; Snieckus, V. J. Org. Chem. **2007**, 72, 1588-1594.

- [5] For recent reviews of catalytic sp² C-H borylation: a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hart-wig, Chem. Rev. 2010, 110, 890-931. b) J. F. Hartwig, Acc. Chem. Res. 2012, 45, 864-873. c) A. Ros, R. Fernandez, J. M. Lassaletta, Chem. Soc. Rev. 2014, 43, 3229-3243. For recent examples: d) H. X. Dai, J.-Q. Yu, J. Am. Chem. Soc. 2012, 134, 134-137. e) L. Xu, S. Ding, P. Li, Angew. Chem., Int. Ed. 2014, 53, 1822-1826. f) A. J. Roering, V. A. L. Hale, P. A. Squier, M. A. Ringgold, E. R. Wiederspan, T. B. Clark, Org. Lett. 2012, 14, 3558-3561. g) T. J. Mazzacano, N. P. Mankad, J. Am. Chem. Soc. 2013, 135, 17258-17261. h) J. V. Obligacion, S. P. Semproni, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 4133-4136. i) L.-S. Zhang, G. Chen, X. Wang, Q.-Y. Guo, X.-S. Zhang, F. Pan, K. Chen, Z.-J. Shi, Angew. Chem. Int. Ed. 2014, 53, 3899-3903. j) G. Wang, L. Xu and P. Li, J. Am. Chem. Soc. 2015, 137, 8058-8061. k) T. Dombray, C. G. Werncke, S. Jiang, M. Grellier, L. Vendier, S. Bontemps, J.-B. Sortais, S. Sabo-Etienne, C. Darcel, J. Am. Chem. Soc. 2015, 137, 4062-4065. l) T. Yamamoto, A. Ishibashi, M. Suginome, Org. Lett. 2017, 19, 886-889.
- [6] For examples of transition metal-free borylation: a) L. Zhang, L. Jiao, J. Am. Chem. Soc. 2017, 139, 607-610. b). L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc. 2017, 139, 7440-7443. c) A. M. Mfuh, J. D. Doyle, B. Chhetri, H. D. Arman, O. V. Larionov, J. Am. Chem. Soc. 2016, 138, 2985-2988. d). K. Chen, S. Zhang, P. He and P. Li, Chem. Sci. 2016, 7, 3676-3680. e). H. J. Davis, M. T. Mihai, R. J. Phipps. J. Am. Chem. Soc. 2016, 138, 12759-12762. f) A. Prokofjevs, J. W. Kamf, E. Vedejs, Angew.

Chem., Int. Ed. 2011, **50**, 2098-2101. g) L. Niu, H. Yang, R. Wang, H. Fu, Org. Lett. **2012**, *14*, 2618-2621. h) V. Bagutski, A. D. Grosso, J. A. Carrillo, I. A. Cade, M. D. Helm, J. R. Lawson, P. J. Singleton, S. A. Solomon, T. Marcelli, M. J. Ingleson, J. Am. Chem. Soc. **2013**, *135*, 474-487. i) J. Zhang, H.-H. Wu, J. Zhang, Eur. J. Org. Chem. **2013**, 6263-6266. j) E. Yamamoto, K. Izumi, Y. Horita, H. Ito, J. Am. Chem. Soc. **2012**, *134*, 19997-20000. k) F. Mo, Y. Jiang, D. Qiu, Y. Zhang, J. Wang, Angew. Chem., Int. Ed., **2010**, *49*, 1846-1849. (I) D. Qiu, L. Jin, Z. Zheng, H. Meng, F. Mo, X. Wang, Y. Zhang, J. Wang, J. Org. Chem. **2013**, *78*, 1923-1933. m) W. Erb, A. Hellal, M. Albini, J. Rouden, J. Blanchet, Chem. Eur. J. **2014**, *20*, 6608-6612. (n) J. Yu, L. Zhang, G. Yan, Adv. Synth. Catal. **2012**, *354*, 2625-2628. o) R. D. Dewhurst, E. C. Neeve, H. Braunschweig, T. B. Marder, Chem. Commun. **2015**, *51*, 9594-9607. p) S. Pietch, E. C. Neeve, D. C. Apperley, R. Bertermann, F. Mo, D. Qiu, M. S. Cheung, L. Dang, J. Wang, U. Radius, Z. Lin, C. Kleeberg, T. B. Marder, Chem. Eur. J. **2015**, *21*, 7082-7098. q) C. Zhu, M. Yamane, Org. Lett. **2012**, *14*, 4560-4563.

- [7] a) W. K. Chow, C. M. So, C. P. Lau, F. Y. Kwong, *Chem. Eur. J.* 2011, 17, 6913-6917. b) D. A. Wilson, C. J. Wilson, C. Moldoveanu, A. M. Resmerita, P. Corcoran, L. M. Hoang, B. M. Rosen, V. Percec, *J. Am. Chem. Soc.* 2010, 132, 1800-1801. c) G. A. Molander, L. N. Cavalcanti, C. García-García, *J. Org. Chem.* 2013, 78, 6427–6439. d) M. Murata, T. Oda, Y. Sogabe, H. Tone, T. Namikoshi, S. Watanabe, *Chem. Lett.* 2011, 40, 962-963.
- [8] a) W.-B. Chen, C.-H. Xing, J. Dong, Q.-S. Hu, *Adv. Synth. Catal.* 2016, 358, 2072-2076. b) C.-H. Xing, J.-R. Lee, Z.-Y. Tang, J. R. Zheng, Q.-S. Hu, *Adv. Synth. Catal.* 2011, 353, 2051-2059. c) Z.-Y. Tang, Q.-S. Hu, *J. Am. Chem. Soc.* 2004, *126*, 3058-3059.

WILEY-VCH

Entry for the Table of Contents

FULL PAPER

B-BO 3%Ni(COD)2/12%PCy ArOSO₂Ar' + or 4-MeOC₆H₄Ni(PCy₃)₂OTs K₃PO₄, THF, r.t., 6-48 h Ó Ó 70-92%

Room temperature $Ni(0)/PCy_3$ -catalyzed cross-coupling reactions of aryl arenesulfonates with bis(pinacolato)diboron to form arylborates are described.

Borylation

Jie Dong, Hui Guo and Qiao-Sheng Hu*

Page No. – Page No.

Room temperature Ni(0)/PCy₃-Catalyzed Coupling Reactions of Aryl Arenesulfonates with Bis(pinacolato)diboron