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ABSTRACT: We herein report a Ni-catalyzed three-component
coupling of 1,3-butadiene, carbonyl compounds, and arylboronic
acids as a general synthetic approach to 1,4-disubstituted
homoallylic alcohols, an important class of compounds, which
have previously not been straightforward to access. The reaction
occurs efficiently using a Ni(cod)2 catalyst without any external
base and ligand at ambient temperature and allows a highly regioselective and trans-selective 1,4-dicarbofunctionalization of
feedstock butadiene in a single operation. This simple and practical protocol could apply to a comprehensive scope of substrates.
The neutral conditions show extraordinary tolerance for even highly base-sensitive functional groups.

Homoallylic alcohols constitute a vital structural element
that widely exists in many natural products and bioactive

molecules.1 Moreover, they are versatile synthetic intermedi-
ates that permit a variety of chemical transformations.
Consequently, a tremendous amount of effort has been
devoted to preparing homoallylic alcohols, and the most
frequently utilized method is the addition of allylmetal reagents
to carbonyls (Scheme 1a).2 However, the allylmetal used
generally needs to be pre-prepared, often through tedious
multistep operations. In this context, it would be more
desirable to use a readily available and stable allyl source
instead of preformed sensitive allylmetal reagents. Butadiene,
an abundant feedstock (production of ∼13 × 106 tons/year)
produced from petroleum cracking,3 is an ideal allyl precursor.
As such, various metal-catalyzed reductive (or borylative)
butadiene−carbonyl coupling has been developed to prepare
homoallylic alcohols (Scheme 1b).4−7 However, these
methods usually lead to 1,2-disubstituted homoallylic alcohols
with the formation of one carbon−carbon (C−C) bond
(Scheme 1a,b).4,5 General methods for synthesizing 1,4-
disubstituted homoallylic alcohols,8 an important class of
compounds, remain elusive.
We sought to develop a modular and general synthesis of

1,4-disubstituted homoallylic alcohols by a selective buta-
diene−carbonyl coupling through the direct construction of
two C−C bonds.9,10 We envisioned a nickel-catalyzed three-
component coupling of butadiene, carbonyls, and carbon
nucleophiles could afford homoallylic alcohols (Scheme 1c).
Mechanistically, we envisaged that the oxa−nickelacycle
intermediate11 formed by the cyclometalation of diene and
carbonyls could undergo transmetalation with a suitable
carbon nucleophile to give an acyclic allyl−nickel complex.
The subsequent reductive elimination at the terminal position
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Scheme 1. Synthesis of Homoallylic Alcohols via (a)
Carbonyl Allylation or (b and c) Butadiene−Carbonyl
Couplings
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could afford the desired trans-1,4-adduct. However, the high
levels of chemo-, regio-, and stereocontrol would be nontrivial
because of the competitive generation of the 1,2-adduct and
cis-1,4-adduct as well as the direct addition of carbon
nucleophiles to carbonyls. In 1999, Tamaru and co-workers
reported a seminal work on a nickel-catalyzed three-
component coupling of aldehydes, dienes, and organometallic
reagents (basically Me2Zn and Ph2Zn) for the synthesis of
homoallylic alcohols.12 The narrow scope of organometallics,
modest levels of selectivity, and functional group compatibility,
however, significantly limit the synthetic utility.
In contrast, the relative stability and easy availability of

organoboronic acids and esters have imparted good functional
group tolerance and great operational simplicity to the
Suzuki−Miyaura couplings, making it one of the most
commonly used reactions in organic chemistry.13 We felt
that the use of arylboronic acids and esters instead of difficult-
to-handle organometallic reagents would greatly facilitate the
synthesis of homoallylic alcohols. Nevertheless, due to the low
intrinsic nucleophilicity of organoboronic acid, strong bases are
generally required to convert “transmetalation-inactive” metal-
(II) halide into “transmetalation-active” metal(II) alkoxide.14

However, the addition of a base would promote competitive
protodeboronation of organoboronic acid and be incompatible
with base-sensitive functional groups, thus limiting the
substrate scope.15 We speculated the oxa−nickelacycle
intermediate mentioned above that contains a Ni(II) alkoxide
moiety would probably allow an efficient transmetalation of
organoboronic acid without an exogenous base.16 As part of
our ongoing research on nickel catalysis,17 we here report a
base-free highly regio- and trans-selective Ni-catalyzed three-
component coupling of butadiene, organoboronic acids, and
carbonyl compounds. This protocol provides a general,
efficient, and modular synthetic approach to 1,4-disubstituted
and 1,1,4-trisubstituted homoallylic alcohols with an excep-
tionally broad substrate scope and an extraordinary tolerance
to even highly base-sensitive functional groups (Scheme 1c).
We commenced our studies with the model reaction of

butadiene, benzaldehyde, and phenylboronic acid pinacol ester
(PhBpin) in the presence of a nickel catalyst [Ni(cod)2]. We
first tested various phosphine, and NHC ligands chelated
nickel catalysts with or without the addition of a base, but none
led to observation of the desired product 4a (see the
Supporting Information). To our delight, a simple Ni(cod)2
catalyst in a THF/H2O mixture under base- and ligand-free

reaction conditions at ambient temperature was able to afford
1,4-disubstituted homoallylic alcohol [trans-1,4-adduct (4a)]
in 52% yield with high levels of regio- and stereocontrol over
the 1,2-adduct (13/1 L/B) and cis-1,4-adduct (11/1 E/Z)
(Table 1, entry 1). The same conditions but in the absence of
H2O led to no conversions (entry 2). When MeOH was used
as the solvent, results similar to those of the aqueous condition
were obtained (entry 3). Using PhB(OH)2 instead of PhBpin,
the yield was improved to 76%. We found protic solvents were
not necessary, and solvents would dramatically affect the yield
and selectivity when PhB(OH)2 was used as a coupling
partner. While polar solvent DMF leads to low stereoselectivity
(5/1 E/Z) and yield, arene and ether-type solvents (toluene
and dioxane) gave 4a in excellent stereocontrol (>20/1 E/Z)
and high yields, accompanied by a substantial amount of
byproduct via direct carbonyl addition (6a) (entries 4−8).
Fortunately, THF was identified as the optimal solvent to
furnish 4a in 86% isolated yield with excellent regio- and
stereoselectivity (>20/1 E/Z, >20/1 L/B), and with no
observation of 6a (entry 8). It is noteworthy that the mild
and practical reaction condition is used at room temperature
with no exogenous base, which might permit good functional
group tolerance.
Under the optimized reaction conditions, we first examined

the scope of this reaction using various aldehydes. As shown in
Table 2, we found a wide variety of homoallylic alcohols were
obtained in good to high yields with excellent regio- and
stereoselectivity (>20/1 E/Z, >20/1 L/B) with very few
exceptions. The reaction was not sensitive to the steric effect of
the aldehyde substituent, and bulky 2,4,6-trimethyl benzalde-
hyde afforded the coupling product in high yield (4c).
Aromatic aldehydes with electron-donating and -withdrawing
groups were both suitable substrates (4a−4z). In particular,
strong electron-deficient substrates (4j−4l) that might readily
undergo direct carbonyl arylation were found to be compatible.
Many functional groups such as ethers (4d and 4e), a
trifluoromethyl group (4h), a trifluoromethoxy group (4i), a
cyano group (4k), an ester group (4l), and an alkynyl group
(4m) were tolerated under this mild condition. Interestingly,
aldehyde with a Bpin moiety was applicable (4p), suggesting
the reaction could effectively differentiate arylboronic acid and
esters. It is noteworthy that substrates with Cl and Br
substituents were viable, indicating the method is orthogonal
to traditional Suzuki−Miyaura reaction, and these handles
provide opportunities for further manipulation (4n−4p).

Table 1. Reaction Optimization

entry Ph[B] solvent 4a yielda (%) (E/Z) 4a/5aa (L/B) 6a yielda (%)

1 PhBpin THF/H2O (5/1) 52 (11/1) 13/1 0
2 PhBpin THF 0 0
3 PhBpin MeOH 54 (10/1) 13/1 2
4 PhB(OH)2 MeOH 76 (10/1) 15/1 2
5 PhB(OH)2 DMF 33 (5/1) 16/1 0
6 PhB(OH)2 toluene 76 (>20/1) 10/1 13
7 PhB(OH)2 dioxane 85 (>20/1) 14/1 4
8 PhB(OH)2 THF 89 (86)b (>20/1) >20/1 0

aDetermined by 1H NMR analysis. bIsolated yield.
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Moreover, heteroaromatic substrates, including furan, benzo-
furan, pyrrole, and indole derivatives, were also effective
substrates (4w−4z and 7r). Most remarkably, due to the
mildness of the conditions, substrates containing acidic
protons, such as phenols (4q), alcohols (4r), and secondary
amides (4s), and other highly base-sensitive structures,
including alkyl bromides (4t), benzyl chlorides (4v), and
phenyl 2-chloroacetate (4v), that readily undergo undesired
elimination, substitution, and hydrolysis reactions, are well-
tolerated. Although more labile to undergo aldol reaction,
aliphatic aldehydes also served as competent substrates
furnishing products in high yields and excellent regio- and

stereocontrol (7a−7j). Linear and α-branched aliphatic
aldehydes all performed well (7a−7d). Functional groups,
including an alkyl chloride, an ester, an amide, an alkene, and a
carbamate, were all well-accommodated (7e−7j). Situations
for enal substrates are more complicated, as enals readily
undergo conjugate addition by nucleophiles and Diels−Alder
reaction with diene. However, various enals with 1,1-, 1,2-, or
1,1,2-substitution patterns were all applicable to the coupling
reaction to deliver alcohol products with both allyl and
homoallyl substituents in moderate to high yields with high
selectivity (7k−7q).

Table 2. Scope of Aldehydesa

aYields of isolated products are shown. E/Z and L/B ratios were determined by 1H NMR analysis of the crude products. bUsing 2.0 equiv of
aldehyde, 4.0 equiv of butadiene, and 1.0 equiv of PhB(OH)2.

cUsing 0.2 equiv of Ni(cod)2.
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Subsequently, we explored the generality of the organo-
boronic acid coupling partners for this method. As shown in
Table 3, various commercially available and stable organo-

boronic acids smoothly participated in the coupling reaction,
affording homoallylic alcohols in outstanding regioselectivity
(>20/1 L/B) and high to excellent trans-selectivity (9/1 to
>20/1 E/Z). Sterically encumbered 1-pyrenylboronic acid
could be applied (8b). Arylboronic acids with electron-
donating and electron-withdrawing substituents were effective
substrates (8c−8i). Functional groups, including ethers (8c
and 8d), a trifluoromethyl (8f), a cyano (8g), an acetyl (8h),
an ester (8i), a fluoride (8e), a chloride (8j), a bromide (8k),
an iodide (8l), and a carbamate (8p), could be readily
incorporated. Various heteroaryl boronic acids, such as
thiophene (8m), benzofuran (8n), benzothiophene (8o), and
indole (8p), were competent substrates. Notably, alkenyl
boronic acids served as effective coupling partners to provide
products possessing skipped dienes (8q and 8r),18 which
further enriched the diversity of homoallylic alcohol products.
Next, we surveyed the possibility of application of ketone

substrates to the three-component coupling. Ketones are
generally less reactive than aldehydes due to the attenuated
electrophilicity and increased steric hindrance. Examples of Ni-
catalyzed coupling (even reductive coupling) using ketones are
rare, probably due to the problematic generation of the
corresponding oxa−nickelacycle intermediate.19 Indeed, the
conversion of ketones was generally slower, and we observed,
in some cases, the formation of a four-component coupling
byproduct involving carbonyl, arylboronic acid, and two

molecules of butadiene.12a However, despite these difficulties,
a series of ketones could be successfully transformed into
homoallylic tertiary alcohol products in good yields and
exceptionally high regio- and stereoselectivity (Table 4, >20/1

L/B, >20/1 E/Z for most cases). For example, simple
acetophenone (10a) and other aromatic ketones with
electron-withdrawing substituents such as trifluoromethyl
(10b and 10f), fluoride (10c), ester (10d), and sulfonyl
(10e) groups gave moderate to high yields with excellent
regio- and stereoselectivity. Moreover, aliphatic ketones,
including acetone (10h), benzylacetone (10i), and methyl
pyruvate (10g), were suitable substrates. In addition to acyclic
ketones, cyclic ketones such as cyclohexanones (10j), 4-
tetrahydropyranone (10k), and 4-piperidinone (10l) as well as
bulky adamantanone (10n) and dromostanolone (10o)
derivatives performed well in this three-component coupling
protocol delivering complex tertiary alcohols in a single
operation.
Importantly, we found this three-component reaction could

be readily scaled up to gram scale (10 mmol) using even lower
catalyst loadings; homoallylic alcohol product 4d was obtained
in high yield with very high levels of regio- and trans-selectivity,
highlighting the practicality of the method (Scheme 2a).
Interestingly, isoprene, a naturally abundant feedstock
chemical (production of ∼8 × 105 tons/year),20 could be
applied in this protocol, affording homoallylic alcohol 4d′ in
good yield with high selectivity (Scheme 2b). To further
showcase the synthetic utility of the method, various
transformations of the homoallylic alcohol product were
conducted (Scheme 2c). For example, oxidation of hydroxy
to carbonyl with Dess−Martin periodinane gave β,γ-unsatu-

Table 3. Scope of Organoboronic Acidsa

aIsolated yields are shown. E/Z and L/B ratios of the crude samples
were determined by 1H NMR analysis. bUsing 0.2 equiv of Ni(cod)2.
cUsing 4.0 equiv of butadiene.

Table 4. Scope of Ketonesa

aIsolated yields are shown. E/Z and L/B ratios of the crude samples
were determined by 1H NMR analysis. bUsing 0.2 equiv of Ni(cod)2.
cUsing 1.0 equiv of 3a, 3.0 equiv of 9, and 2.0 equiv of 2.
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rated ketone 11 in high yield. Elimination of the hydroxyl
group smoothly afforded a conjugate diene 12 with an absolute
trans,trans configuration. The double bond of homoallylic
alcohol can be easily hydrogenated to furnish a secondary
alcohol 13. The oxidation of alkene with mCPBA delivered an
epoxide product 14 in high yield. Given the easy accessibility
of substrates and the rich chemistry of homoallylic alcohols,
the current coupling protocol would provide convenient and
powerful means of building complex molecules from abundant
butadiene.
In conclusion, we have developed a highly regio- and trans-

selective Ni-catalyzed three-component coupling for a 1,4-
dicarbofunctionalization of feedstock butadiene using carbon-
yls and organoboronic acids. A diverse variety of 1,4-
disubstituted and 1,1,4-trisubstituted homoallylic alcohols
were efficiently prepared in a single operation from stable
and readily available substrates. These reactions could
generally be applicable to various carbonyl compounds,
including aromatic aldehydes, aliphatic aldehydes, enals,
aromatic ketones, and aliphatic ketones. The mild and base-
free protocol tolerated an exceptionally broad scope of
functional groups.
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