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ABSTRACT: Pd-catalyzed aerobic oxidative coupling of 
vinylboronic acids and electronically unbiased alkyl olefins 
provides regioselective access to 1,3-disubstituted conjugated 
dienes. Catalyst-controlled regioselectivity is achieved by 
using 2,9-dimethylphenanthroline as a ligand. The observed 
regioselectivity is opposite to that observed from a traditional 
(non-oxidative) Heck reaction between a vinyl bromide and an 
alkene. DFT computational studies reveal that steric effects of 
the 2,9-dimethylphenanthroline ligand promote C–C bond-
formation at the internal position of the alkene. 

Heck-type coupling reactions provide a versatile strategy to 
convert vinylic C–H bonds into C–C bonds, 1  and one 
promising application of these methods is the synthesis of 
conjugated dienes via coupling of alkenes and vinyl halides or 
vinylboronic acids (Scheme 1). The scope of these reactions is 
severely limited, however, by challenges in controlling the 
product regioselectivity. The selectivity is typically under 
substrate control. The linear product A is obtained with 
electron-deficient alkenes, such as acrylates and styrenes,2 and 
also can be favored through the use of coordinating directing 
groups in the substrate. 3  Selective formation of branched 
dienes (B) is rare and typically only observed with electron-
rich alkenes, such as vinyl amides.4,5 Ideally, selectivity could 
be established via catalyst control, thereby enabling 
electronically unbiased alkyl olefins to be used as effective 
substrate partners.6 The groups of Sigman7 and Zhou8 recently 
demonstrated catalyst-controlled regioselectivity in the 
synthesis of styrenes via Heck-type coupling of alkenes with 
arylboronic acids (linear selectivity),7a aryl diazonium salts 
(linear selectivity)7b and aryl triflates (branched 
selectivity).8,9,10 Here, we report a PdII-catalyzed method for 
aerobic oxidative coupling of vinylboronic acids and 
electronically unbiased alkenes to prepare 1,3-disubstituted 
dienes. These results represent the first general method for 
catalyst-controlled regioselectivity in Heck-type synthesis of 
dienes. Additional experimental studies and DFT calculations 
provide insights into the origin of the reaction selectivity.  

Several recent studies in our lab have focused on 
regioselective aerobic oxidative coupling reactions of alkenes 
and arenes with nitrogen-ligated PdII catalysts. 11  In this 
context, our attention was drawn to recent work by Larhed,12 
Jung,13 and others,14 highlighting the use of nitrogen ligands in 
Pd-catalyzed aerobic oxidative coupling of boronic acids and 
alkenes. Although these reactions were limited to examples of 
substrate-controlled regioselectivity (e.g., with acrylates as the 
alkene coupling partner), this work suggested that chelating 
nitrogen ligands might enable regioselective oxidative Heck 
reactions with electronically unbiased alkenes.  

Scheme 1. Regioisomeric Conjugated Dienes Potentially 
Accessible via Heck-Type Cross-Coupling Reactions.  

 
 
Chart 1. Ligand Effects on the Oxidative Heck Coupling of 
Styrenylboronic Acid and Octene.a 

 
a Reaction conditions: vinyl boronic acid (1.5 equiv), alkene (0.2 
mmol), NMP (0.5 mL). Reactions were monitored on GC using 4-
methylanisole as the internal standard. b GC yield. c Determined by 
GC and 1H NMR. d Pd(TFA)2 (20 mol%) and ligand (40 mol%) 
were used. e LiTFA (0.2 equiv) was added.  

Our initial efforts focused on the reaction of (E)-
styrenylboronic acid 1a and 1-octene. Use of previously 
reported oxidative Heck conditions led to limited success (< 
40% yield of diene; see Supp. Info. for full screening data), 
but variation of the PdII source, ancillary ligand and solvent 
showed that good yields and regioselectivity could be 
achieved with Pd(nc)(TFA)2 (TFA = trifluoroacetate, nc = 
neocuproine = 2,9-dimethyl-1,10-phenanthroline) as the 
catalyst and N-methylpyrrolidone as the solvent. The ligand 
effects depicted in Chart 1 provide useful insights. Bipyridine 
and phenanthroline, which have been used in other Pd-
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catalyzed aerobic oxidative Heck reactions,2f,14a led to very 
low yields and favored formation of the linear diene product, 
similar to the results obtained with Pd(TFA)2 in the absence of 
an ancillary ligand. Improved yields and a preference for the 
branched diene isomer were observed upon using chelating 
ligands with substituents adjacent to the nitrogen atoms of the 
ligand (L5–L10). The best result was observed with 
neocuproine (L8); with this ligand, the branched diene was 
obtained in 90% yield with 20:1 selectivity over the linear 
isomer.15  

To assess the generality of these catalytic conditions, we 
investigated the reaction of (E)-styrenylboronic acid with a 
number of different terminal olefins (Table 1). Good yields 
were observed with substrates bearing a wide range of 
functional groups, including ethers, ketones, esters, 
unprotected alcohols, silyl and silylether groups, and 
phthalimide. 16  Good-to-exclusive regioselectivity was 
observed in these reactions, favoring formation of the 
branched diene product (3a-3n). As expected, the electron-rich 
vinyl ether and vinyl amide substrates undergo oxidative 
coupling to afford the branched diene products (3o and 3p). 
The vinyl ether product hydrolyzes under the reaction 
conditions, resulting in the α,β-unsaturated methyl ketone.17 
Vinyltrimethylsilane represents a formal ethylene equivalent; 
oxidative Heck coupling of this alkene substrate results in loss  

 
Table 1. Diene Synthesis via Oxidative Heck Coupling of 
(E)-Styrenylboronic Acid and Terminal Olefins.a 

 

 
aReaction conditions: vinyl boronic acid (1.5 equiv), alkene (0.2 
mmol) in NMP (0.5 mL). bIsolated yields. cBranched:linear 
selectivity determined by GC and 1H NMR spectroscopy. 
dIsolated as a mixture of branched and linear regioisomers. eSome 
isomerization of the diene (< 5%) occurs during purification.  

of the TMS group to afford 1-phenylbutadiene (3q). Electron-
deficient alkenes such as vinylboronic pinacol ester and 
styrene afford the linear products (3r and 3s). 

One appeal of oxidative Heck reactions for the synthesis of 
dienes is the straightforward accessibility of the vinylboronic 
acids via hydroboration of alkynes. In this context, we 
evaluated reactions of a number of different vinylboronic 
acids with various alkene coupling partners (Table 2). Diverse 
substituted styrenylboronic acids were compatible with the 
reaction conditions and led to branched dienes in good-to-
excellent yields and regioselectivities (products 4a-4f, 4j, 4l-
4p). Of particular note is the compatibility of aryl bromide 
substituents, which implies that Pd0 reacts more rapidly with 
O2 than the Ar–Br bond.18,19 Products from cis-alkenyl- and 
β,β-disubstituted alkenylboronic acids were also obtained (4i, 
4j). Vinylboronic acids with aliphatic substitution on the vinyl 
group were somewhat less reactive than the styrenylboronic 
acids, but good yields and regioselectivities were still 
observed (products 4g-4i, 4q-4r). If needed, a modest 
improvement in the yield can be obtained with higher catalyst 
loading (cf. product 4k). 

 
Table 2. Diene Synthesis via Oxidative Heck Coupling of 
Diverse Vinylboronic Acids and Terminal Olefins.a 

 

 

aThe reactions were performed with vinyl boronic acid (1.5 
equiv), alkene (0.2 mmol) in NMP (0.5 mL) at 40 °C. bIsolated 
yields. cBranched:linear selectivity determined by GC and 1H 
NMR spectroscopy. dIsolated as a mixture of the branched and 
linear regioisomers. eSome isomerization of the diene (< 5%) 
occurs during purification. fcis-Octenylboronic acid used; (Z)-
4i:(E)-4i = 3.5:1. gCatalyst/additive loading doubled. 
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Factors that govern regioselectivity in Heck-type coupling 
reactions have been discussed extensively in the literature.1g,20 

Neutral bidentate ligands lead to cationic [PdII(L2)(aryl/vinyl)-
(alkene)]+ intermediates that exhibit higher selectivity for 
Markovnikov addition to the alkene, relative to neutral 
PdII(L)(X)(aryl/vinyl)(alkene) intermediates formed with 
neutral monodentate ligands. Electronic effects are not 
sufficient to explain the present results, however, because 
several bidentate ligands favor the linear coupling product (see 
Chart 1). Steric effects undoubtedly play an important role in 
these reactions, and it seems reasonable to expect that the 
methyl groups of the neocuproine ligand disfavors the 
transition state leading to the linear product (Scheme 2).  

Scheme 2. Steric Effects that Favor Formation of Branched 
Diene Products. 

 
DFT calculations of the insertion of allylbenzene into a 

neocuproine-ligated PdII–styrenyl species provide insights into 
the relative energies of pathways leading to the branched and 
linear dienes (Figure 1). 21  Multiple conformations of the 
intermediates and transition states associated with this step are 
possible, and the two prochiral faces of the alkene correspond 
to diastereomeric intermediates and transition states. The most 
favorable alkene insertion pathways are shown in Figure 1. 
The coordinated alkene in intermediates Ipro-S and Ipro-R orients 
perpendicular to the square plane of PdII. It then rotates into 
the plane as it proceeds through the subsequent alkene-
insertion transition states, and the (pro-R)- and (pro-S)-isomers 
of TSbranched and TSlinear show a preference for the branched 
pathway, particularly for the lower-energy Si-face insertion 
(ΔΔG‡ = 4.9 kcal/mol). If exchange between Ipro-S and Ipro-R is 
facile, formation of the branched isomer is calculated to be 
favored over the linear isomer by 2.3 kcal/mol. For both 
pathways, alkene insertion is substantially downhill (≥ 9.7 
kcal/mol) from Ipro-S to form the resulting PdII–alkyl 
intermediate.  

The results described here are notable not only for the 
catalyst control over regioselectivity, but also for the ability to 
access the branched regioisomer. Precedents for Heck-type 
synthesis of dienes (including both traditional and oxidative 
methods) with electronically unbiased alkenes are rare, and 
essentially all known examples favor linear over branched 
products.6 In light of precedents for use of phenanthroline 
ligands in traditional Heck coupling reactions, 22  we 
investigated whether neocuproine could control the 
regioselectivity of diene synthesis in a traditional Heck 
coupling reaction. The coupling of β-bromostyrene and octene 
with a Pd(OAc)2/neocuproine catalyst system led to a 57% 
yield of diene (eq 1), but the linear regioisomer was strongly 
favored (10:1) over the branched product.23  This outcome 
potentially could be rationalized by invoking a neutral 
pathway for alkene insertion [i.e., via a PdII(κ1-nc)(Br)-
(styrenyl)(octene) intermediate], which may favor formation 
of the linear diene.20 An alternative, perhaps more likely,  

 

 
Figure 1. Energies for the two regioisomeric alkene insertion 
pathways involving the Si and Re face of the alkene. The 
chemical structures of the Re-face insertion pathway and the +1 
charges on all structures are omitted for clarity. See Supp. Info. 
for additional details. 
explanation takes into account the high temperatures required 
for this reaction: 110 °C, relative to 40 °C for the oxidative 
Heck reactions. Under the more-forcing conditions, the Pd 
catalyst could decompose into Pd nanoparticles that promote 
coupling via a "ligand-free" pathway.24 Potential support for 
this hypothesis was obtained from dynamic light scattering 
data, which reveal that Pd nanoparticles, 200–400 nm in 
diameter, form under the Heck coupling conditions in eq 1. 
Furthermore, independently prepared nanoparticles are 
effective catalysts for the same reaction and afford the linear 
product in nearly identical yield. 25  No nanoparticles are 
detected from an oxidative Heck reaction with styrenylboronic 
acid and octene. These observations highlight the uniqueness 
of the oxidative Heck coupling conditions reported above. 

  (1)

 
In conclusion, we have developed highly regioselective 

oxidative Heck reactions that enable the preparation of 
synthetically useful branched 1,3-disubstituted conjugated 
dienes. The ability to achieve selectivity with electronically 
unbiased alkenes complements recent advances by others, and 
significantly expanding the scope and synthetic utility of Heck 
coupling reactions.  
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