Structures of the Reactive Intermediates in Organocatalysis with Diarylprolinol Ethers

by Uroš Grošelj¹), Dieter Seebach*, D. Michael Badine²), W. Bernd Schweizer, and Albert K. Beck

Laboratorium für Organische Chemie, Departement für Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (phone: +41-44-632-2990; fax: +41-44-632-1144; e-mail: seebach@org.chem.ethz.ch)

and Ingo Krossing and Petra Klose

Lehrstuhl für Molekül- und Koordinationschemie, Institut für Anorganische und Analytische Chemie, Albert-Ludwigs Universität Freiburg, Albertstrasse 21, D-79104 Freiburg i. Br. (phone: +49-761-203-6122; e-mail: krossing@uni-freiburg.de)

and Yujiro Hayashi

Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan (phone: +81-3-5228-8318; e-mail: hayashi@ci.kagu.tus.ac.jp)

and Tadafumi Uchimaru*

Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan (phone: +81-29-861-4800; e-mail: t-uchimaru@aist.go.jp)

Structures of the reactive intermediates (enamines and iminium ions) of organocatalysis with diarylprolinol derivatives have been determined. To this end, diarylprolinol methyl and silyl ethers, 1, and aldehydes, Ph-CH2-CHO, 'Bu-CH2-CHO, Ph-CH=CH-CHO, are condensed to the corresponding enamines, A and 3 (Scheme 2), and cinnamoylidene iminium salts, B and 4 (Scheme 3). These are isolated and fully characterized by melting/decomposition points, $[a]_D$, elemental analysis, IR and NMR spectroscopy, and high-resolution mass spectrometry (HR-MS). Salts with BF4, PF6, SbF6, and the weakly coordinating Al[OC(CF₃)₃]₄ anion were prepared. X-Ray crystal structures of an enamine and of six iminium salts have been obtained and are described herein (Figs. 2 and 4-8, and Tables 2 and 7) and in a previous preliminary communication (Helv. Chim. Acta 2008, 91, 1999). According to the NMR spectra (in CDCl₃, (D₆)DMSO, (D₆)acetone, or CD₃OD; Table 1), the major isomers 4 of the iminium salts have (E)-configuration of the exocyclic N=C(1') bond, but there are up to 11% of the (Z)-isomer present in these solutions (Fig. 1). In all crystal structures, the iminium ions have (E)-configuration, and the conformation around the exocyclic N-C-C-O bond is synclinal-exo (cf. C and L), with one of the phenyl groups over the pyrrolidine ring, and the RO group over the π -system. One of the metasubstituents (Me in 4b, CF₃ in 4c and 4e) on a 3,5-disubstituted phenyl group is also located in the space above the π -system. DFT Calculations at various levels of theory (Tables 3-6) confirm that the

On leave from Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, P.O. Box 537, 1000 Ljubljana, Slovenia; financed by Slovene Human Resources Development and Scholarship Fund (Vilharjeva 27, 1000 Ljubljana, Slovenia) and by Novartis Pharma AG, Basel.

Postdoctoral Research Fellow at ETH-Zürich (2006/2007), financed by Novartis Pharma AG, Basel. Present address: BASF SE, GCl/P-M311, D-67056 Ludwigshafen.

experimentally determined structures (cf. Fig. 10) are by far (up to 8.3 kcal/mol) the most stable ones. Implications of the results with respect to the mechanism of organocatalysis by diarylprolinol derivatives are discussed.

1. Introduction. – In the year 2005, the field of organocatalysis experienced a boost when several groups started to use diarylprolinol³) (=diarylpyrrolidine-2-methanol) ethers 1 as catalysts [4]. Since then, the formulae of enamines A and of iminium ions B, the reactive intermediates involved in activating nucleophilic α -carbonyl positions and electrophilic β -carbonyl positions, have been presented in dozens of publications. The big ('obese' [5]) diarylmethanol-ether substituent was assumed a) to enforce an s-transconformation around the exocyclic N-C(1') bond of an enamine A, b) to secure (E)configuration of the iminium N=C(1') bond in **B**, and c) to direct incoming reactants to approach the π -system of **A** and **B** from the face *anti* to the large substituent at C(2) of the pyrrolidine, in agreement with the experimental results. For the (S)-forms, this corresponds to a relative topicity⁴) like (lk) for reactions of the enamines A (Si) on C(2')) and of the iminium ions **B** with R' = Arl(Si on C(3')). Besides some *in-situ* NMR spectra⁵), there were no experimental structural data of the reactive intermediates A and **B** available, as of July 2008. On the other hand, DFT calculations of the structures of a diarylprolinol-derived dienamine and of an iminium ion had been published in 2006 [7].

1 , 4 (B , R' = Ph)	Arl	R	Absolute configuration
а	Ph	Н	(S)
b	$3,5-Me_2C_6H_3$	Me	(S)
С	$3,5-(CF_3)_2C_6H_3$	Me	(S)
d	Ph	Me ₃ Si	(S)
е	$3,5-(CF_3)_2C_6H_3$	Me ₃ Si	(S)
f	Ph	Me ₂ (Ph)Si	(S)
g	4- ^t BuC ₆ H ₄	Me ₂ (Ph)Si	(R)
h	Ph	Me(Ph) ₂ Si	(S)
i	4- ^t BuC ₆ H ₄	Me(Ph) ₂ Si	(R)

While there are only a few enamine structures recorded in the *Cambridge Crystallographic Data Base*⁶), there is a rich history of isolation and structure

³) The parent compound *rac-***1**, Arl = Ph, R = H was first described 75 years ago [1], the enantiomerically pure form 45 years ago [2]. For further references, see Footnote 16 and Scheme 1 of [3].

⁴⁾ For the definition of relative topicities of stereoselective reactions, see [6].

See Footnote 14 in our preliminary communication [3].

⁶⁾ See Footnote 11 in [3] and discussion in Sect. 9, with Footnote 60 in [5].

determination of iminium salts⁷). As discussed in a seminal work by *Böhme et al.* [9], *J. von Braun* and *E. Röver* were probably the first to isolate dimethyl(methylidene)-iminium bromide ('dimethyl-bromomethyl amine')⁸) in 1903 [14]. There are numerous protocols for preparing and isolating iminium salts. We used a modified procedure of *Leonard* and *Paukstelis* [15]⁹).

2. Preparation of the Enamines 3 and of the Iminium Salts 4, and Growing of Single Crystals. – The diarylprolinol derivatives 1a-1e are commercially available, and the new compounds 1f-1i were prepared as depicted in *Scheme* 1^{10}). From the *Grignard* reaction with the N-(ethoxycarbonyl)proline ester substantial amounts of the

Scheme 1. Preparation of the Diarylprolinol Silyl Ethers **1f-1i** and Isolation of the Oxazolidine Derivatives **2**

7) A search in the Cambridge Structural Data File (CSD [8]) as of March 2009 provided the following number of structures:

- 8) For the relationship α-halo-amines/dialkyl-iminium halide salts, see [10]. For a monograph and a review on α-aminoalkylations (*Mannich* reactions), see [11][12]. The iminium salt Me₂NCH₂I (*Eschenmoser* salt [13]) is very stable, sublimes at 120°/10⁻³ Torr, and decomposes at ca. 240°.
- Besides our group [3][5][16], Mayr and co-workers [17], Tompkinson and co-workers [18], and Gilmour and co-workers [19] have recently reported isolations and structural identifications of iminium salts of relevance to organocatalysis.
- 10) For a discussion and leading references about the various methods of preparing diarylprolinols, see Scheme 1 in [3].

oxazolidinone **2a** were isolated and subsequently hydrolyzed with NaOH in MeOH. Trace amounts of the oxazolidine **2b** were also obtained after this step¹¹).

The enamines 3a and 3b were prepared as shown in *Scheme* 2^{12}). Suitable single crystals for X-ray analysis could be prepared only of the enamine 3a. For characterization of the enamines, see data in the *Exper. Part*.

Scheme 2. Preparation of the Enamines **3a** and **3b** by Condensation of 2-Phenylacetaldehyde or 3,3-Dimethylbutanal with the Diphenyl Prolinol Silyl Ethers **1d** and **1h**, Respectively

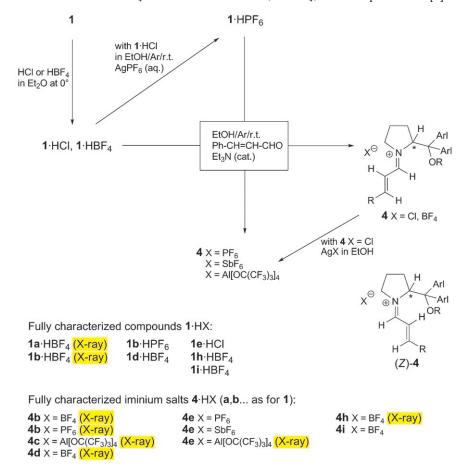
The preparation of cinnamaldehyde-derived 13) iminium salts $\bf 4$ is outlined in *Scheme 3*. First, the ammonium salts $\bf 1 \cdot HX$ were prepared from the prolinol ethers and HCl or HBF₄¹⁴). With the hydrochloride, an anion exchange could be achieved by adding a Ag salt ($cf. \, \bf 1c \cdot HCl \rightarrow \bf 1c \cdot HPF_6$). The ammonium salts were allowed to react with cinnamaldehyde in EtOH, in the presence of catalytic amounts of Et₃N. This led to precipitation of the iminium salts $\bf 4$, $\bf X = BF_4$, PF₆, which, after filtering, washing with Et₂O and drying under high vacuum, gave correct elemental analyses.

The chlorides **4**, X = Cl, are converted to PF_6 , SbF_6 , and $Al[OC(CF_3)_3]_4$ salts by adding the corresponding Ag salt to the EtOH solution. The salts **4c** and **4e** derived from the bis[3,5-bis(trifluoromethyl)phenyl]prolinols **1c** and **1e** do not precipitate. Especially the salts with the complex aluminate anion, a so-called weakly-coordinating anion [21]¹⁵), are extremely well soluble, even in a nonpolar solvent such as Et_2O^{16}). In these cases, analytically pure samples are obtained by removing the AgCl precipitate by suction of the supernatant solution through an HPLC filter, stripping off the EtOH solvent, dissolving the residue in Et_2O , precipitating with heptane, washing with hexanes, and drying under high vacuum.

Single crystals were produced by the so-called diffusion method or by slow solvent evaporation. Thus, vials with solutions of the salts, for instance, in THF/heptane, were put in a sealed container, together with a reservoir of Et₂O/petroleum ether (b.p. 30–

¹¹⁾ It is not clear to us how the aromatic Grignard reagent could have caused the reduction to 2b; maybe MeONa functioned as a hydride source in step 3.

¹²⁾ For the setup with a molecular-sieve bag in the gas phase, see [20].


¹³⁾ All attempts with unsaturated aliphatic aldehydes, such as crotonaldehyde, failed to produce crystalline iminium salts of this type, which would have been suitable for crystal structure analysis.

¹⁴⁾ In the salt-forming process with HBF₄ and prolinol silyl ethers, up to 35% loss of the silyl group was observed, which complicated the subsequent step of iminium-salt formation and isolation.

¹⁵⁾ Positively charged counter-ions do not abstract a small anion ((CF₃)₃CO⁻) from the complex aluminate anion Al[OC(CF₃)₃]₄, a process which can happen with BF₄, PF₆, or SbF₆ anions by transfer of F⁻.

¹⁶⁾ On the other hand, these Al[OC(CF₃)₃]₄ salts have much higher melting/decomposition points than the corresponding BF₄, PF₆, or SbF₆ salts (see *Exper. Part*).

Scheme 3. Preparation of the Ammonium Salts $\mathbf{1} \cdot HX$ and of the Iminium Salts $\mathbf{4}$. The structure of the ammonium salt $\mathbf{1a} \cdot HBF_4$ and of the iminium salt $\mathbf{4h}$, $X = BF_4$, have been published in [3].

- 50°). One of the crystals which had grown on the wall of one of the vials was picked and transferred to the X-ray diffractometer.
- **3. NMR Spectra of the Iminium Salts 4.** Selected NMR data are collected in *Table 1*. Besides the signals from the iminium salts **4** of (E)-configuration around the N=C bond (cf) the crystal structures), the NMR spectra of the analytically pure samples contain a set of signals that must arise from an isomer to which we assign the (Z)-configuration ((Z)-**4**). The amount of this 'impurity' can be as high as 8% (see *Fig. 1*; *Table 1* contains only data of the major isomers **4**). There are two noticeable features of the chemical shift data in *Table 1*: i) The H-atoms at C(2) of the pyrrolidine ring, and H-C(1',2',3') in the iminium side chain of the bis(trifluoromethyl)phenyl-substituted compounds **4c** and **4e** resonate at *lower* field (by up to 0.8 ppm) than those of the other four compounds (**4b**, **4d**, **4h**, and **4i**); comparison of spectra obtained with

Table 1. Selected ¹H-NMR Data of the Iminium Salts 4. The spectra were recorded on different NMR instruments. Multiplicities and coupling constants could not be determined in the case of the starred (*) signals because of overlap with signals from other H-atoms. ¹H-NMR Chemical shifts of the overlapping signals were extracted from the corresponding 2D-HSQC spectra recorded in the same solvent on the same instrument. For NMR spectra of *in situ* observed iminium salts of type 4, see [4a][22]. For an NMR and a high-resolution mass spectrum of 4d, X = OSO₂CF₃, see supplementary material of [17a]; the NMR spectra of this salt with BF₄ and triflate anions are more or less identical.

Chemica	l shifts δ [ppm], multiplicit	ies, and coupli	ng constants J	[Hz]		
	Iminium salt	Solvent	H-C(2)	H-C(1')	H-C(2')	H-C(3')
4d (X-ray)	BF ₄ 2 1' OSiMe ₃	CDCl ₃	5.46 (d, J = 7.4)	8.53 (d, J = 10.6)	7.00 (dd, J=10.7, 15.2)	ca. 7.70*
4h (X-ray)	⊕N OSiPh ₂ Me	(D ₆)DMSO	5.61 (<i>d</i> , <i>J</i> = 8.2)	8.40 (d , $J = 10.5$)	ca. 7.14*	6.85 (d, J = 15.2)
4i	BF ₄ ⊕ N OSiPh ₂ Me	CDCl ₃	5.53 (<i>d</i> , <i>J</i> = 7.6)	8.33 $(d, J = 10.3)$	6.88 (dd, J=10.6, 15.0)	6.49 (<i>d</i> , <i>J</i> = 15.1)
4b (X-ray)	BF ₄ ⊕N OMe	CDCl ₃	5.27 (dd, J=3.1, 8.9)	8.58 (d, J = 10.5)	7.04 (<i>dd</i> , <i>J</i> = 10.5, 15.3)	8.00 (d, J = 15.2)
4b (X-ray)	PF ₆ ⊕N OMe	CDCl ₃	5.24 (dd, J=3.7, 9.2)	8.51 $(d, J = 10.6)$	6.93 (<i>dd</i> , <i>J</i> = 10.7, 15.2)	7.91 (d , $J = 15.2$)

Chemica	l shifts δ [ppm], multiplicitie	es, and coupling	g constants J [Hz]		
	Iminium salt	Solvent	H-C(2)	H-C(1')	H-C(2')	H-C(3')
4c (X-ray)	F ₃ C ⊕ N OMe CF ₃ Ph F ₃ C Al[OC(CF ₃) ₃] ₄	(D ₆)DMSO	5.99 (dd, J=3.6, 9.0)	8.91 (<i>d</i> , <i>J</i> = 10.4)	7.46 (dd, J=10.5, 15.1)	8.51 (<i>d</i> , <i>J</i> = 15.0)
4e	$\begin{array}{c} F_3C \\ \\ \oplus N \\ \\ PF_6 \\ \end{array}$	(D ₆)Acetone	6.02 (dd, J=3.1, 9.4)		ca. 7.59*	ca. 8.30*
4e	$\begin{array}{c} F_3C \\ \\ \\ SbF_6 \\ \\ Ph \\ \\ F_3C \\ \end{array} \begin{array}{c} F_3C \\ \\ \\ CF_3 \\ \\ \\ CF_3 \\ \end{array}$	(D ₆)Acetone	6.04 (dd, J=2.6, 9.1)		ca. 7.61*	ca. 8.31*
4e (X-ray)	Ph F ₃ C CF ₃ Ph F ₃ C CF ₃ Al[OC(CF ₃) ₃] ₄	(D ₆)Acetone	6.11 (d , $J = 6.6$)	9.14 (<i>d</i> , <i>J</i> = 10.7)	ca. 7.65*	8.34 (<i>d</i> , <i>J</i> = 15.2)

 $CDCl_3$, $(D_6)DMSO$, and (D_6) acetone solutions would suggest that this is not just a solvent or counterion effect. ii) In the case of **4h** and **4i**, the signals from H-C(3'), the C-atom of nucleophilic attack on such iminium ions, are shifted to higher fields (by up to 2 ppm) as compared to those of the other salts **4**; this effect is compatible with the X-ray crystal structure of **4h**, $X = BF_4$ [3], where the H-C(3') resides in the shielding cone of one of the Si-bound phenyl groups (Fig. 2).

4. Crystal Structures of the Ammonium Salt 1b·HBF₄, of the Enamine 3a, and of Five Iminium Salts 4. – The crystal structure of the ammonium salt $1b \cdot HBF_4$ (Fig. 3), precursor to the iminium salts 4, $X = BF_4$ and PF_6 , is shown in Fig. 3. While essentially all known diarylprolinols 1, R = H, have a sc(synclinal)-endo-conformation **D** around

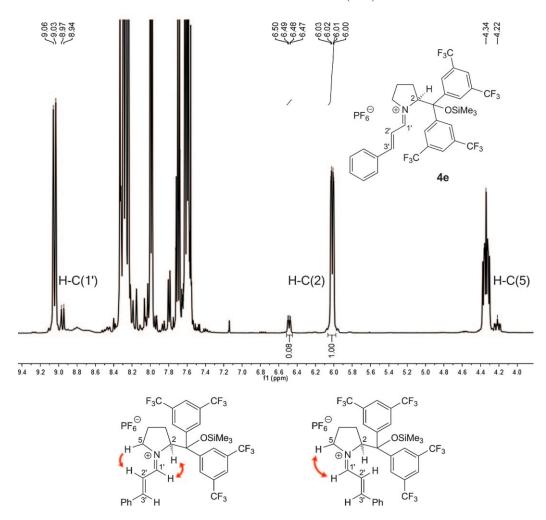


Fig. 1. Section of the ¹H-NMR spectrum of the iminium salt $\mathbf{4e}$, $X = PF_6$, in (D_6) acetone. The doublet signal at 8.96 ppm, the doublet of doublet signal at 6.49 ppm, and the multiplet signal at 4.22 ppm are assigned to the isomer of (Z)-configuration of the N=C bond. A nuclear-Overhauser-effect was observed between H-C(2) and H-C(1'), and between H-C(5) and H-C(2') in $\mathbf{4e}$, and between H-C(5) and H-C(1') in (Z)- $\mathbf{4e}$.

the exocyclic ethane bond¹⁷), all eight diarylprolinol ether derivatives, of which we have determined crystal structures¹⁸), have a *sc-exo*-conformation \mathbf{C} around this bond, and so has the ammonium salt $\mathbf{1b} \cdot \mathrm{HBF}_4$. The antiperiplanar (ap) conformation \mathbf{E} has

¹⁷) See the result of a search in the Cambridge Structural Data File (CSD) as of May 2008 [3].

¹⁸) This work and [3].

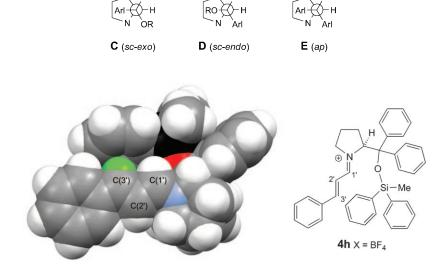


Fig. 2. Space-filling model of the X-ray crystal structure of iminium salt 4h, $X = BF_4$. Cf. Fig. 2 in [3] and the accompanying discussion. The shielding of H - C(3') (green label) in the NMR spectrum of this salt (Table 1) is compatible with the assumption that the conformation seen in the crystal is also populated in $(D_6)DMSO$ solution.

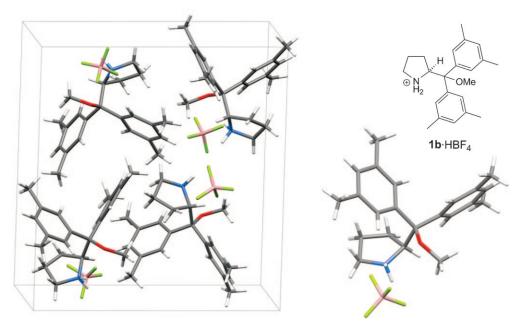
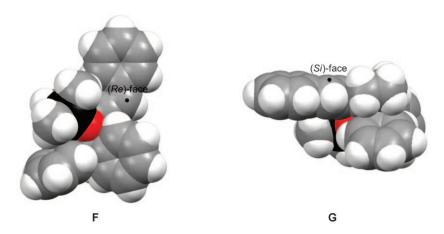



Fig. 3. Crystal structure of the ammonium salt $\mathbf{1b} \cdot HBF_4$. The exocyclic CH-C bond has sc-exoconformation.

been found only in hydrazones derived from N-amino-diphenylprolinol methyl ethers [23]¹⁹).

The crystal structure of enamine 3a has been discussed in our previous work [3]. From a view at the face of the plane containing the Ph-CH=CH-N moiety of the molecule (see F), it is apparent that a Me group of Me₃Si and one of the phenyl groups cause massive shielding of the enamine N=C bond *Re*-face, while the *Si*-face is wide open for electrophilic attack (see G)²⁰).

The crystal structures of the iminium salts 4d, $X = BF_4$, 4b, $X = BF_4$ and PF_6 , 4c and 4e, $X = Al[OC(CF_3)_3]_4$, are shown in *Figs.* 4-7, and some selected structural data are listed in *Table* 2 (for more details, see *Table* 7 in the *Exper. Part*). The iminium N-atoms are slightly pyramidalized (0.02-0.04 Å) towards the large substituent, the conformation of the pyrrolidine ring is such that the C(1')=N-C(2)-C(2'') torsion angle becomes 'as large as possible' $(-73 \text{ to } -79^\circ)$, there is a slight distortion of the C=N bond $(C(2')-C(1')=N-C(2):174-179^\circ)^{21}$). As mentioned above, the exocyclic C-C bond has sc-exo conformation, with the R group (Me or R_3Si) at the O-atom pointing up and away (torsion angles $C(2)-C(2'')-O-R:85-170^\circ$). These structural features may be considered as the result of repulsion minimization between the two substituents at N(1) and C(2) of the pyrrolidine ring. One of the aryl groups (the Arl^{Re} in an (S)-diarylprolinol, where it causes especially strong steric shielding in the enamine intermediate) and the RO group are located above one face of the π -system.

Of special interest are the diarylprolinol derivatives with *meta*-substituted phenyl groups, 3.5- $(H_3C)_2C_6H_3$ (*Fig.* 5) and 3.5- $(F_3C)_2C_6H_3$ (*Figs.* 6 and 7). Clearly, one of the *meta*-substituents and (in the case of the trimethylsilyl ether) one of the Me groups at

¹⁹⁾ If we could consider the nitrogen of the hydrazone a σ -donor and the oxygen of the MeO group a σ -acceptor, a $\sigma \rightarrow \sigma^*$ interaction would be at work to stabilize the *ap* conformation **E** in these derivatives; see entries 21 and 22 in Table 1 of [3].

²⁰⁾ Cf. Fig. 1 in [3] and the discussion in Sect. 2.1. of that work, and compare with the presentations of three iminium salts in Fig. 8, below.

²¹⁾ This is hardly caused by intramolecular forces, as the two extreme values are observed in the two symmetry-independent molecules of the 4d crystal structure.

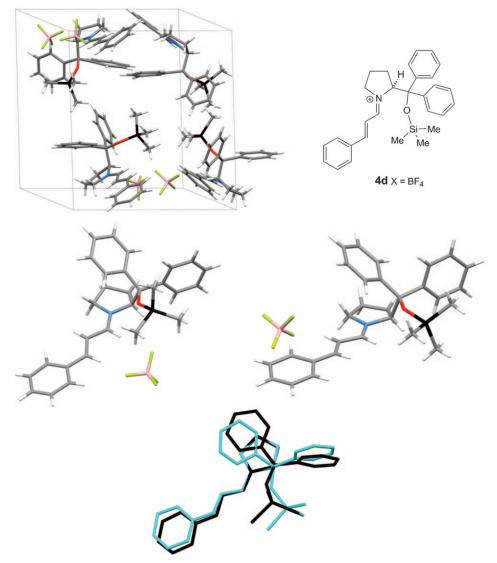


Fig. 4. Crystal structure of the iminium salt 4d, $X = BF_4$. The asymmetric unit contains two somewhat different conformations of the cation. As can be seen from the overlay, in which the five-membered ring and the π -system are superimposed as closely as possible, the torsion angle around the exocyclic C-C bond differs by a few degrees in these two conformations.

the Si-atom are the major contributors to steric shielding of the iminium π -face Si(C(1'))/Re(C(2'))/Re(C(3')) (Fig. 8). The superior performance of the organocatalyst **1e** with *geminal* 3,5-(F₃C)₂C₆H₃ groups is thus understandable, and it would appear reasonable to suggest that the CF₃ groups (volume of the hemisphere *ca.* 43 Å³) [24] are

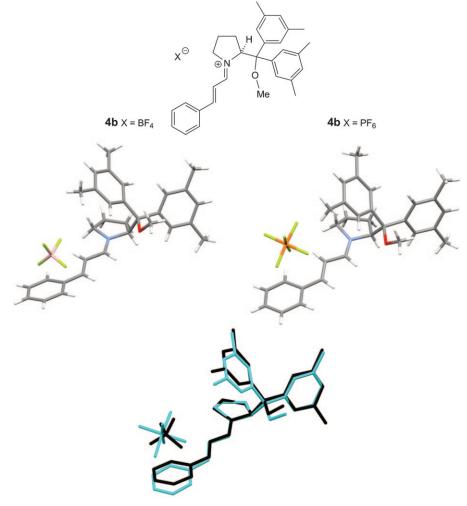


Fig. 5. Crystal structures of the BF_4 and PF_6 salts of **4b**. The crystal structures have the same spacegroup P1 with very similar cell dimensions and are almost superimposable.

primarily acting as 'big' methyl groups (volume of the hemisphere ca. 17 Å³), and that electronic or 'lipophilic' effects of the CF₃ groups are of less importance²²).

The role of the Al[OC(CF₃)₃]₄ anion in the salts **4c** and **4e** warrants comments: when going from **4e**, $X = PF_6$ or SbF_6 , to **4e**, $X = Al[OC(CF_3)_3]_4$, there is a jump of the melting point by ca. 100° ; while we could not prepare single crystals of the phosphate and antimonate salts of **4c** and **4e** (carrying *meta*-CF₃-substituents on the phenyl groups), the aluminate salts gave nice crystals in the first attempt. Large

²²) See, however, the low-field shifts observed in the NMR spectra of the CF₃-substituted iminium salts (*Table 1* and *Sect. 3*, *i*, above).

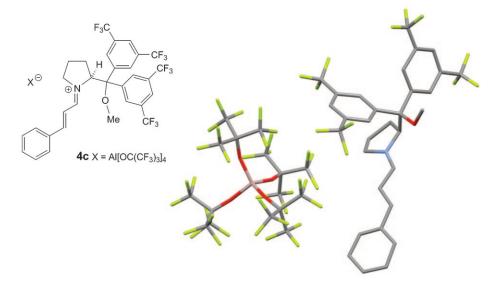


Fig. 6. X-Ray crystal structure of the bis(trifluoromethyl)phenyl derivative $\mathbf{4c}$, $X = Al[OC(CF_3)_3]_4$. The counter-anion is almost as large as the iminium ion! There is a massive disorder of all CF₃ groups, especially in the anion where two CF₃ fragments could not be localized in the electron density map and had to be included as rigid groups (cf. the Me₃SiO analog in Fig. 7).

lipophilic anions, such as this aluminate, are called *weakly-coordinating* anions (WCAs), and it has been suggested that their counterparts, the cations, attain structures similar to gas-phase structures (which have *no* counter-ion at all); such anions are thought to create *pseudo-gas-phase conditions in condensed phases* [21]. Thus, the similarity of the iminium-ion structures with 'normal' counterions (BF $_{4}^{-}$, PF $_{6}^{-}$, and SbF $_{6}^{-}$) and with the WCA Al[OC(CF $_{3}$) $_{3}$] $_{4}$ is compatible with the assumption that there is at least no pronounced counterion effect to be considered in the structures reported herein (see NMR chemical shift 'similarities' of the selected NMR signals for the three **4e** iminium salts in *Table 1*). If so, a comparison with DFT-calculated ('gas-phase') structures appears to be appropriate at this point.

5. Density-Functional Theory (DFT) Calculations of the Structures of [3,5- $(\mathbf{F}_3\mathbf{C})_2\mathbf{C}_6\mathbf{H}_3]_2$ -Substituted Prolinol-Derived Enamines and Iminium Ions. – DFT Calculations of the diarylprolinol-derived dienamine 5 and of the iminium ion 6 (Fig. 9) were first reported by $J \varphi r gensen$ and co-workers in 2006 and 2007 [7][25]. In these calculated structures, the exocyclic CH-C bond has sc-endo-conformation **D**, which leads to essentially complete coverage of the π -faces, syn to the large substituent at C(2) of the pyrrolidine ring by a bis(trifluoromethyl)phenyl group (see the space-filling representations²³) in Fig. 9 and compare with Fig. 8). It looks like the sc-exo-

²³) For another presentation, see Fig. 5 in [3].

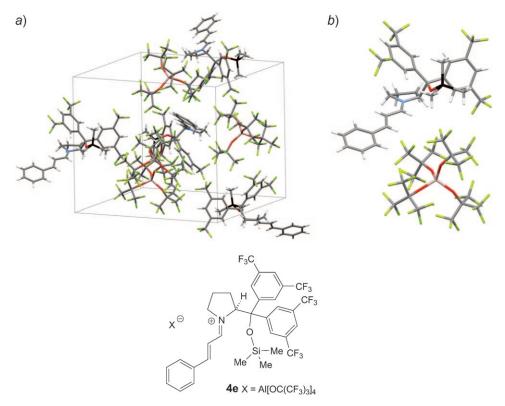


Fig. 7. Crystal structure of the bis[3,5-bis(trifluoromethyl)phenyl]prolinol trimethylsilyl ether-derived iminium salt $\mathbf{4e}$, $X = Al[OC(CF_3)_3]_4$. a) Unit cell, b) cation/anion pair.

conformation, which we see in all diarylprolinol-ether crystal structures, has nowhere been considered in these calculations.

We have now performed DFT calculations with the three possible conformations **C**, **D**, and **E** of the exocyclic ethane bond for $J \phi r gensen$'s dienamine **5** and for our cinnamoylidene iminium ion $4e^{24}$).

We first recalculated [27–31] *Jørgensen*'s dienamine structure **5** with s-trans-conformation around the N–C-bond and sc-endo-conformation (type **D**) of the exocyclic C–C bond at the B3LYP/6-31G(d) level: as can be seen from Table 3, the energy, as well as the detailed structure [7], was completely reproduced (cf. Fig. 9). We next calculated the structures of the dienamine **5** with sc-exo- and ap-conformations. The results listed in Table 3 show that the conformation of type **C** with the N-atom and the Me₃SiO group in sc-exo-relationship is the most stable one and the ap-arrangement

We performed geometry optimizations at the same computational level, B3LYP/6-31G(d), as the *Jørgensen* group, and then B3LYP and MP2 single-point energy evaluations using a little bit larger basis set, 6-311G(d,p), were carried out at the optimized geometries. The B3LYP calculations do not reproduce dispersion effects [26], but the MP2 calculations do consider them, at least partly. We thank Prof. S. Grimme (Universität Münster) for pointing this out to us.

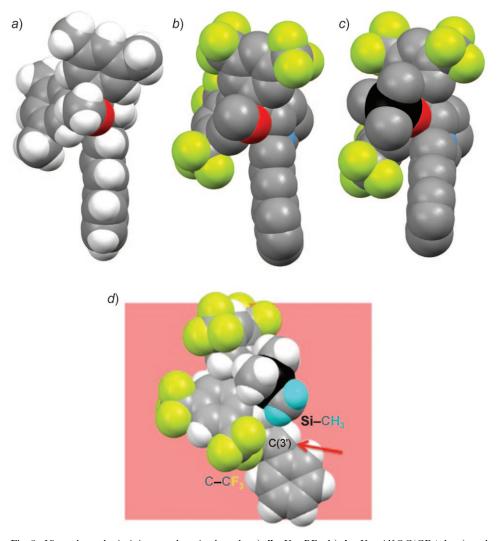


Fig. 8. View along the iminium π -plane in the salts a) **4b**, $X = PF_6$, b) **4c**, $X = Al[OC(CF_3)_3]_4$, c) and d) **4e**, $X = Al[OC(CF_3)_3]_4$. A meta-CH₃ and a meta-CF₃ group are sitting above one face of the π -plane, with increasing steric shielding from a) (meta-Me/MeO) to b) (meta-CF₃/MeO) to c) (meta-CF₃/Me₃SiO). The pink plane in d is the average plane of the enoyliminium π -system in **4e**; C(3') is the atom of nucleophilic attack (red arrow).

(type **E**) the least stable one of the three conformations. This conclusion remains unchanged in single-point energy evaluations at the B3LYP/6-31G(d)-optimized geometries. Thus, the most stable calculated structure of dienamine **5** and the X-ray structure of enamine **3a** have the same conformation around the exocyclic C-C bond (*Table 3*, top). The order of calculated stabilities of the three enamine conformations is the same in the gas phase and in toluene solution (*Table 3*, bottom). The dienamine **5**

Table 2. Some Selected Structural Data of Iminium Salts 4 and of Enamine 3a. Pyramidalization on the N-atom and various torsion angles in the crystal structures are given.

		Ξ,	- 1	\					
	× O X	OR OR	- Fa	Nummer	T T	HOCAN'2 N C(1')	Ari	_ I ~	
	Ph / 8			pyramidalization on N	N no r	C=N-C-C	S		
Structure	[ref.]		V-Pyramidality	N-Pyramidality Torsion angles [°]	[0				
		7	1[Ă]	C(1')=N-C(2)	-C(2'') C(2))-C(2")-O-R	C(2')-C(1')=N-	-C(2) O	C(1')=N-C(2)-C(2'') $C(2)-C(2'')-O-R$ $C(2')-C(1')=N-C(2)$ $O-C(2'')-C(2)-N$ $sc-exo$
4d	This work		0.030	- 76.9	134.0	0	178.1	55	54.0
©4-g	OSIMe ₃	ı	- 0.018	- 73.0		6	174.0	7.	2.7
4	[3]		0.022	76.4	132.9	6	177.7	55.	57.2
BF. P.	OSiPh ₂ Me		0.027	- 79.1	135.	0	178.8	ሽ	27.9
4 0	This work	work	0.021	- 78.5	169.9		-176.4	3	64.9
⊕ FB	OMe								
	<u> </u>								

Table 2 (cont.)						
Structure	[ref.]	N-Pyramidality	N-Pyramidality Torsion angles [°]			
		4 [Å]	C(1')=N-C(2)-C(2'') $C(2)-C(2'')-O-R$ $C(2')-C(1')=N-C(2)$ $O-C(2'')-C(2)-N$ $sc-exo$	C(2)-C(2'')-O-R	C(2')-C(1')=N-C(2)	O-C(2'')-C(2)-N sc-exo
PF © N OME	This work 0.038	0.038	-78.4	170.5	- 175.9	69.2
## F3C OME OME F3C OF3 AIOC(CF3)314	This work 0.001	0.001	- 73.2	167.6	177.6	69.4
F ₃ C OSIMe ₃ Ph F ₃ C CF ₃ Alloc(CF ₃) ₃ 4	This work 0.021	0.021	- 76.0	166.0	178.9	67.2
3a National Physics of Physics	[3]	0.037	-76.8	86.9	174.7	61.0

Table 2 (cont.)

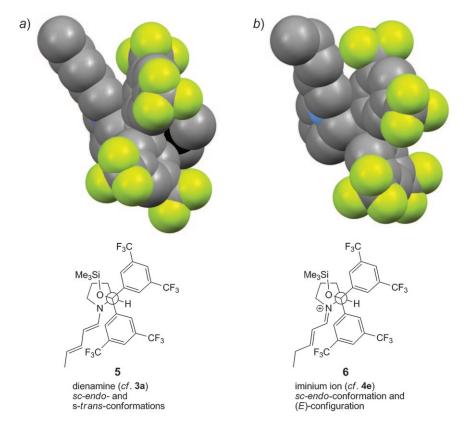


Fig. 9. Jørgensen's DFT-calculated structures of the dienamine $\mathbf{5}$ (a), and of an iminium ion $\mathbf{6}$ (b) derived from diarylprolinol $\mathbf{1e}$ and pentenal. The coordinates for generating these pictures are taken from [7]. With the sc-endo-conformation around the O-C-C-N bond the (Si)-aryl group winds up right on top of the dienamine and enoyliminium π -planes, with steric shielding much stronger than in the measured structures with sc-exo-conformation (cf. Fig. 8).

structure with s-cis-conformation of the exocyclic N-C bond was also calculated. All s-cis-structures are found to be less stable than the s-trans-sc-exo-form (by 1.6-5.9 kcal/mol; see Table 4, and compare with Table 3).

We then calculated the structures of the (E)-iminium ion **4e** with the three conformations **C**, **D**, and **E** of the exocyclic C–C bond in the gas-phase, at the B3LYP and MP2 levels, using 6-31G(d) and 6-311G(d,p) basis sets. Again, the *sc-exo*-conformation is by far the most stable one: the *sc-endo*-conformation (cf. 6) in Fig. 9) is up to 4 and the *ap*-conformation up to 8 kcal/mol less stable (Table 5).

An overlay of the calculated and measured sc-exo-structures of iminium ion $\mathbf{4e}$ is shown in Fig.~10. For comparison, the three conformations \mathbf{C} , \mathbf{D} , and \mathbf{E} of the isomeric (Z)-iminium ion $\mathbf{4e}$ were also calculated. At all three levels of theory, all three conformers came out at higher energies than those of the (E)-sc-exo-form (by 1.7 – 8.7 kcal/mol; see Table~6 and compare with Table~5).

Table 3. Selected Results of a Computational Search for the Most Stable Structure of Jørgensen's Dienamine 5 (cf. Fig. 9,a) with s-trans-N-C(1') Conformation, and Conformations of Type C, D, and E of the Exocyclic C-C Bond. Various basis functions were used. For further details, see Exper. Part. For a comparison with the calculated structures of s-cis N-C(1') conformation, see Table 4.

0.00

1.31

5.26

E_{elec} [kcal/mol]^b)

- **6. Discussion and Conclusions.** The isolation and structural characterization, supported by DFT calculations, of the diarylprolinol-ether derivatives **3** and **4**, the reactive intermediates in organocatalyses by (diarylpyrrolidin-2-yl)methanol ethers, confirm the generally accepted assumption [4] that the large ('obese' [5]) $Arl_2(RO)C$ substituent at C(2) of the pyrrolidine ring a) sterically blocks one face of the nucleophilic and electrophilic π -systems of these intermediates, and b) causes a preference for the s-*trans*-conformation of the enamine and for the (E)-configuration of the iminium ion. The thus derived topical attack of electrophiles and of nucleophiles, as indicated in **H** and **I**, is compatible with the observed stereochemical course of the corresponding reactions. There are, however, two new aspects concerning details of the general mechanistic model.
- a) The (E)/(Z) Ratio. When we dissolved the precipitated, analytically pure iminium salts 4 in CDCl₃, (D₆)DMSO, or (D₆)acetone, and recorded NMR spectra, we detected between 3 and 8% of the (Z)-isomers, besides the major (E)-isomers (see Exper. Part). To see whether the two geometrical isomers are in equilibrium with each other, we dissolved the CF₃-substituted iminium salt 4e, $X = PF_6$, in CD₃OD, recorded 1H -NMR spectra at temperatures between -15 and $+45^\circ$ and deduced the (E)/(Z)-

^{a)} Absolute energies for calculated compounds. ^{b)} Potential-energy differences between each conformer and the *sc-exo-*conformer are given. ^{c)} Single-point calculations at the B3LYP/6-31G(d)-optimized geometries.

Table 4. Results of Calculations of the Dienamine 5 Structures with s-cis-Conformation around the N-C(1') Bond and sc-exo, sc-endo-, and ap-Conformations of the Exocyclic C-C Bond in the Gas Phase and in Toluene Solution (cf. the corresponding s-trans-structures in Table 3). Note that, while all structures of s-cis-conformation are less stable than that of the s-trans-sc-exo-form, the s-cis-sc-endo form is slightly (0.1-0.6 kcal/mol) more stable than the s-cis-sc-exo-form in this calculation. While this small energy difference is within the error limit of the calculation, it is consistent throughout all levels of theory, in the gas phase as well as in toluene solution. More elaborate calculations (cf. Footnote 24) could possibly clarify this issue and might very well lead to the conclusion that there is an interaction between one of the CF_3 -substituted benzene rings and the electron-rich dienamine π -system in the s-cis-sc-endoform.

 $C_6H_3(CF_3)_2$

CPCM Calculations (toluene solution):

 $E_{\text{elec}} [\text{au}]^{\text{a}})$ $E_{\text{elec}} [\text{kcal/mol}]^{\text{b}})$

 $E_{\text{elec}} [au]^a)$

E_{elec} [kcal/mol]^b)

B3LYP/6-31G(d)c)

MP2/6-31G(d)c)

- 2740.186025

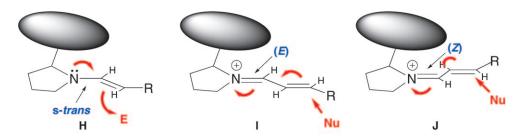
3.41

2732.858173

2.30

- 2740.186410

3.17


2732.858865

1.86

2740.182023

5.92 2732.853681

5.11

ratios from the signals at 5.67 and 6.06 ppm (H–C(2); cf. Fig. 1). The content of (Z)-isomer ($11\pm1\%$) did not vary within the detection limit of NMR-peak integration. Furthermore, inversion-transfer NMR experiments (a) with the same solution at 45° or

^a) Absolute energies for calculated compounds. ^b) Potential-energy differences between each conformer and the *sc-exo*-conformer with *s-trans*-conformation of the exocyclic N-C bond are given (*cf. Table 3*). ^c) Single-point calculations at the B3LYP/6-31G(d)-optimized geometries.

Table 5. Theoretical Structures Calculated at Various Levels of Theory for the sc-exo-, sc-endo-, and ap-Conformations of the Iminium Ion 4e. For an overlay of the measured (cf. Fig. 8, c and d) and the lowest-energy calculated structure, see Fig. 10. For a comparison with the analogous structures of (Z)-configuration, see Table 6.

b) in the presence of Et_3N at room temperature) showed that the rate constant of equilibration must be $\leq 0.05 \, \mathrm{s}^{-125}$). This means that we can not detect equilibration (*Scheme 4*)²⁶) between (*E*)- and (*Z*)-iminium salt **4** under these conditions and with the experiments carried out so far^{27}). If the (*Z*)-isomer would also be present in organocatalytic applications of the CF_3 -substituded prolinol $\mathrm{Me}_3\mathrm{Si}$ ether **1e**, we would expect an erosion of the enantioselectivity (see **I** vs. **J**): with a 9:1 (*E*)/(*Z*) ratio the enantiomer excess of a compound produced in such a process would be 80%. This is inconsistent with the generally observed [4] high enantioselectivities (er up to 99.5:0.5) of the reactions catalyzed by **1e** (carried out in solvents such as $\mathrm{CH}_2\mathrm{Cl}_2$, MeCN , dioxane, sometimes in the presence of a benzoic acid $\mathrm{Arl}\text{-CO}_2\mathrm{H}$ [4])²⁷).

Three lines of rationalization come to mind: i) The (Z)-content in the samples of the iminium salts 4 may be an 'artifact' of our salt preparation in EtOH, in the presence

a) Absolute energies for calculated compounds. b) Potential-energy differences between each conformer and the sc-exo-conformer are given. c) Single-point calculations at the B3LYP/6-31G(d)-optimized geometries.

²⁵⁾ We thank Drs. G. Deniau, and M.-O. Ebert, as well as Prof. B. Jaun (ETH-Zürich) for carrying out and interpreting the temperature-dependent NMR measurements.

²⁶⁾ An energy difference of 1.4 kcal/mol corresponds to a 10:1 ratio at room temperature. The (E)/(Z)-ratio of ca. 89:11 happens to be in reasonable agreement with the DFT-calculated 1.7 kcal/mol energy difference between (E)-sc-exo- and (Z)-sc-exo-4e (cf. Tables 5 and 6).

²⁷⁾ It is intriguing that, according to NMR spectra, the iminium salt derived from 2-[fluoro(diphenyl)methyl]pyrrolidine is present as a 1:1 mixture of (E)- and (Z)-forms in solution, while the pyrrolidine itself catalyzes the epoxidation by H₂O₂ of α,β-unsaturated aldehydes with enantioselectivities ranging from er 90:10 to 98:2 [19].

Table 6. Theoretical Structures Calculated at Various Levels of Theory for the sc-exo-, sc-endo-, and ap-Conformations of the Iminium Ion (Z)-**4e** of (Z)-Configuration of the Exocyclic N=C Bond. For comparison with the corresponding conformations with (E)-configuration, see Table 5.

		sc-exo	sc-endo	ap
Dihedral angle N-C-C	C-NO [°]	64.6	- 62.5	179.0
Gas-phase calculations:				
B3LYP/6-31G(d)	$E_{\rm elec}$ [au] a)	-2893.020342	-2893.019821	-2893.013816
	$E_{\rm elec}$ [kcal/mol] ^b)	3.64	3.97	7.74
$B3LYP/6-311G(d,p)^{c}$	$E_{\rm elec}$ [au] a)	-2893.757508	-2893.756427	-2893.750149
	$E_{\text{elec}} [\text{kcal/mol}]^{\text{b}})$	4.10	4.78	8.72
$MP2/6-311G(d,p)^{c}$	$E_{\rm elec}$ [au] a)	-2886.682738	-2886.682497	-2886.676750
	$E_{\text{elec}} [\text{kcal/mol}]^{\text{b}})$	1.73	1.88	5.49

a) Absolute energies for calculated compounds. b) Potential-energy differences between each conformer and the *sc-exo*-conformer with (*E*)-configuration of the exocyclic N=C bond (see *Table 5*) are given. c) Single-point calculations at the B3LYP/6-31G(d)-optimized geometries.

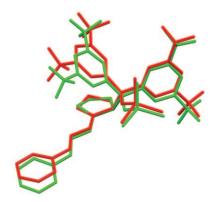
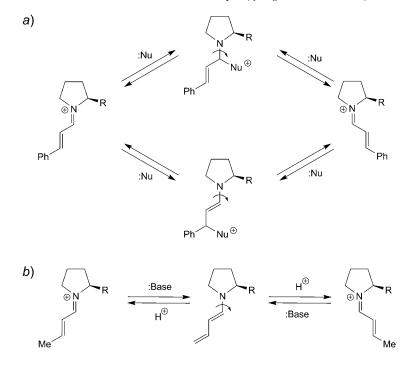



Fig. 10. Overlay of the measured (green) and calculated (red) structures of the iminium ion **4e**

of Et_3N , followed by precipitation from this solvent or from Et_2O (see *Sect.* 2 and *Exper. Part*). ii) Under the conditions of catalytic applications, the (E)-isomers **4** may be generated preferentially, equilibrate slowly or not at all with the (Z)-isomer, and react rapidly with nucleophiles (kinetic control) to give the precursors (see **I**) of the isolated products. iii) Both (E)- and (Z)-isomer are formed in the catalytic process, and the (E)-isomer is a much more reactive electrophile [17b] than the (Z)-isomer.

Detailed mechanistic and, possibly, theoretical investigations will be necessary in order to elucidate the apparent discrepancy between our results and the high performance of the diarylprolinol ethers as organocatalysts.

Scheme 4. Possible Modes of Iminium (E) \rightleftharpoons (Z) Equilibration. a) Iminium ions of type 4; b) an iminium salt derived from crotonaldehyde (cf. Fig. 9 and Tables 3-6).

b) The sc-exo-Conformation. In the generally accepted mechanistic model, 'wishful thinking' has placed an aryl group above the π -system in the reactive intermediates of catalysis by diarylprolinol ethers (see, for instance, the presentation **K** used in a recent – anonymous – publication on the subject and the calculation by the Jørgensen group presented in Fig. 9). From the crystal structures and from the DFT calculations, we are now led to assume that the C–C bond between the diaryl(methoxy)methyl or diaryl(silyloxy)methyl group and the pyrrolidine-ring C-atom adopts preferentially ($\geq 3.2 \text{ kcal/mol}$) a sc-exo-conformation, **C**, in the reactive electrophilic intermediates, such as the iminium ions **4** (see **L**)²⁸). In this conformation, it is not so much the benzene ring of the aryl group itself, but a meta-substituent on one of the aryl groups and the RO group, which provide the major contributions to steric hindrance of approach to one of the faces of the iminium π -system (see especially Fig. 8).

In conclusion, the structure determination of reactive intermediates of organocatalysis by diarylprolinol ethers has provided new insights and, at the same time, raised some interesting questions concerning details of the mechanism.

²⁸) We do not know the barrier to rotation around this bond, but we may assume that it is substancial (*cf.* the discussion of the *geminal*-diaryl effect in stereoselective organic syntheses in [3] and [32]).

We thank *P. Kälin* and *M. Schneider* (Elemental Analyses), *R. Häfliger*, *L. Bertschi*, and *O. Greter* (MS Service), Prof. *B. Jaun*, Dr. *M.-O. Ebert*, *R. Frankenstein*, and *P. Zumbrunnen* (NMR Service), and *M. Solar* (X-Ray Service), as well as the Laboratory of Organic Chemistry (ETHZ) and the *Novartis Pharma AG* for all their help and support.

Experimental Part

General. All reactions were performed under Argon in dried glassware using anh. solvents except when using aq. reagents. All chemicals were of reagent grade and used as supplied, unless stated otherwise. Solvents for extractions and chromatography were of technical grade and were distilled prior to use. Sat. hydrocarbon solvents were kept over Na wire. Extracts were dried over technical grade MgSO₄. Anal. TLC: pre-coated *Merck* silica gel 60 F₂₅₄ plates (0.25 mm). Column chromatography (CC): Fluka silica gel 60 (230 – 400 mesh). M.p.: Büchi 510 melting-point apparatus and are uncorrected. Optical rotations: Jasco P-2000 polarimeter. IR Spectra: as neat solid/oil on a Perkin-Elmer precisely Universal ATR Sampling Accessory; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Bruker AVANCE (¹H: 300 MHz, ¹³C: 75 MHz), DRX (¹H: 400 MHz, ¹³C: 101 MHz), and AV (¹H: 400 MHz, ¹³C: 101 MHz) spectrometer, or Varian Gemini-300 (¹H: 300 MHz, ¹³C: 75 MHz) spectrometer; chemical shifts (δ) are reported in ppm rel. to Me₄Si (0.00 ppm). High-resolution (HR) MS: IonSpecUltima 4.7-T-FT Ion Cyclotron Resonance (ICR; HR-MALDI, in 2,5-dihydroxybenzoic acid matrix) spectrometer. Elemental analyses: by the Microanalytical Laboratorium at the Laboratory for Organic Chemistry, ETH Zürich.

Preparation of Diphenylprolinols 1 and Oxazolidines 2. (R)-Bis[4-tert-butyl)phenyl](pyrrolidin-2yl)methanol (1; $Arl = 4-BuC_6H_4$, R = H) and (R)-1,1-bis[4-(tert-butyl)phenyl]tetrahydro-1H-pyrrolo[1,2-c][1,3]oxazol-3-one (2а). a) To a soln. of [4-(tert-butyl)phenyl]magnesium bromide (2м in Et₂O, 50 ml, 100 mmol) at 0° was added a soln. of N-(ethoxycarbonyl)-D-proline methyl ester²⁹) (6.3 g, 31.27 mmol) in anh. THF (40 ml, r.t.) during 40 min. After the addition, the mixture was stirred for 1 h at 0° and 24 h at r.t. The reaction of the ice-cold (0°) mixture was carefully quenched by slow addition of aq. sat. $NH_4Cl(30 \text{ ml})$. After stirring for 1 h at r.t., the mixture was filtered through a short plug of Celite and thoroughly washed with CH₂Cl₂. Volatile components were evaporated in vacuo, and the residue was treated with $H_2O(100 \text{ ml})$ and extracted with $CH_2Cl_2(4 \times 100 \text{ ml})$. The combined org. phase was dried (MgSO₄), filtered, and volatile components were evaporated in vacuo. The residue was dissolved in MeOH (120 ml), KOH (19 g) was added, and the resulting mixture was heated under reflux for 4 h. Volatile components were carefully evaporated in vacuo. The residue was treated with CH₂Cl₂ (200 ml) upon which a gel-like mixture was formed. The mixture was filtered through a short plug of Celite and thoroughly washed with CH₂Cl₂ (4×100 ml). The filtrate was washed with H₂O (100 ml) and brine (100 ml), and dried (MgSO₄), filtered, and volatile components were evaporated in vacuo. The residue was purified by CC: 1st eluate: AcOEt/hexane 1:2 to elute 2a (ca. 10-15 mmol of 2a containing several

²⁹⁾ N-(Ethoxycarbonyl)-D-proline methyl ester was prepared from D-proline methyl ester according to the literature procedure used for the preparation of its L-enantiomer, N-(ethoxycarbonyl)-L-proline methyl ester [33].

other by-products, in tubes containing the highest concentration of the product, $\bf 2a$ tends to precipitate from the soln.); 2nd eluate: AcOEt/Et₃N 50:1 to give 2.98 g of $\bf 1$ (Arl = 4-BuC₆H₄, R = H) as a white solid containing $\it ca.$ 20% of (R)-1,1-bis/4-(tert-butyl)phenyl]tetrahydro-1H-pyrrolo[1,2-c][1,3]oxazole (2b), that could not be separated from $\bf 1$ (Arl = 4-BuC₆H₄, R = H) under these conditions. Fractions containing the product were evaporated $\it in vacuo$ to give crude $\bf 2a$ and $\bf 1$ (Arl = 4-BuC₆H₄, R = H). The so isolated $\bf 2a$ was used for the preparation of anal. pure $\bf 1$ (Arl = 4-BuC₆H₄, R = H; see procedure $\it b$). A small amount of $\bf 2a$ was purified by CC (two times CC, AcOEt/hexane 1:5) to obtain an anal. pure sample of $\bf 2a$. Crude $\bf 1$ (Arl = 4-BuC₆H₄, R = H) was used to prepare compound $\bf 1i$ and to isolate the side-product $\bf 2b$.

b) Crude **2a** (4.5 g, *ca*. 10 mmol, see *a*, above) in MeOH (100 ml) and KOH (27 g) were heated under reflux for 9 h. Volatile components were carefully evaporated *in vacuo*. The residue was treated with CH₂Cl₂ (150 ml) upon which a gel-like mixture was formed. The mixture was filtered through a short plug of *Celite* and thoroughly washed with CH₂Cl₂ (4×100 ml). The filtrate was washed with H₂O (100 ml) and brine (100 ml), and dried (MgSO₄), filtered, and volatile components were evaporated *in vacuo*. To a cold soln. of the residue in Et₂O (200 ml, 0°) was added a cold soln. of H₂SO₄ in Et₂O (0.1M, 100 ml, 0°) during 10 min. The white precipitate was collected by filtration and washed with Et₂O (300 ml) and H₂O (200 ml). The solid was suspended in a mixture of NaOH (aq., 2M, 150 ml) and THF (100 ml) and vigorously stirred for 5 h at r.t. The bulk of the THF from the mixture was carefully evaporated *in vacuo*. The remaining soln. was extracted with CH₂Cl₂ (4×100 ml), and the combined org. phase was washed with brine (100 ml), dried (MgSO₄), filtered, and volatile components were evaporated *in vacuo* to give **1** (Arl = 4-BuC₆H₄, R = H). Yield: 2.47 g (*ca*. 70%).

Data of **1** (Arl = 4-'BuC₆H₄, R = H). White solid. M.p. $160-162^{\circ}$. [α]_D^{1L} = +52.2 (c=0.18, CH₂Cl₂). IR: 2965m, 2866w, 2843w, 1508w, 1462w, 1403m, 1365m, 1324w, 1267m, 1203w, 1188w, 1110m, 1101m, 1019w, 997m, 915m, 874m, 844m, 836s, 823s, 810m, 707m, 693m, 655m, 637m. ¹H-NMR (400 MHz, (D₆)DMSO): 1.23 (s, 'Bu); 1.24 (s, 'Bu); 1.41 – 1.55 (m, CH₂); 1.57 – 1.68 (m, CH₂); 2.81 – 2.94 (m, CH₂); 3.30 (br. s, NH); 4.24 (t, t = 7.7, H – C(2)); 7.20 – 7.27 (t = 4 arom. H); 7.34 – 7.38 (t = 7.38 (t = 2 arom. H); 7.45 – 7.50 (t = 2 arom. H). ¹³C-NMR (101 MHz, (D₆)DMSO): 25.3; 26.4; 31.0; 33.8; 46.7; 64.0; 76.7; 124.2; 124.3; 124.8; 125.6; 143.3; 144.9; 147.8; 148.0. HR-MS (MALDI): 366.2791 (100, [t + H] $^+$, C₂₅H₃₆NO $^+$; calc. 366.27914). Anal. calc. for C₂₅H₃₅NO (365.55): C 82.14, H 9.65, N 3.83; found: C 81.87, H 9.72, N 3.83.

Data of **2a**. White solid. M.p. $240-243^{\circ}$. $[\alpha]_{\rm D}^{\rm Int} = +124.5$ (c=0.44, ${\rm CH_2Cl_2}$). IR: 2961m, 2902w, 2869w, 1747s, 1510w, 1475w, 1462w, 1391m, 1362w, 1345w, 1325w, 1266m, 1230m, 1199w, 1110w, 1064m, 1021w, 999s, 969m, 861w, 843w, 823s, 771m, 720w, 709w. $^1{\rm H}$ -NMR (300 MHz, ${\rm CDCl_3}$): 1.05-1.21 (m, 1 H, ${\rm CH_2}$); 1.29 (s, 2 'Bu); 1.67-1.77 (m, 1 H, ${\rm CH_2}$); 1.78-2.04 (m, ${\rm CH_2}$); 3.22 (ddd, J=3.8; 9.3; 11.4, 1 H, ${\rm CH_2}$); 3.71 (dt, J=8.1, 11.4, 1 H, ${\rm CH_2}$); 4.49 (dd, J=5.4, 10.5, ${\rm CH}$); 7.26-7.38 (m, 6 arom. H); 7.41-7.46 (m, 2 arom. H). $^{13}{\rm C}$ -NMR (101 MHz, ${\rm CDCl_3}$): 25.1; 29.2; 31.39; 31.43; 34.63; 34.64; 46.1; 69.8; 86.1; 125.2; 125.3; 125.6; 125.7; 137.5; 140.8; 150.6; 151.2; 160.8. HR-MS (MALDI): 391.2510 (100, M^+ , $C_{26}H_{33}{\rm NO_2}^+$; calc. 391.2506). Anal. calc. for $C_{26}H_{33}{\rm NO_2}$ (391.55): C 79.76, H 8.49, N 3.58; found: C 79.64, H 8.57, N 3.55.

(S)-2-[[[Dimethyl(phenyl)silyl]oxy](diphenyl)methyl]pyrrolidine (1f). According to a literature procedure [34] Me₂PhSiCl (392 μl, 2.37 mmol) was added to a soln. of the (S)-diphenyl(pyrrolidin-2yl)methanol (1a; 500 mg, 1.97 mmol), Et₃N (550 μl, 3.97 mmol), and 4-(dimethylamino)pyridine (DMAP; 17 mg, 5.9 µmol) in anh. CH₂Cl₂ (18 ml) under Ar in a 50-ml two-necked round-bottomed flask fitted with stirrer bar, stopper, and gas inlet (dried by heat gun at 0.3 mbar). The resulting colorless soln. was stirred for 20 h, after which it had become pink. TLC indicated the reaction was complete, and the reaction was quenched by pouring into ice/H₂O (25 ml). This mixture was extracted with AcOEt $(3 \times 25 \text{ ml})$, and the org. layers were combined and washed with H_2O (25 ml), resulting in an emulsion. This was broken up by washing with brine $(3 \times 25 \text{ ml})$. The org. layer was dried (MgSO₄) and concentrated to give a yellow oil (ca. 860 mg). The crude material was purified by CC (3×25 cm; AcOEt/hexane 1:1) to give a yellow oil which crystallized on standing to give 1f (682 mg, 89%). Large yellow cubes. M.p. $59-61^{\circ}$. [α]_D¹¹ = -46.0 (c=1.27, CHCl₃). IR (neat): 3017w, 2955m, 2872w, 1599w, 1490m, 1446m, 1428m, 1401m, 1290w, 1256m, 1243m, 1197m, 1141s, 1118s, 1074s, 936m, 920w. ¹H-NMR (300 MHz, CDCl₃): 0.09 (s, Me₂Si); 1.18-1.28 (m, 1 H, CH₂); 1.40-1.80 (m, 3 H, CH₂, NH); 2.64-2.71 $(m, 1 \text{ H}, \text{CH}_2); 2.76 - 2.84 (m, 1 \text{ H}, \text{CH}_2); 4.02 (t, J = 7.2, \text{H} - \text{C}(2)); 7.19 - 7.55 (m, 15 \text{ arom. H}).$ ¹³C-NMR (75 MHz, CDCl₃): 1.13; 1.28; 24.8; 27.5; 47.1; 65.4; 83.6; 126.7; 127.0, 127.6 (2×); 128.2; 128.4; 128.9; 133.3;

140.5; 145.6; 146.6. ESI-MS: 107 (12); 149 (25); 310 (22); 181 (100); 207 (12); 236 (88); 310 (21); 388 (18); 391 (12). HR-ESI-MS: 388.2088 (C₂₅H₃₀NOSi⁺; calc. 388.2091).

(S)-2-[[[Methyl(diphenyl)silyl]oxy](diphenyl)methyl]pyrrolidine (1h). Same procedure as for the synthesis of 1f (see above), except that MePh₂SiCl (534 μ l, 2.37 mmol) was used for the silylation. The resulting colorless soln. was stirred for 16.5 h, after which it had become yellow. Workup gave a yellow foam (1.10 g). The crude material was purified by CC (3 × 25 cm; AcOEt/hexane 1:1) to give 1h (787 mg, 89%). Amorphous yellow solid. M.p. 88–90°. [α]_D^{1,1} = -48.2 (c = 1.02, CHCl₃). IR (neat): 2867w, 1491w, 1448w, 1427s, 1400w, 1245w, 1196w, 1137s, 1115s, 1073s, 1020w, 930w. ¹H-NMR (300 MHz, CDCl₃): 0.20 (s, MeSi); 0.92 – 1.05 (m, 1 H, CH₂); 1.24 – 1.46 (m, CH₂); 1.54 – 1.67 (m, 1 H, CH₂); 1.70 (br. s, NH); 2.55 (ddd, J = 5.2; 7.6; 9.8, 1 H, CH₂); 2.73 (dt, J = 6.4; 9.8, 1 H, CH₂); 4.00 (t, J = 7.4, H–C(2)); 7.18 – 7.39 (m, 14 arom. H); 7.48 – 7.54 (m, 6 arom. H). ¹³C-NMR (75 MHz, CDCl₃): -0.8; 24.3; 27.3; 46.8; 65.2; 83.9; 126.9; 127.2; 127.5; 127.6 (2 ×); 127.8 (2 ×); 128.5; 129.1; 134.3; 134.5; 139.2; 139.5; 145.7; 146.6. EI-MS: 70 (100); 165 (3); 197 (14); 434 (0.3). HR-EI-MS: 434.1935 ([M – Me]⁺, C₂₉H₂₈NOSi⁺; calc. 434.1935).

Preparation of $R_2^1R^2SiO$ -Protected Prolinole Derivatives **1g**, **1i**, and **2b**. General Procedure 1 (GP 1)³⁰). To a soln./suspension of diarylprolinol (1 equiv.) in anh. CH_2Cl_2 (V_1) at r.t. under Ar were added Et_3N (2 equiv.), DMAP (0.06 equiv.) and $R_2^1R^2SiCl$ (1.2 equiv.). After stirring at r.t. for hours (t_1), the reaction was quenched with ice cold H_2O (25–50 ml), and the resulting mixture was extracted with AcOEt (2 × 100 ml). The combined org. phase was dried (MgSO₄), filtered, and volatile components were evaporated *in vacuo*. The residue was purified by CC to give **1g** and **1i** (or **1i** and **2b**).

(R)-2-(Bis[(4-tert-butyl)phenyl]{[dimethyl(phenyl)silyl]oxy]methyl)pyrrolidine (1g). Prepared according to GP1 from 1 (Arl = 4-BuC₆H₄, R = H; 215 mg, 0.59 mmol) and Me₂PhSiCl (120 μl, 0.71 mmol): CH₂Cl₂ (6 ml), Et₃N (164 μl, 1.18 mmol), DMAP (4 mg, 0.035 mmol); t_1 = 22 h; CC (AcOEt/hexane 1:4). Yield: 224 mg (76%). Colorless oil. [α]_D^{1L} = +45.3 (c = 0.15, CH₂Cl₂). IR: 2960m, 2904w, 2869w, 1509w, 1475w, 1461w, 1428w, 1403w, 1363w, 1268w, 1249m, 1202w, 1144w, 1112s, 1075m, 1037m, 1015m, 934w, 877m, 825s, 801m, 780s, 726m, 699s, 648m. ¹H-NMR (400 MHz, CDCl₃): 0.25 (s, 2 Me); 1.31 – 1.38 (m, 1 H, CH₂); 1.44 (s, 'Bu); 1.45 (s, 'Bu); 1.56 – 1.67 (m, CH₂); 1.70 – 1.80 (m, 1 H, CH₂); 1.87 (br. s, NH); 2.78 – 2.86 (m, 1 H, CH₂); 2.88 – 2.95 (m, 1 H, CH₂); 4.15 (t, t = 7.5, H – C(2)); 7.35 – 7.46 (m, 9 arom. H); 7.50 – 7.56 (m, 2 arom. H); 7.63 – 7.68 (m, 2 arom. H). ¹³C-NMR (101 MHz, CDCl₃): 1.0; 1.1; 24.8; 27.4; 31.5; 34.43; 34.45; 47.0; 65.6; 83.4; 124.4; 124.5; 127.3; 127.6; 128.1; 128.9; 133.4; 140.8; 142.6; 143.5; 149.5; 149.7. HR-MS (MALDI): 499.3259 (100, M⁺, C₃₃H₄₅NOSi⁺; calc. 499.3265). Anal. calc. for C₃₃H₄₅NOSi (499.80): C 79.30, H 9.07, N 2.80; found: C 78.34, H 9.01, N 2.75.

(R)-2-(Bis[(4-tert-butyl)phenyl][[methyl(diphenyl)silyl]oxy]methyl)pyrrolidine (**1i**) and **2b**. Prepared according to $GP\ 1$ from crude **1** (Arl = 4-'BuC₆H₄, R = H; 310 mg, ca. 0.700 mmol, containing ca. 20% of **2b**) and MePh₂SiCl (183 μ l, 0.84 mmol): CH₂Cl₂ (7 ml), Et₃N (195 μ l, 1.4 mmol), DMAP (5 mg, 0.042 mmol); t_1 = 20 h; CC (AcOEt/hexane 1:4) afforded **1i** (300 mg, 76%) and **2b** (47 mg, ca. 88%).

Large-Scale Preparation of **1i.** Prepared according to *GP 1* from anal. pure **1** (Arl = 4-'BuC₆H₄, R = H; 1.65 g, 4.52 mmol) and MePh₂SiCl (1.18 ml, 5.42 mmol) (*GP 5*): CH₂Cl₂ (45 ml), Et₃N (1.26 ml, 9.03 mmol), DMAP (33 mg, 0.27 mmol); t_1 = 23 h; CC (AcOEt/hexane 1:4). Yield: 2.04 g (80%).

Data of **1i** (elutes first). White solid. M.p. $61-65^{\circ}$. [a]_D^{1.1}. = +61.0 (c=0.25, CH₂Cl₂). IR: 2961m, 2904w, 2867w, 1509w, 1475w, 1461w, 1428m, 1403w, 1363w, 1269w, 1251w, 1190w, 1143w, 1109s, 1063m, 1014m, 936w, 874m, 842w, 824m, 788s, 734s, 715s, 698s, 666m. ¹H-NMR (400 MHz, CDCl₃)³¹): 0.31 (s, Me); 0.98–1.09 (m, 1 H, CH₂); 1.34 (s, 'Bu); 1.34 (s, 'Bu); 1.38–1.47 (m, CH₂); 1.60–1.73 (m, 2 H, CHH, NH); 2.56–2.67 (m, 1 H, CH₂); 2.70–2.79 (m, 1 H, CH₂); 4.04 (t, t = 7.2, H–C(2)); 7.22–7.37 (m, 12 arom. H); 7.45–7.49 (m, 2 arom. H); 7.52–7.58 (m, 4 arom. H). ¹³C-NMR (101 MHz, CDCl₃): –0.6; 24.3; 27.3; 31.51; 31.52; 34.40; 34.43; 46.7; 65.4; 83.7; 124.45; 124.46; 127.2; 127.47; 127.48; 128.1; 128.93; 128.95; 134.3; 134.5; 139.4; 139.6; 142.6; 143.4; 149.4; 149.7. HR-MS (MALDI): 561.3425 (100, m+

³⁰⁾ The volumes (in ml) of H₂O or solvents given in all General Procedures refer to the batch sizes (1 – 4 mmol) given in the corresponding individual procedures.

³¹⁾ If one sees rotamers in NMR spectra recorded in CDCl₃, one should record the same spectra in DMSO to avoid that!

 $C_{38}H_{47}NOSi^+$; calc. 561.3422). Anal. calc. for $C_{38}H_{47}NOSi$ (561.87): C 81.23, H 8.43, N 2.49; found: C 81.10, H 8.56, N 2.46.

Data of **2b** (elutes second). White solid. M.p. $162-167^{\circ}$. $[\alpha]_{\rm D}^{\rm TL}=+227.8~(c=0.53,~{\rm CH_2Cl_2})$. IR: 2960m, 2867w, 1507m, 1475w, 1461w, 1404w, 1362w, 1268m, 1192w, 1172w, 1155w, 1131w, 1109m, 1091w, 1075w, 1023w, 1005s, 963m, 953m, 941m, 927m, 843m, 820s, 727w, 709m, 695m. $^{\rm 1}$ H-NMR (400 MHz, CDCl₃): 1.16–1.23 (m, 1 H, CH₂); 1.27 (s, Bu); 1.27 (s, Bu); 1.59–1.70 (m, 3 H, CH₂); 2.74–2.83 (m, 1 H, CH₂); 3.19–3.27 (m, 1 H, CH₂); 4.31 (d, d =6.1, 1 H, CH₂); 4.36 (t, d =7.0, CH); 4.48 (d, d =6.1, 1 H, CH₂); 7.22–7.34 (m, 6 arom. H); 7.40–7.45 (m, 2 arom. H). 13 C-NMR (101 MHz, CDCl₃): 26.5; 30.6; 31.4; 31.5; 34.4; 34.5; 56.6; 71.4; 85.8; 88.1; 124.7; 125.1; 125.6; 126.7; 141.0; 141.8; 149.1; 149.8. HR-MS (MALDI): 378.2791 (100, [m + H] $^+$, $C_{26}H_{36}$ NO $^+$; calc. 378.27914). Anal. calc. for $C_{26}H_{35}$ NO (377.56): C 82.71, H 9.34, N 3.71; found: C 82.49, H 9.34, N 3.75.

Preparation of the Ammonium Salts $1 \cdot HX$. Preparation of BF_4 Salts of the Secondary Amines $1a \cdot HBF_4$ and $1b \cdot HBF_4$. General Procedure $2 (GP 2)^{30}$). To a soln. of a secondary amine (1 equiv.) in anh. Et₂O (V_1) at 0° under Ar was added a soln. of $HBF_4 \cdot Et_2O$ (1 equiv.) in anh. Et₂O (V_2) at r.t. during 10 min. The mixture was stirred for additional t_1 min. at 0° and t_2 min at r.t. The precipitate was collected by filtration, washed with anh. Et₂O (30 ml), and dried under high vacuum to give BF_4 salts $1a \cdot HBF_4$ and $1b \cdot HBF_4$.

(S)-2-[Hydroxy(diphenyl)methyl]pyrrolidinium Tetrafluoroborate (${\bf 1a} \cdot {\rm HBF_4}$). Prepared according to GP 2 from ${\bf 1a}$ (510 mg, 2.01 mmol) and HBF $_4 \cdot {\rm Et_2O}$ (276 µl, 2.01 mmol): $V_1 = 80$ ml; $V_2 = 30$ ml; $t_1 = 60$ min; $t_2 = 10$ min. Yield: 660 mg (96%). White solid. M.p. 207 – 209°. [α] $_{\rm ID}^{\rm LL} = +49.1$ (c = 0.33, EtOH). IR: 3469w, 3233w, 3193w, 1578w, 1495w, 1450m, 1395w, 1361m, 1328w, 1268w, 1185m, 1162w, 1112s, 1065s, 1043s, 981s, 956s, 944s, 882m, 861w, 771s, 753s, 698s, 641s. $^1{\rm H-NMR}$ (400 MHz, (D $_6$)DMSO): 1.79 – 1.98 (m, 2 CH $_2$); 3.04 – 3.20 (m, CH $_2$); 4.86 (deg. t, J = 7.5; 7.8, CH); 6.58 (s, OH); 7.21 – 7.28 (m, 2 arom. H); 7.31 – 7.40 (m, 4 arom. H); 7.51 – 7.63 (m, 4 arom. H); 7.89 (s, 1 H, NH $_2^+$); 8.85 (s, 1 H, NH $_2^+$). $^1{\rm S}$ C-NMR (101 MHz, (D $_6$)DMSO): 23.9; 25.8; 46.7; 65.4; 76.9; 125.56; 125.59; 127.1; 127.2; 128.2; 128.4; 144.4; 144.9. HR-MS (MALDI): 254.1539 (100, M^+ , $C_{17}H_{20}NO^+$; calc. 254.15394). Anal. calc. for $C_{17}H_{20}BF_4NO$ (341.15): C 59.85, H 5.91, N 4.11; found: C 59.98, H 5.99, N 4.05.

(S)-2-[Bis(3,5-dimethylphenyl)(methoxy)methyl]pyrrolidinium Tetrafluoroborate ($1b \cdot HBF_4$). Prepared according to $GP\ 2$ from (S)-2-[bis(3,5-dimethylphenyl)(methoxy)methyl]pyrrolidine ($1b \cdot HBF_4$). 39 mmol; which was quantitatively prepared from its HCl salt (500 mg, 1.39 mmol) by neutralization (aq. Na₂CO₃) and extraction with CH₂Cl₂ sequence) and HBF₄ · Et₂O (191 µl, 1.39 mmol): $V_1 = 60$ ml; $V_2 = 10$ ml; $t_1 = 10$ min; $t_2 = 30$ min. Yield: 460 mg (80%). White solid. M.p. 192 – 195°. [α]_D⁻¹ = -37.2 (c = 0.28, CH₂Cl₂). IR: 3118w, 1604m, 1457w, 1408w, 1371w, 1297w, 1270w, 1223w, 1177w, 1062s, 1021s, 922m, 865m, 857m, 811m, 760m, 720m, 700w. ¹H-NMR (400 MHz, CDCl₃): 1.16 – 1.28 (m, 1 H, CH₂); 1.86 – 2.00 (m, CH₂); 2.23 – 2.39 (m, 1 H, CH₂); 2.31 (s, 2 Me); 2.32 (s, 2 Me); 2.67 – 2.80 (m, 1 H, CH₂); 3.07 (s, MeO); 3.37 – 3.48 (m, 1 H, CH₂); 4.86 – 4.96 (m, H – C(2)); 6.54 (br. s, 1 H, NH₂⁺); 6.90 (s, 2 arom. H); 6.97 (s, 2 arom. H); 7.00 (s, 2 arom. H); 7.79 (br. s, 1 H, NH₂⁺). ¹³C-NMR (101 MHz, CDCl₃): 21.5; 21.6; 24.0; 27.4; 47.4; 51.6; 63.4; 83.6; 126.1; 126.9; 130.4; 130.6; 138.1; 138.2; 138.5; 138.6 HR-MS (MALDI): 324.2322 (100, M⁺, C₂₂H₃₀NO⁺; calc. 324.23219). Anal. calc. for C₂₂H₃₀BF₄NO (411.28): C 64.25, H 7.35, N 3.41; found: C 64.42, H 7.34, N 3.40.

Preparation of BF_4 Salts of Secondary Amines $\mathbf{1d} \cdot HBF_4$, $\mathbf{1h} \cdot HBF_4$, and $\mathbf{1i} \cdot HBF_4$. General Procedure 3 (GP 3)³⁰). According to GP 2, the initially obtained precipitate (in case the desired product did not precipitate readily, hexane (up to 50 ml) was added to the mixture, and vigorous stirring at 0° was continued until a fine precipitate was formed) consisted of the desired R_3SiO -protected prolinol-derived BF_4^- salt (major product) and various amounts (ca. 5–36%) of undesired R_3SiO -deprotected BF_4^- salt (minor product). The precipitate was suspended in anh. CH_2Cl_2 (V_3) or a mixture of anh. $CHCl_3$ /hexane (V_3), where only the desired R_3SiO -protected prolinol-derived BF_4^- salt was soluble, and quickly filtered and washed through a short plug of Celite with the same solvent or solvent mixture. Volatile components were evaporated in vacuo, and the residue was dried under high vacuum. Et_2O and hexane were added to the residue, followed by intense 'scratching by spatula' until a nicely powdered, filterable solid was formed. The so formed solid was collected by filtration, washed with Et_2O (20 ml), and dried under high vacuum to give salts $\mathbf{1d} \cdot HBF_4$, $\mathbf{1h} \cdot HBF_4$, and $\mathbf{1i} \cdot HBF_4$.

(S)-2-{Diphenyl[(trimethylsilyl)oxy]methyl]pyrrolidinium Tetrafluoroborate ($1d \cdot HBF_4$). Prepared according to GP3 from (S)-2-{diphenyl[(trimethylsilyl)oxy]methyl]pyrrolidine (1d; 1250 mg, 3.84 mmol) and $HBF_4 \cdot Et_2O$ (527 µl, 3.84 mmol): $V_1 = 60$ ml; $V_2 = 20$ ml; $t_1 = 60$ min; $V_3 = 40$ ml CH_2Cl_2 . Yield: 860 mg (54%). White solid. M.p. $149 - 150^\circ$. [a] $_{10}^{\text{LL}} = -9.3$ (c = 0.19, CH_2Cl_2). IR: 3199w, 1590w, 1494w, 1392w, 1362w, 1252w, 1199w, 1182w, 1130m, 1110m, 1078s, 1066s, 1050s, 1033s, 1000s, 990s, 980s, 894w, 871s, 837s, 762s, 751s, 704s, 642m. 1 H-NMR (400 MHz, $CDCl_3$): -0.08 (s, Me_3Si); 1.41 - 1.53 (m, 1 H, CH_2); 1.92 - 2.06 (m, CH_2); 2.27 - 2.40 (m, 1 H, CH_2); 2.70 - 2.82 (m, 1 H, CH_2); 3.27 - 3.38 (m, 1 H, CH_2); 4.78 - 4.89 (m, $CDCl_3$): 1.7; 24.1; 27.0; 47.6; 67.9; 81.8; 128.3; 128.5; 128.8; 128.85; 128.90; 129.0; 140.7; 141.5. HR-MS (MALDI): 326.1935 (100, M^+ , $C_{20}H_{28}NOSi^+$; calc. 326.19347). Anal. calc. for $C_{20}H_{28}BF_4NOSi$ (413.33): $C \cdot 58.12$, $C \cdot 58.12$, $C \cdot 58.12$, $C \cdot 58.41$, C

(S)-2-({[Methyl(diphenyl)silyl]oxy}(diphenyl)methyl)pyrrolidinium Tetrafluoroborate ($1h \cdot HBF_4$). Prepared according to GP 3 from (S)-2-({[Methyl(diphenyl)silyl]oxy}(diphenyl)methyl)pyrrolidine (1h; 743 mg, 1.65 mmol) and $HBF_4 \cdot Et_2O$ (227 µl, 1.65 mmol): $V_1 = 60$ ml; $V_2 = 10$ ml; $t_1 = 30$ min; $V_3 = 20$ ml of $CHCl_3$ /heptane 3:2. Yield: 460 mg (51%). White solid. M.p. $139-141^\circ$. [α] $_D^{\rm LL} = -8.7$ (c = 0.21, CH_2Cl_2). IR: 3237w, 1590w, 1491w, 1446w, 1429w, 1374w, 1263w, 1195w, 1109m, 1092m, 1058s, 1016s, 1001s, 934w, 920w, 898w, 847m, 833m, 796m, 788m, 775m, 751m, 739s, 722s, 711m, 698s. 1 H-NMR (300 MHz, $CDCl_3$): 0.32 (s, Me); 1.29 – 1.45 (m, 1 H, CH_2); 1.80 – 2.03 (m, CH_2); 2.18 – 2.34 (m, 1 H, CH_2); 2.46 – 2.61 (m, 1 H, CH_2); 3.13 – 3.27 (m, 1 H, CH_2); 4.77 – 4.90 (m, CH_2); 2.18 – 2.34 (m, 1 H, CH_2); 7.13 – 7.52 (m, 20 arom. H). CH_2 0 ml, CH_2 1 ml, CH_2 2 ml, CH_2 3 ml, CH_2 3 ml, CH_2 4 ml, CH_2 5 ml, CH_2 6 ml, CH_2 6 ml, CH_2 7 ml, CH_2 8 ml, CH_2 9 ml, CH_2

(R)-2-(Bis[4-tert-butyl)phenyl]{[methyl(diphenyl)silyl]oxy]methyl)pyrrolidinium Tetrafluoroborate (1i · HBF₄). Prepared according to GP 3 from (R)-2-(bis[(4-tert-butyl)phenyl)]{[methyl(diphenyl)-silyl]oxy]methyl)pyrrolidine (1i; 559 mg, 0.99 mmol) and HBF₄ · Et₂O (137 µl, 0.99 mmol): V_1 = 60 ml; V_2 = 20 ml; t_1 = 30 min; only the desired product was formed (no R₃SiO deprotection occurred). Yield: 560 mg (86%). White solid. M.p. 181 – 183°. [α]_D^{1.1} = +24.7 (c = 0.52, CH₂Cl₂). IR: 2965w, 1591w, 1512w, 1477w, 1462w, 1429w, 1393w, 1363w, 1262w, 1101m, 1054s, 1012s, 954w, 916w, 860m, 834m, 792m, 777m, 736m, 722m, 697m, 669w. ¹H-NMR (400 MHz, CDCl₃): 0.36 (s, Me); 1.27 (s, 'Bu); 1.24 – 1.39 (m, 1 H, CH₂); 1.31 (s, 'Bu); 1.82 – 2.00 (m, CH₂); 2.16 – 2.28 (m, 1 H, CH₂); 2.39 – 2.51 (m, 1 H, CH₂); 3.22 – 3.35 (m, 1 H, CH₂); 4.83 – 4.92 (m, H – C(2)); 5.98 (br. s, 1 H, NH₂+); 7.08 (d, J = 8.6, 2 arom. H); 7.16 (d, J = 8.6, 2 arom. H); 7.23 – 7.41 (m, 14 arom. H); 7.81 (br. s, 1 H, NH₂+). ¹³C-NMR (101 MHz, CDCl₃): –0.9; 24.1; 27.1; 31.3; 31.4; 34.66; 34.74; 47.9; 67.9; 82.5; 125.5; 125.7; 128.00; 128.03; 128.1; 128.5; 129.9; 130.0; 134.26; 134.30; 136.4; 137.0; 137.1; 152.1; 152.2. HR-MS (MALDI): 562.3500 (100, M⁺, C₃₈H₄₈NOSi⁺; calc. 562.34997). Anal. calc. for C₃₈H₄₈BF₄NOSi (649.68): C 70.25, H 7.45, N 2.16; found: C 69.97, H 7.37, N 1.97

(S)-2-[Bis(3,5-dimethylphenyl)(methoxy)methyl]pyrrolidinium Hexafluorophosphate (1b · HPF₆). To a soln. of (S)-2-[bis(3,5-dimethylphenyl)(methoxy)methyl]pyrrolidinium hydrochloride (**1b**· HCl;474 mg, 1.32 mmol) in EtOH (5 ml) under Ar was added a soln. of AgPF₆ (333 mg, 1.32 mmol) in H₂O (2 ml). Upon addition of AgPF₆, a white precipitate formed immediately (AgCl). The mixture was stirred at r.t. for 10 min, then filtered through a short plug of Celite and washed with EtOH (30 ml). Volatile components were evaporated in vacuo, and the residue was dried under high vacuum. The solid residue was dissolved/suspended in anh. CH₂Cl₂, filtered through a short plug of Celite, and washed with anh. CH₂Cl₂. Volatile components were evaporated in vacuo, and the solid residue was dissolved in anh. CH₂Cl₂ and filtered through an HPLC filter to remove traces of insoluble by-products. Volatile components were evaporated in vacuo, and the residue was dried under high vacuum to give 1b · HPF 6. Yield: 590 mg (95%). Light yellow-brownish solid. M.p. $206-208^{\circ}$. [α]_D^{1,t} = -18.5 (c=0.22, EtOH). IR: 3246w, 2920w, 1599m, 1457w, 1382m, 1359w, 1333w, 1269w, 1186w, 1156w, 1096w, 1070m, 824s, 764m, 741m, 715m, 699m. ¹H-NMR (400 MHz, CDCl₃): 1.19 – 1.35 (m, 1 H, CH₂); 1.84 – 2.02 (m, CH₂); 2.19 – 2.42 (m, 1 H, CH₂); 2.31 (s, 2 Me); 2.32 (s, 2 Me); 2.67 – 2.82 (m, 1 H, CH₂); 3.06 (s, MeO); 3.30 – 3.44 (m, $1 \text{ H}, \text{CH}_2$; 4.77 - 4.91 (m, H - C(2)); $6.47 (\text{br. } s, 1 \text{ H}, \text{NH}_2^+)$; 6.88 (s, 2 arom. H); 6.94 (s, 2 arom. H); 7.01 + 1.01(s, 2 arom. H); 7.92 (br. s, 1 H, NH⁺₂). ¹³C-NMR (101 MHz, CDCl₃): 21.5; 21.6; 24.0; 27.4; 47.4; 51.7; 63.9;

83.6; 126.1; 126.8; 130.5; 130.7; 138.0; 138.26; 138.29; 138.7. HR-MS (MALDI): 324.2322 (100, M^+ , $C_{22}H_{30}NO^+$; calc. 324.23219). Anal. calc. for $C_{22}H_{30}F_6NOP$ (469.44): C 56.29, H 6.44, N 2.98; found: C 56.48, H 6.38, N 2.97.

(S)-2-{Bis[3,5-bis(trifluoromethyl)phenyl][(trimethylsilyl)oxy]methyl}pyrrolidinium Hydrochloride ($\mathbf{1e} \cdot \text{HCl}$). To a soln. of (S)-2-{bis[3,5-bis(trifluoromethyl)phenyl][(trimethylsilyl)oxy]methyl}pyrrolidine ($\mathbf{1e} \cdot \text{HCl}$) a soln. of (S)-2-{bis[3,5-bis(trifluoromethyl)phenyl][(trimethylsilyl)oxy]methyl}pyrrolidine ($\mathbf{1e} \cdot \text{HCl}$) in anh. Et₂O (50 ml) under Ar at 0° was added a soln. of HCl (1.7 ml, 1M in anh. Et₂O, 1.7 mmol) diluted in anh. Et₂O (30 ml) during 20 min. Upon stirring at 0° for additional 15 min, volatile components were evaporated *in vacuo*, and the residue was dried under high vacuum to give $\mathbf{1e} \cdot \text{HCl}$ in quant. yield. White solid. M.p. 85 – 93°. [α] $_{\rm L}^{\rm LL} = +3.4$ (c = 0.64, CH₂Cl₂). IR: 1370w, 1276s, 1171m, 1127s, 1051w, 905m, 866w, 843m, 756w, 708m, 681s. $^{\rm LH}$ -NMR (300 MHz, (D₆)DMSO): -0.03 (s, Me₃SiO); 1.68 – 1.89 (m, CH₂); 1.90 – 2.03 (m, 1 H, CH₂); 2.28 – 2.43 (m, 1 H, CH₂); 2.84 – 2.99 (m, 1 H, CH₂); 3.03 – 3.18 (m, 1 H, CH₂); 4.99 – 5.13 (m, H – C(2)); 7.94 – 8.29 (m, 7 H, 6 arom. H, NHH⁺); 10.41 (br. s, 1 H, NH₂⁺). HR-MS (MALDI): 598.1430 (100, M^+ , C₂₄H₂₄Cl_{F12}NOSi⁺; calc. 598.14301). Anal. calc. for C₂₄H₂₄ClF₁₂NOSi (633.97): C 45.47, H 3.82, N 2.21; found: C 45.48, H 3.90, N 2.15.

Preparation of Enamines 3. (S)-2-{Diphenyl[(trimethylsilyl)oxy]methyl}-1-[(E)-2-phenylethenyl]pyrrolidine (3a). 2-Phenylacetaldehyde (339 µl, 2.90 mmol) was added to a soln. of (S)-2-{diphenyl-[(trimethylsilyl)oxy]methyl]pyrrolidine (1d; 944 mg, 2.90 mmol) in anh. benzene (20 ml) under Ar in a two-necked flask fitted with a stirrer bar, stopper, and a Dean - Stark trap filled with freshly activated 4-Å mol. sieves. Soln. went cloudy, and, after stirring at r.t. for 30 min, a slight emulsion resulted. The mixture was heated to reflux (120° bath temp.), and an orange soln. developed. After 2 h of reflux, the soln. was cooled to r.t., more anh. benzene (10 ml) was added, and the mixture was returned to reflux. After a further 2 h of reflux, the heating was stopped, and the flask was cooled under Ar. The Dean-Stark condenser was removed, and the mixture was concentrated under vacuum, resulting in a light orange foam. Recrystallization under Ar from anh. Et₂O gave 3a (440 mg, 35%). Light yellow cubes. M.p. 152 – 154° (dec.). $[a]_{\rm D}^{\rm 1L} = -283.8 \ (c = 0.76, {\rm CHCl_3})$. IR (neat) 2962w, 1630s, 1595m, 1491w, 1447m, 1387s, 1307w, 1250m, 1176w, 1149m, 1089s, 1063s, 1031s, 923m. ¹H-NMR (300 MHz, CDCl₃): -0.11 (s, Me₃Si); 0.48 - 0.64 (m, 1 H, CH₂); 1.42 - 1.54 (m, 1 H, CH₂); 1.93 - 2.16 (m, CH₂); 2.57 (td, J = 2.8; 9.2, 1 H, CH₂); $2.94 (q, J = 9.2, 1 \text{ H}, \text{CH}_2); 4.62 (dd, J = 2.2; 9.0, \text{H} - \text{C(2)}); 5.02 (d, J = 13.8, \text{H} - \text{C(1')}); 6.95 (tt, J = 1.2; \text{H}, \text{C(1')}); 6.95 (tt, J = 1.2; \text{$ 7.4, 1 arom. H); 7.06 (br. d, J = 7.4, 2 arom. H); 7.19 (t, J = 7.4, 2 arom. H); 7.25 (d, J = 13.8, H-C(2')); 7.33 – 7.43 (m, 6 arom. H); 7.48 – 7.54 (m, 4 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 2.2; 22.7; 28.0; 48.6; $70.0; 83.9; 97.2; 122.6; 123.1; 127.3; 127.6 (2 \times); 128.4 (2 \times); 129.5; 129.7; 137.4; 140.4; 142.2; 142.7; EI-MS:$ 172 (100); 173 (15); 255 (2.5); 338 (0.5); 412 (1); 427 (0.4). HR-EI-MS: 427.2328 (C₂₈H₃₃NOSi⁺; calc. 427.2326).

(S)-1-f(IE)-3,3-Dimethylbut-1-en-1-yl)-2-(f[methyl(diphenyl)silyl]oxyl(diphenyl)methyl)pyrrolidine (3b). To a soln. of (S)-2-([[methyl(diphenyl)silyl]oxy](diphenyl)methyl)pyrrolidine (1h; 192 mg, 0.43 mmol) in anh. C_6D_6 (8 ml) under Ar was added 3,3-dimethylbutanal (56 μ l, 0.43 mmol), and the resulting mixture was heated under reflux under Dean - Stark condition using freshly activated 4-Å mol. sieves. After 1 h, ca. 87% conversion was achieved according to ¹H-NMR analysis of the mixture (0.7-ml aliquot). Additional 3,3-dimethylbutanal (56 μl, 0.43 mmol) was added to the mixture, and heating under reflux was continued for further 3 h to give 100% conversion. Volatile components were evaporated in vacuo, and the residue was dried under high vacuum to remove all traces of volatile compounds to give 3b as an orange-vellow semisolid. The product was stored under Ar. The product 3b is highly sensitive to hydrolysis and should, therefore, always (during the synthesis, reaction workup, storage etc.) be kept under dry Ar in carefully dried glassware. ¹H-NMR (300 MHz, C₆D₆): 0.22 (s, Me); 0.40-0.58 (m, 1 H, CH₂); 1.00 (s, 'Bu); 1.15 – 1.27 (m, 1 H, CH₂); 1.80 – 1.93 (m, 1 H, CH₂); 2.09 – 2.20 (m, 1 H, CH₂); 2.72 $(dd, J = 5.0; 9.0, CH_2); 4.26 (d, J = 14.0, H - C(1')); 4.43 (dd, J = 1.8; 8.9, H - C(2)); 6.14 (d, J = 14.0, H - C(1')); 4.43 (dd, J = 1.8; 8.9, H - C(1)); 6.14 (dd, J = 14.0, H - C($ H-C(2'); 6.91 – 7.00 (m, 3 arom. H); 7.01 – 7.07 (m, 3 arom. H); 7.12 – 7.22 (m, 6 arom. H); 7.41 – 7.46 (m, 2 arom. H); 7.47 – 7.57 (m, 4 arom. H); 7.63 – 7.68 (m, 2 arom. H). 13 C-NMR (75 MHz, C_6D_6): -0.8; 23.3; 28.8; 29.8; 32.0; 49.9; 70.5; 85.1; 110.3; 117.3; 127.3; 127.4; 127.7; 127.8; 128.0; 129.57; 129.62; 129.9; 130.4; 127.7; 127.8; 128.0; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 130.4; 129.57; 129.62; 129.9; 129.57; 129.62; 129.9; 129.57; 129.62; 129.9; 129.57; 129.62; 129.9; 129.57; 129.62; 129.57; 129.62; 129.9; 129.57; 129.62; 129.57; 129.62; 129.9; 129.57; 129.62; 129.9; 129.57; 129.62; 129.57; 129.62; 129.9; 129.57; 129.62; 129.57133.8; 134.56; 134.63; 138.6; 139.1; 142.1; 143.7.

Preparation of the Iminium Salts 4. Preparation of $\mathbf{4b} \cdot BF_4$, (E/Z)- $\mathbf{4b} \cdot PF_6$, $\mathbf{4d} \cdot BF_4$, (E/Z)- $\mathbf{4h} \cdot BF_4$, and $\mathbf{4i} \cdot BF_4$. General Procedure 4 $(GP4)^{30}$). To a soln./suspension of a PF $_6$ or BF $_4$ salt of a secondary amine in anh. EtOH (V_1) under Ar was added cinnamaldehyde (1.05 equiv.), followed by

addition of Et₃N (V_2). The mixture was stirred vigorously at r.t. until a filterable precipitate was formed (t_1). The precipitate was collected on a dry ceramic frit under Ar and washed with anh. Et₂O (20 ml) to give iminium salts $\mathbf{4b} \cdot \mathrm{BF}_4$, (E/Z)- $\mathbf{4b} \cdot \mathrm{PF}_6$, $\mathbf{4d} \cdot \mathrm{BF}_4$, (E/Z)- $\mathbf{4h} \cdot \mathrm{BF}_4$, and $\mathbf{4i} \cdot \mathrm{BF}_4$. The isolated products were dried under high vacuum and stored under Ar.

(S)-2-[Bis(3,5-dimethylphenyl)(methoxy)methyl]-1-[(2E)-3-phenylprop-2-en-1-ylidene]pyrrolidinium Tetrafluoroborate ($4\mathbf{b} \cdot \mathrm{BF_4}$). Prepared according to GP 4 from (S)-2-[bis(3,5-dimethylphenyl)(methoxy)methyl]pyrrolidinium tetrafluoroborate ($1\mathbf{b} \cdot \mathrm{BF_4}$; 330 mg, 0.80 mmol) and cinnamaldehyde (108 µl, 0.84 mmol): $V_1 = 2$ ml; $V_2 = 5$ µl; $t_1 = 3$ h. Yield: 322 mg (76%). Light yellow solid. M.p. 232 – 235°. [α]_D¹¹ = –194.6 (c = 0.59, CH₂Cl₂). IR: 2960w, 1623m, 1608m, 1591m, 1450w, 1424w, 1330w, 1283w, 1189w, 1178m, 1075s, 1051s, 997m, 957w, 862w, 848m, 761s, 693m. ¹H-NMR (400 MHz, CDCl₃): 1.12 – 1.25 (m, 1 H, CH₂); 1.67 – 1.81 (m, 1 H, CH₂); 1.99 – 2.10 (m, 1 H, CH₂); 2.34 – 2.49 (m, 1 H, CH₂); 2.24 (s, 2 Me); 2.32 (s, 2 Me); 2.53 – 2.63 (m, 1 H, CH₂); 2.99 (s, MeO); 3.86 – 3.96 (m, 1 H, CH₂); 5.27 (s, 2 Me); 2.31, 8.9, H – C(2)); 6.81 (s, 2 arom. H); 6.94 (s, 2 arom. H); 7.00 (s, 3 = 14.8, 2 arom. H); 7.04 (s, 3 = 10.5; 15.3, H – C(2')); 7.42 – 7.54 (s, 3 arom. H); 7.81 (s, 3 = 7.1, 2 arom. H); 8.00 (s, 3 = 15.2, H – C(3')); 8.58 (s, 3 = 10.5, H – C(1')). s-C-NMR (101 MHz, CDCl₃): 21.5; 21.6; 22.4; 26.8; 52.0; 52.8; 72.9; 86.0; 117.3; 126.8; 127.6; 129.5; 130.2; 130.4; 130.7; 133.6; 133.7; 136.9; 137.2; 137.8; 138.0; 161.9; 168.5. HR-MS (MALDI): 438.2791 (100, s, 45, 51, 52, 51, 53, 64.

(S)-2-[Bis(3,5-dimethylphenyl)(methoxy)methyl]-1-[(2E)-3-phenylprop-2-en-1-ylidene)pyrrolidinium Hexafluorophosphate ($4b \cdot PF_6$; (E)/(Z) 1:0.06). Prepared GP 4 from (S)-2-[bis(3,5-dimethylphenyl)(methoxy)methyl]pyrrolidinium hexafluorophosphate (1b · PF₆) (500 mg, 1.06 mmol) and cinnamaldehyde (144 µl, 1.12 mmol): $V_1 = 1.5$ ml; $V_2 = 10$ µl; $t_1 = 2$ h. Yield: 580 mg (93%; (E)/(Z) 1:0.06). Yellowish solid. M.p. $242-245^{\circ}$. $[\alpha]_{\rm D}^{\rm r.t.} = -178.8 \ (c=0.23,\ {\rm CH_2Cl_2})$. IR: 2956w, 1628m, 1608m, 1592m, 1454w, 1319w, 1281w, 1188w, 1177m, 1076m, 998w, 954w, 877w, 833s, 756m, 741w, 689m. ¹H-NMR (400 MHz, CDCl₃): (E)-isomer: 1.16 – 1.29 (m, 1 H, CH₂); 1.70 – 1.83 (m, 1 H, CH₂); 2.01 – 2.11 (m, 1 H, CH_2 ; 2.25 (s, 2 Me); 2.32 (s, 2 Me); 2.38 – 2.50 (m, 1 H, CH_2); 2.51 – 2.62 (m, 1 H, CH_3); 2.97 (s, MeO); 3.77 - 3.89 (m, 1 H, CH₂); 5.24 (dd, J = 3.7; 9.2, H–C(2)); 6.82 (s, 2 arom. H); 6.93 (dd, J = 10.7; 15.2, H-C(2'); 6.94 (s, 2 arom. H); 7.02 (d, J=9.9, 2 arom. H); 7.42–7.48 (m, 2 arom. H); 7.49–7.55 (m, 1 arom. H); 7.73 - 7.79 (m, 2 arom. H); 7.91 (d, J = 15.2, H - C(3')); 8.51 (d, J = 10.6, H - C(1')); (Z)-isomer: 2.88 (s, MeO); 3.61 - 3.68 (m, 1 H, CH₂); 5.52 (dd, J = 4.4; 9.1, H-C(2)). ¹³C-NMR (101 MHz, CDCl₃): (E)-isomer: 21.57; 21.63; 22.5; 26.8; 52.1; 52.8; 73.5; 86.2; 117.0; 126.9; 127.7; 129.6; 130.4; 130.6; 130.7; 133.6; 133.9; 136.7; 136.8; 138.0; 138.1; 162.1; 168.3. HR-MS (MALDI): 438.2791 (100, M⁺, C₃₁H₃₆NO⁺; calc. 438.27914). Anal. calc. for C₃₁H₃₆F₆NOP (583.59): C 63.80, H 6.22, N 2.40; found: C 63.71, H 6.23, N 2.39.

(S)-2-{Diphenyl[(trimethylsilyl)oxy]methyl}-1-[(2E)-3-phenylprop-2-en-1-ylidene)pyrrolidinium Tetrafluoroborate ($\bf 4d \cdot BF_4$). Prepared according to $GP \ 4$ from (S)-2-{diphenyl[(trimethylsilyl)oxy]methyl}pyrrolidinium tetrafluoroborate ($\bf 1d \cdot BF_4$) (327 mg, 0.79 mmol) and cinnamaldehyde (107 µl, 0.83 mmol): $V_1 = 1$ ml; $V_2 = 5$ µl; $t_1 = 24$ h. Yield: 105 mg (25%). Light yellow solid. M.p. 155 – 158°. [a] $_{\rm L}^{\rm LL} = -110.9$ (c = 0.13, CH $_2$ Cl $_2$). IR: 2953w, 1619w, 1608w, 1592w, 1446w, 1327w, 1288w, 1253w, 1182w, 1053w, 1001w, 928w, 915w, 870w, 839w, 764w, 704w, 690w. ¹H-NMR (400 MHz, CDCl $_3$): -0.16 (w, Me $_3$ Si); 1.15 – 1.29 (w, 1 H, CH $_2$); 1.67 – 1.82 (w, 1 H, CH $_2$); 1.99 – 2.09 (w, 1 H, CH $_2$); 2.44 – 2.56 (w, 1 H, CH $_2$); 2.62 – 2.73 (w, 1 H, CH $_2$); 3.85 – 3.95 (w, 1 H, CH $_2$); 5.46 (w, w) w, 14 – C(2')); 7.00 (w), 2.5 – 7.54 (w), 13 arom. H); 7.67 – 7.75 (w), 3 H, 2 arom. H, H – C(3')); 8.53 (w), 4 = 10.6, H – C(1')). ¹³C-NMR (101 MHz, CDCl $_3$): 1.6; 22.6; 26.2; 52.4; 76.3; 83.5; 117.2; 128.3; 128.75; 128.86; 128.88; 129.1; 129.5; 129.6; 130.7; 133.6; 133.8; 140.1; 140.4; 161.5; 168.4. HR-MS (MALDI): 440.2404 (100, w), C₂9H $_3$ 4NOSi†; calc. 440.24042). Anal. calc. for C₂9H $_3$ 4BF $_4$ NOSi (527.48): C 66.03, H 6.50, N 2.66; found: C 65.90, H 6.53, N 2.49.

(S)-2-([[Methyl(diphenyl)silyl]oxy](diphenyl)methyl)-1-[(2E)-3-phenylprop-2-en-1-ylidene)pyrrolidinium Tetrafluoroborate ($4\mathbf{h} \cdot \mathrm{BF_4}$; (E)/(Z) 1:0.03). Prepared according to $GP \ 4$ from (S)-2-([[methyl(diphenyl)silyl]oxy](diphenyl)methyl)pyrrolidinium tetrafluoroborate ($1\mathbf{h} \cdot \mathrm{BF_4}$) (417 mg, 0.78 mmol) and cinnamaldehyde (105 µl, 0.82 mmol): $V_1 = 3$ ml; $V_2 = 10$ µl; $t_1 = 20$ h. Yield: 250 mg (49%; (E)/(Z) 1:0.03). Light yellow solid. M.p. 196–198°. [α] $_{\mathrm{D}}^{\mathrm{rt}} = -160.2$ (c = 0.79, CH₂Cl₂). IR: 3071w, 1615m, 1589m, 1450w, 1430w, 1326w, 1285w, 1259w, 1181m, 1057s, 996s, 958w, 927w, 852m, 792m, 755m,

724m, 700s, 687s. ¹H-NMR (400 MHz, (D $_6$)DMSO): (E)-isomer: 0.24 (s, Me); 0.90 – 1.03 (m, 1 H, CH $_2$); 1.71 – 1.84 (m, 1 H, CH $_2$); 2.01 – 2.12 (m, 1 H, CH $_2$); 2.49 – 2.60 (m, 1 H, CH $_2$); 2.74 – 2.86 (m, 1 H, CH $_2$); 3.95 – 4.07 (m, 1 H, CH $_2$); 5.61 (d, J = 8.2, H – C(2)); 6.85 (d, J = 15.2, H – C(3')); 7.16 – 7.48 (m, 19 H, 18 arom. H, H – C(2')); 7.54 – 7.68 (m, 5 arom. H); 7.83 (d, J = 7.1, 2 arom. H); 8.40 (d, J = 10.5, H – C(1')); (Z)-isomer: 3.89 (t, J = 9.8, 1 H, CH $_2$); 6.00 (d, J = 8.1, H – C(2)); 8.67 (d, J = 10.6, H – C(1')). ¹³C-NMR (101 MHz, (D $_6$)DMSO): (E)-isomer: -3.0; 21.7; 26.2; 52.6; 74.9; 83.4; 118.2; 127.76; 127.82; 128.1; 128.2; 128.4; 128.6; 128.9; 129.4; 129.8; 129.9; 130.5; 133.3; 133.7; 134.0; 136.3; 136.6; 139.4; 140.0; 160.1; 168.3. HR-MS (MALDI): 564.2717 (100, M⁺, C₃₉H₃₈NOSi⁺; calc. 564.27172). Anal. calc. for C₃₉H₃₈BF₄NOSi (651.62): C 71.89, H 5.88, N 2.15; found: C 71.87, H 6.01, N 2.16.

(R)-2-(Bis[4-(tert-butyl)phenyl][[methyl(diphenyl)silyl]oxy]methyl)-1-[(2E)-3-phenylprop-2-en-1-ylidene)pyrrolidinium Tetrafluoroborate ($\bf 4i \cdot BF_4$). Prepared according to $GP\ 4$ from (R)-2-(bis[4-(tert-butyl)phenyl][[methyl(diphenyl)silyl]oxy]methyl)pyrrolidinium tetrafluoroborate ($\bf 1i \cdot BF_4$) (330 mg, 0.51 mmol) and cinnamaldehyde (69 µl, 0.53 mmol): $V_1=2$ ml; $V_2=5$ µl; $t_1=2$ h. Yield: 210 mg (54%). Light yellow solid. M.p. $187-189^\circ$. [$a]_D^{1.1}=+191.4$ (c=0.30, CH_2Cl_2). IR: 2960w, 1627m, 1607m, 1592m, 1577w, 1512w, 1456w, 1429w, 1406w, 1363w, 1273w, 1250w, 1183m, 1112m, 1054s, 999m, 944w, 862m, 832w, 790m, 766m, 739m, 748m, 720w, 705m, 700m, 690m. 1 H-NMR (400 MHz, CDCl₃): 0.31 (s, Me); 0.80-0.94 (m, 1 H, CH_2); 1.24 (s, 'Bu); 1.34 (s, 'Bu); 1.59-1.72 (m, 1 H, CH_2); 1.92-2.03 (m, 1 H, CH_2); 2.49-2.62 (m, 1 H, CH_2); 2.68-2.79 (m, 1 H, CH_2); 3.78-3.91 (m, 1 H, CH_2); 5.53 (d, J=7.6, H-C(2)); 6.49 (d, J=15.1, H-C(3')); 6.88 (dd, J=10.6; 15.0, H-C(2')); 7.07 (d, J=8.8, 2 arom. H); 7.10 (d, J=8.8, 2 arom. H); 7.20-7.26 (m, 4 arom. H); 7.28-7.56 (m, 15 arom. H); 8.33 (d, J=10.3, H-C(1')). 13 C-NMR (101 MHz, $CDCl_3$): -2.1; 22.2; 26.7; 31.3; 31.4; 34.6; 34.7; 52.8; 75.8; 83.4; 117.0; 125.06; 125.09; 127.9; 128.1; 128.4; 129.4; 129.7; 129.82; 129.88; 130.6; 133.5; 134.4; 136.1; 136.2; 137.3; 137.5; 152.0; 152.1; 161.1; 168.6. HR-MS (MALDI): 676.3969 (100, M^+ , $C_{47}H_{54}NOSi^+$; calc. 676.39692). Anal. calc. for $C_{47}H_{54}NOSi$ (763.83): C 73.91, H 7.13, N 1.83; found: C 73.76, H 7.19, N 1.87.

Preparation of (E/Z)-4c $\cdot Al[OC(CF_3)_3]_4$, (E/Z)-4e $\cdot Al[OC(CF_3)_3]_4$, (E/Z)-4e $\cdot PF_6$, and (E/Z)-**4e** $\cdot SbF_6$. General Procedure 5 (GP 5)³⁰). To a soln./suspension of a secondary amine hydrochloride (1 equiv.) in anh. EtOH (V_1) under Ar was added cinnamaldehyde (1.05 equiv.), followed by the addition of Et₃N (V₂). The mixture was stirred vigorously at r.t. for 3 h, followed by the addition of AgX salt (1 equiv., either as a pure solid or as a soln. in anh. EtOH (2-3 ml)). After vigorous stirring for 15 h at r.t., the mixture was filtered through an HPLC filter to remove AgCl precipitate, volatile components were evaporated in vacuo, and the residue was dried under high vacuum. In the case of (E/Z)-4c Al- $[OC(CF_3)_3]_4$ and (E/Z)-4e·Al $[OC(CF_3)_3]_4$, the residue was dissolved in anh. Et₂O (2-4 ml) and the product precipitated by the addition of heptane (20-40 ml). The precipitate was vigorously stirred at r.t., until a fine precipitate was formed. If the precipitate did not deposit properly, the soln. was decanted, the precipitate was redissolved in anh. Et₂O (2-4 ml) and re-precipitated with heptane (20-40 ml). After a fine precipitate was formed (vigorous stirring), it was collected by filtration on a dry ceramic frit under Ar, washed with hexane (100 ml), dried under high vacuum, and stored under Ar. In the case of (E/Z)-**4e** · PF₆ and (E/Z)-**4e** · SbF₆, the residue was also dissolved in anh. Et₂O (2-4 ml), and the product was precipitated by the addition of heptane (20-40 ml). The soln, was decanted, the residue redissolved in anh. Et₂O (15 ml), filtered through an HPLC filter, and injected into vigorously stirred hexane (150 ml). The so formed precipitate was collected by filtration on a dry ceramic frit under Ar, washed with hexane (100 ml), dried under high vacuum, and stored under Ar. If in any of the isolated compounds a small amount of Ag appeared (gray to black color), the solid was redissolved in anh. Et₂O, filtered through an HPLC filter, and reprecipitated according to the procedures described above.

(S)-2-{Bis{3,5-bis}(trifluoromethyl)phenyl}(methoxy)methyl}-1-[(2E)-3-phenylprop-2-en-1-ylidene)-pyrrolidinium Tetrakis{{2,2,2-trifluoro-1,1-bis}(trifluoromethyl)ethyl)}]oxy}aluminate ($\mathbf{4c} \cdot \text{Al}[OC(\text{CF}_3)_3]_4$; (E/Z) 1:0.06). Prepared according to GP 5 from (S)-2-{bis{3,5-bis}(trifluoromethyl)phenyl}(methoxy)-methyl}pyrrolidinium chloride ($\mathbf{1c} \cdot \text{HCl}$; 324 mg, 0.56 mmol), silver tetrakis{[2,2,2-trifluoro-1,1-bis}(trifluoromethyl)ethyl]oxy}aluminate (605 mg, 0.65 mmol, dissolved in 3 ml of anh. EtOH), and cinnamal-dehyde (76 µl, 0.59 mmol): V_1 = 3 ml; V_2 = 10 µl. Yield: 627 mg (68%; (E)/(Z) 1:0.06). Yellow solid. M.p. 215 – 220°. [a] $_D^{\text{pl}} = -59.7$ (c = 0.63, CH $_2$ Cl $_2$). IR: 1605w, 1616w, 1590m, 1372w, 1353w, 1277s, 1240m, 1216s, 1181m, 1143s, 1116m, 1079w, 971s, 917w, 899w, 845w, 834w, 757w, 727s, 710w, 683m. 1 H-NMR (400 MHz, (D $_6$)DMSO): (E)-isomer: 1.11 – 1.25 (m, 1 H, CH $_2$); 1.83 – 1.96 (m, 1 H, CH $_2$); 2.19 – 2.31 (m,

1 H, CH₂); 2.43 – 2.66 (m, CH₂); 3.07 (s, MeO); 4.07 – 4.18 (m, 1 H, CH₂); 5.99 (dd, J = 3.6; 9.0, H – C(2)); 7.46 (dd, J = 10.5; 15.1, H – C(2')); 7.57 – 7.70 (m, 3 arom. H); 7.95 – 8.01 (m, 4 arom. H); 8.07 (s, 2 arom. H); 8.21 (d, J = 9.6, 2 arom. H); 8.51 (d, J = 15.0, H – C(3')); 8.91 (d, J = 10.4, H – C(1')); (Z)-isomer: 3.96 – 4.06 (m, 1 H, CH₂); 6.23 (d, J = 6.4, H – C(2)); 9.02 (d, J = 10.4, H – C(1')). HR-MS (MALDI): 654.1661 (100, M⁺, C₃₁H₂₄F₁₂NO⁺; calc. 654.16608). Anal. calc. for C₄₇H₂₄AlF₄₈NO₅ (1621.60): C 34.81, H 1.49, N 0.86; found: C 34.80, H 1.73, N 0.99.

(S)-2-{Bis[3,5-bis(trifluoromethyl)phenyl][(trimethylsilyl)oxy]methyl]-1-[(2E)-3-phenylprop-2-en1-ylidene)pyrrolidinium Tetrakis{[2,2,2-trifluoro-1,1-bis(trifluoromethyl)ethyl]oxy}aluminate ($\mathbf{4e} \cdot \text{Al-}[\text{OC}(\text{CF}_3)_3]_4$; (E)/(Z) 1:0.09). Prepared according to GP 5 from (S)-2-{bis[3,5-bis(trifluoromethyl)-phenyl][(trimethylsilyl)oxy]methyl]pyrrolidinium chloride ($\mathbf{1e} \cdot \text{HCl}$; 218 mg, 0.34 mmol), silver tetrakis{[2,2,2-trifluoro-1,1-bis(trifluoromethyl)ethyl]oxy}aluminate (370 mg, 0.34 mmol, dissolved in 2 ml of anh. EtOH), and cinnamaldehyde ($\mathbf{46} \mu$, 0.36 mmol): $V_1 = 3 \text{ ml}$; $V_2 = 10 \mu$ l. Yield: 340 mg (58%, (E)/(Z) 1:0.09). Yellow solid. M.p. 189 – 192°. [\mathbf{a}]_L^{TL} = -36.7 ($\mathbf{c} = 0.57$, CH₂Cl₂). IR: 1623w, 1604w, 1591m, 1577w, 1375w, 1352w, 1274s, 1239s, 1219s, 1186s, 1142s, 1119m, 1076w, 970s, 913w, 901w, 846m, 752w, 726s, 709m, 682m. ¹H-NMR (400 MHz, (D₆)acetone): (E)-isomer: 0.01 (s, Me₃SiO); 1.48 – 1.61 (m, 1 H, CH₂); 2.11 – 2.24 (m, 1 H, CH₂); 2.57 – 2.67 (m, 1 H, CH₂); 2.84 – 2.95 (m, 1 H, CH₂); 3.00 – 3.11 (m, 1 H, CH₂); 4.34 – 4.45 (m, 1 H, CH₂); 6.11 (d, J = 6.6, H – C(2)); 7.57 – 7.74 (m, 4 H, 3 arom. H, H – C(2')); 7.99 (d, J = 7.3, 2 arom. H); 8.21 – 8.31 (m, 6 arom. H); 8.34 (d, J = 15.2, H – C(3')); 9.14 (d, J = 10.7, H – C(1')); (Z)-isomer: -0.06 (s, Me₃Si); 4.23 – 4.31 (m, 1 H, CH₂); 6.60 (dd, J = 2.3; 8.7, H – C(2)); 9.08 (d, J = 10.7, H – C(1')). HR-MS (MALDI): 712.1900 (100, M^+ , C₃₃H₃₀F₁₂NOSi+; calc. 712.18996). Anal. calc. for C₄₉H₃₀AlF₄₈NO₅Si (1679.76): C 35.04, H 1.80, N 0.83; found: C 34.81, H 2.00, N 1.06.

(S)-2-{Bis}3,5-bis(trifluoromethyl)phenyl][(trimethylsilyl)oxy]methyl]-1-[(E)-3-phenylprop-2-en-1-ylidene)pyrrolidinium Hexafluorophosphate ($\mathbf{4e} \cdot \mathrm{PF}_6$; (E)/(Z) 1:0.07). Prepared according to GP 5 from (S)-2-{bis}3,5-bis(trifluoromethyl)phenyl][(trimethylsilyl)oxy]methyl]pyrrolidinium chloride ($\mathbf{1e} \cdot \mathrm{HCl}$; 621 mg, 0.98 mmol), AgPF $_6$ (247 mg, 0.98 mmol), and cinnamaldehyde (132 μl, 1.03 mmol): V_1 = 15 ml; V_2 = 15 μl. Yield: 380 mg (45%, (E)/(Z) 1:0.07). Pinkish solid. M.p. 88–95°. [a] $_{\mathrm{D}}^{\mathrm{LL}}$ = −61.7 (c = 0.4, CH $_2$ Cl $_2$). IR: 1622w, 1608w, 1592m, 1455w, 1373w, 1278s, 1178m, 1132s, 1010w, 1000w, 907w, 831s, 755m, 709m, 681s. ¹H-NMR (400 MHz, (D_6)acetone): (E)-isomer: 0.00 (s, Me $_3$ SiO); 1.44 – 1.56 (m, 1 H, CH $_2$); 2.09 – 2.22 (m, 1 H, CH $_2$); 2.52 – 2.61 (m, 1 H, CH $_2$); 2.80 – 2.92 (m, 1 H, CH $_2$); 2.96 – 3.05 (m, 1 H, CH $_2$); 4.29 – 4.38 (m, 1 H, CH $_2$); 6.02 (dd, J = 3.1; 9.4, H – C(2)); 7.55 – 7.64 (m, 3 H, 2 arom. H, H – C(2')); 7.67 – 7.73 (m, 1 arom. H); 7.97 – 8.02 (m, 2 arom. H); 8.21 – 8.35 (m, 7 H, 6 arom. H, H – C(3')); 9.05 (d, J = 10.7, H – C(1')); (Z)-isomer: –0.07 (s, Me $_3$ Si); 1.79 – 1.92 (m, 1 H, CH $_2$); 4.18 – 4.26 (m, 1 H, CH $_2$); 6.49 (dd, J = 2.8, 9.0, H – C(2)); 8.96 (d, J = 10.6, H – C(1')). HR-MS (MALDI): 712.1909 (100, M+, C $_3$ 3H $_3$ 0F $_{12}$ NOSi+; calc. 712.1900). Anal. calc. for C $_3$ 3H $_3$ 0F $_{18}$ NOPSi (857.63): C 46.22, H 3.53, N 1.63; found: C 45.96, H 3.56, N 1.81.

Determination of the X-Ray Structures (Table 7). Suitable single crystals were measured on a Bruker Nonius Kappa CCD diffractometer with MoK_a radiation (λ 0.71073 Å, graphite monochromator). Structures were solved by direct methods (SIR97) [35] and refined by full-matrix least-squares on F^2 (SHELXL97) [36]. If possible, H-atoms were located from a difference electron density map or constrained at ideal positions and included in the refinement. The absolute configurations were

Table 7. Experimental Details for the X-Ray Structures of 1b and 4b-4e

	1b	4b (PF ₆)	4b (BF ₄)	4c	4d	4e
CCDC No. a)	732048	732049	732050	732051	732052	732053
mula	$C_{22}H_{30}NO^{+}$ BF $_{4}^{-}$ $C_{31}H_{36}NO^{+}$ PF $_{6}^{-}$	$C_{31}H_{36}NO^{+}$ PF_{6}^{-}	$\mathrm{C}_{31}\mathrm{H}_{36}\mathrm{NO^{+}~BF_{4}^{-}}$	$C_{31}H_{24}F_{12}NO^{+}C_{16}AIF_{36}O_{4}^{-}C_{29}H_{34}NOSi^{+}BF_{4}^{-}$	$C_{29}H_{34}NOSi^+$ BF $_4^-$	$C_{33}H_{30}F_{12}NOSi^{+}C_{16}AIF_{36}O_{4}^{-}$
$M_{ m r}$	411.29	583.60	525.44	1621.60	527.49	1679.75
Crystal size [mm]	$0.37\times0.17\times0.06$	$0.3\times0.2\times0.08$	$0.28\times0.14\times0.12$	$0.27\times0.21\times0.21$	$0.22\times0.06\times0.004$	$0.34\times0.2\times0.11$
	$P2_12_12_1$	P1	P1	$P_1 P_{2_1} Z_1 Z_1$	$P2_1$ $P2_12_1$	$P2_12_12_1$
	orthorhombic	triclinic	triclinic	orthorhombic	monoclinic	orthorhombic
a [Å]	8.1443(2)	7.9691(4)	7.843(4)	11.4517(2)		17.0600(3)
b [Å]	15.7263(5)	8.6946(4)	8.578(3)	14.8514(3)	14.5900(12)	19.0620(4)
c [Å]	16.9678(6)	11.5126(6)	11.138(5)	35.3534(6)		19.7120(3)
α [$^{\circ}$]		106.224(2)	104.52(2)			
β [$^{\circ}$]		102.553(2)	100.88(2)		102.011(4)	
\ [_\circ_] \		94.470(2)	93.99(2)			
Z	4	1	1	4	4	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.257	1.311	1.234	1.791	1.210	1.741
$\mu \ [\mathrm{mm}^{-1}]$	0.099	0.156	0.091	0.229	0.128	0.236
Temp. [K]	223	223	223	223	173	223
$ heta_{ m max} \left[^{\circ} ight]$	27.5	27.6	27.5	25.0	21.7	27.5
$I > 2\sigma(I)$ Reflexions:						
measured	0996	12765	4342	17934	8342	54897
independent	4992	6043	3844	9317	6053	14440
observed	3860	5184	2487	6839	3696	10486
$R_{ m int}$	0.058	0.046	0.07	0.05	0.18	0.05
Ref. parameters	284	361	343	663	299	914
H-Atom treatment	mixed	calc.	calc.	calc.	calc.	calc.
R(gt)	0.064	0.069	0.094	0.183	0.088	0.086
R(all)	0.088	0.081	0.156	0.212	0.165	0.114
$\Delta/\sigma_{ m max}$	0.029	0.029	0.00	0.06	0.02	0.03
$\Delta ho_{ m max} \left({ m e \ } { m \AA}^3 ight)$	0.38	0.55	0.28	0.97	0.39	0.557
Flack parameter,	-0.1(12)	-0.05(13)	$1(2)^*$	0.5(7)*	0.1(4)*	0.0(2)*
(*) unreliable						

^a) Copies of the data can be obtained, free of charge, on application to the *Cambridge Crystallographic Data Centre* (*CCDC*), 12 Union Road, Cambridge, CB21EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).

determined by refining the Flack [37] parameter. The five-memered ring in 1b shows an envelope form with the out-of-plane C(5) disordered on opposite sides of the ring plane (0.7:0.3). In $4b \cdot BF_4$, the F-atoms of the BF₄ are disordered. In 4c, all the CF₃ groups are heavily disordered. In the anion, two CF₃ groups could not be localized by electron-density map and are included as fixed groups with ideal geometry. The other CF₃ fragments in the anion have constrained distances and angles, and were all refined isotropically. There is also major disorder in the five-membered ring and the phenyl ring of 4c; 4d shows two symmetry-independent molecules with both BF₄ groups disordered; 4e shows all CF₃ groups disordered, some of them refined at two positions.

Theoretical Calculations of Structures. Structures of iminium ion 4e and dienamine 5 were fully optimized at the B3LYP/6-31G(d) level [27]. Each structure was verified as an energy minimum by a frequency calculation, i.e., having no imaginary frequency. Energy evaluations of the B3LYP/6-31G(d)-optimized structures were carried out at the B3LYP and MP2 [28] levels using a larger basis set, 6-311G(d,p) [29]. The B3LYP calculations do not reproduce dispersion effects [26], but the MP2 calculations do consider them, at least partly. For aromatic systems, the dispersion energies tend to be overestimated at the MP2 basis set limit. However, MP2 calculations in conjunction with a medium-size basis set such as 6-311G(d,p) provide a dispersion interaction energy close to a CCSD(T) basis set limit value in most cases [38]. We, thus, also considering practical aspects, chose the MP2/6-311G(d,p) level for single-point energy evaluations in the present study. We thank Prof. S. Grimme (Universität Münster) and Dr. S. Tsuzuki (AIST) for helpful discussion on evaluation of dispersion energies.

In addition, we estimated solvation effect in toluene solution by using the conductor-like polarizable continuum model (CPCM) [30]. Single-point CPCM calculations were performed at the gas-phase B3LYP/6-31G(d)-optimized geometries. The Gaussian 03 program [31] was used for all theoretical calculations.

REFERENCES

- [1] J. Kapfhammer, A. Matthes, Hoppe-Seyler's Z. Physiol. Chem. 1933, 223, 43.
- [2] Roussel-UCLAF, Pat. No. FR 3638 19651129, 1965.
- [3] D. Seebach, U. Grošelj, D. M. Badine, W. B. Schweizer, A. K. Beck, Helv. Chim. Acta 2008, 91, 1999.
- [4] a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. 2005, 117, 804; Angew. Chem., Int. Ed. 2005, 44, 794; M. Marigo, J. Franzén, T. B. Poulsen, W. Zhuang, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 6964; W. Zhuang, M. Marigo, K. A. Jørgensen, Org. Biomol. Chem. 2005, 3, 3883; b) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. 2005, 117, 4284; Angew. Chem., Int. Ed. 2005, 44, 4212; c) H. Sundén, I. Ibrahem, A. Córdova, Tetrahedron Lett. 2006, 47, 99; G.-L. Zhao, R. Rios, J. Vesely, L. Eriksson, A. Córdova, Angew. Chem. 2008, 120, 8596; Angew. Chem., Int. Ed. 2008, 47, 8468; d) C.-Y. Ho, Y.-C. Chen, M.-K. Wong, D. Yang, J. Org. Chem. 2005, 70, 898; Y. Chi, S. H. Gellman, Org. Lett. 2005, 7, 4253; Y. Chi, S. H. Gellman, J. Am. Chem. Soc. 2006, 128, 6804; e) C. Palomo, A. Mielgo, Angew. Chem. 2006, 118, 8042; Angew. Chem., Int. Ed. 2006, 45, 7876; P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. 2008, 120, 6232; Angew. Chem., Int. Ed. 2008, 47, 6171; X. Yu, W. Wang, Org. Biomol. Chem. 2008, 6, 2037.
- [5] D. Seebach, A. K. Beck, D. M. Badine, M. Limbach, A. Eschenmoser, A. M. Treasurywala, R. Hobi, W. Prikoszovich, B. Linder, *Helv. Chim. Acta* 2007, 90, 425.
- [6] D. Seebach, V. Prelog, Angew. Chem. 1982, 94, 696; Angew. Chem., Int. Ed. 1982, 21, 654.
- [7] S. Bertelsen, M. Marigo, S. Brandes, P. Dinér, K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128, 12973.
- [8] F. H. Allen, Acta Crystallogr., Sect. B 2002, 58, 380.
- [9] H. Böhme, E. Mundlos, O.-E. Herboth, *Chem. Ber.* **1957**, *90*, 2003.
- [10] T. D. Stewart, W. E. Bradley, J. Am. Chem. Soc. 1932, 54, 4172.
- [11] H. Hellmann, 'α-Aminoalkylierung. Darstellung und Eigenschaften der Kondensationsprodukte Hacider Stoffe mit Carbonylverbindungen und Aminen', Verlag Chemie, Weinheim, 1960.
- [12] H. Hellmann, G. Opitz, Angew. Chem. 1956, 68, 265.
- [13] J. Schreiber, H. Maag, N. Hashimoto, A. Eschenmoser, Angew. Chem. 1971, 83, 355; Angew. Chem., Int. Ed. 1971, 10, 330.
- [14] J. v. Braun, E. Röver, Ber. Dtsch. Chem. Ges. 1903, 36, 1196.

- [15] N. J. Leonard, J. V. Paukstelis, J. Org. Chem. 1963, 28, 3021.
- [16] U. Grošelj, W. B. Schweizer, M.-O. Ebert, D. Seebach, Helv. Chim. Acta 2009, 92, 1.
- [17] a) S. Lakhdar, T. Tokuyasu, H. Mayr, Angew. Chem. 2008, 120, 8851; Angew. Chem., Int. Ed. 2008, 47, 8723; b) S. Lakhdar, R. Appel, H. Mayr, Angew. Chem. 2009, 121, 5134; Angew. Chem., Int. Ed. 2009, 48, 5034.
- [18] G. Evans, T. J. K. Gibbs, R. L. Jenkins, S. J. Coles, M. B. Hursthouse, J. A. Platts, N. C. O. Tomkinson, Angew. Chem. 2008, 120, 2862; Angew. Chem., Int. Ed. 2008, 47, 2820; J. B. Brazier, G. Evans, T. J. K. Gibbs, S. J. Coles, M. B. Hursthouse, J. A. Platts, N. C. O. Tomkinson, Org. Lett. 2009, 11, 133.
- [19] C. Sparr, W. B. Schweizer, H. M. Senn, R. Gilmour, Angew. Chem. 2009, 121, 3111; Angew. Chem., Int. Ed. 2009, 48, 3065.
- [20] A. K. Beck, M. Gautschi, D. Seebach, Chimia 1990, 44, 291.
- [21] I. Krossing, I. Raabe, Angew. Chem. 2004, 116, 2116; Angew. Chem., Int. Ed. 2004, 43, 2066.
- [22] M. Lemay, W. W. Ogilvie, Org. Lett. 2005, 7, 4141.
- [23] J. M. Lassaletta, J. Vázquez, A. Prieto, R. Fernández, G. Raabe, D. J. Enders, J. Org. Chem. 2003, 68, 2698
- [24] D. Seebach, Angew. Chem. 1990, 102, 1363; Angew. Chem., Int. Ed. 1990, 29, 1320.
- [25] E. Maerten, S. Cabrera, A. Kjærsgaard, K. A. Jørgensen, J. Org. Chem. 2007, 72, 8893; P. Dinér, M. Nielsen, M. Marigo, K. A. Jørgensen, Angew. Chem. 2007, 119, 2029; Angew. Chem., Int. Ed. 2007, 46, 1983.
- [26] S. Grimme, J. Antony, T. Schwabe, C. Mück-Lichtenfeld, Org. Biomol. Chem. 2007, 5, 741.
- [27] A. D. Becke, J. Chem. Phys. 1993, 98, 5648; C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter 1988, 37, 785; B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200; P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
- [28] M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 1988, 153, 503; M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 275; M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 281; M. Head-Gordon, T. Head-Gordon, Chem. Phys. Lett. 1994, 220, 122; S. Saebø, J. Almlöf, Chem. Phys. Lett. 1989, 154, 83.
- [29] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
- [30] V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995; M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669.
- [31] Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- [32] D. Seebach, A. K. Beck, *The TAKASAGO Times* **2006**, *157*, 34.
- [33] K. Li, Z. Zhou, L. Wang, Q. Chen, G. Zhao, Q. Zhou, C. Tang, Tetrahedron: Asymmetry 2003, 14, 95.
- [34] H. E. Zimmerman, J. M. Nuss, A. W. Tantillo, J. Org. Chem. 1988, 53, 3792.
- [35] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115.
- [36] G. M. Sheldrick, SHELXL97, Program for the Refinement of CrystalStructures, University of Göttingen, Göttingen, 1997.
- [37] H. D. Flack, Acta Crystallogr., Sect. A 1983, 39, 876.
- [38] S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 2002, 124, 104.

Received May 13, 2009