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Abstract: (Trimethylsilyl)ethynyl bromide can be easily trans-
formed into conjugated (E)-enynones, whose skeleton consists of
consecutive carbonyl, ethynyl, and (E)-ethenyl units, via a one-pot
multicomponent Suzuki-type reaction–Sonogashira reaction se-
quence. Thus, a three-component coupling of (trimethylsilyl)ethy-
nyl bromide, (E)-alk-1-enyldisiamylborane and acid chloride is
achieved in a two-step, one-pot procedure, in which (E)-alk-1-enyl
group is installed as nucleophile in the sp-carbon atom attached to
bromine atom and acyl group is installed as electrophile in the other
sp-carbon atom.

Key words: (trimethylsilyl)ethynyl bromide, conjugated enynone,
cross-coupling, alkenylborane, acid chloride

Conjugated ynones have found a wide range of applica-
tions as intermediates in the synthesis of natural products1

and heterocycles,2 as well as substrates in organic synthe-
sis through organometallic compounds.3 A great number
of methods have been reported for their preparation, and
the methodology can be divided into three categories: (1)
the palladium and/or copper-catalyzed coupling reaction
of terminal alkynes with acid chlorides (Sonogashira reac-
tion),4 (2) the cross-coupling reaction between alkynyl or-
ganometallic reagents and acid chlorides,5–15 and (3) the
palladium and/or copper-catalyzed carbonylative cou-
pling reaction of terminal alkynes with aryl hahides (car-
bonylative Sonogashira reaction).16 Each of them has a
characteristic feature. The cross-coupling reaction using
alkynyl organometallic reagents can proceed well without
employing any base which may give rise to undesired side
reaction with acid chloride. Carbonylative Sonogashira
coupling can be performed even in protic solvent or ionic
liquid. Thus it is possible to choose among many methods
according to circumstances.

On the other hand, conjugated enynones, in which the sp-
carbon atom of conjugated ynone connects with an alke-
nyl carbon atom, also play key roles in the synthesis of

natural products17 and [2+2]-photocycloadducts.18 How-
ever, the method for preparing such conjugated enynones
is rare,19 and there are no reports, to our knowledge, on
synthesizing conjugated enynones with definite geome-
try. As part of our ongoing research aimed at assembling
p-extended conjugation,20 we herein report one-pot syn-
thesis of conjugated (E)-enynones, (E)-1-arylalk-4-en-2-
yn-1-ones 3, under mild reaction conditions. Based on the
copper-catalyzed cross-coupling reaction of (E)-alk-1-
enyldisiamylboranes 1 with (trimethylsilyl)ethynyl bro-
mide leading to the formation of terminal conjugated (E)-
enynes 2 (Suzuki-type reaction),21 we envisioned that the
desired compounds 3 could be obtained by reaction of
compounds 2 with aroyl chlorides (Sonogashira reaction)
in a two-step, one-pot manner as illustrated in Scheme 1.
Therefore, the main challenge in this one-pot reaction was
to investigate the reaction conditions for the Sonogashira
reaction.

Optimization of the reaction conditions was explored us-
ing (E)-dec-3-en-1-yne (2a) and benzoyl chloride as mod-
el substrates. Thus, the cross-coupling reaction of (E)-oct-
1-enyldisiamylborane (1a) (1 mmol) with (trimethylsi-
lyl)ethynyl bromide (0.67 mmol) was carried out in the
presence of Cu(acac)2 (0.05 mmol) and 1 M NaOMe (0.75
mmol) at –15 °C to room temperature overnight to gener-
ate compound 2a (ca. 0.5 mmol).22 After removal of meth-
anol under reduced pressure, the reaction with benzoyl
chloride (1 mmol)23 was conducted in the presence of pal-
ladium source, ligand, and Et3N (1 mmol)24 in anhydrous
THF at room temperature for two hours. Addition of CuI
was unnecessary because Cu(acac)2 had already been
used for the cross-coupling reaction of 1a with (trimethyl-
silyl)ethynyl bromide. The results are summarized in
Table 1. Use of PdCl2(PPh3)2 (2 mol% relative to com-
pound 2a) as a palladium source gave the desired product,
(E)-1-phenylundec-4-en-2-yn-1-one (3aa), albeit in mod-

Scheme 1 The proposed two-step, three-component coupling process
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erate yield (Table 1, entry 1). When Pd(PPh3)4 (2 mol%)
was used in place of PdCl2(PPh3)2, the yield of product
3aa improved considerably (Table 1, entry 2). Ligand-
free palladium sources, such as PdCl2, Pd(OAc)2, and
Pd2(dba)3·CHCl3, did not lead to any desired product at all
(Table 1, entries 3–5). But, in contrast, the palladium
source in combination with Ph3P (4 mol%) led to high
yields of product 3aa (Table 1, entries 6–8), indicating
that phosphine ligand is crucial to the success of this cou-
pling reaction. For our further studies, Pd(OAc)2 is prefer-
able to PdCl2 and Pd2(dba)3·CHCl3 in terms of the yield
and cost. Among phosphine ligands screened, Ph3P
proved to be the best ligand (Table 1, entry 8).25 Reducing
the loading of Pd(OAc)2/Ph3P showed a decreasing ten-
dency in the yield of product 3aa (Table 1, entry 11).

Having established our optimized conditions for the se-
quential coupling reaction, we examined the scope of the
one-pot synthesis of (E)-1-arylalk-4-en-2-yn-1-ones 3.
The results are shown in Table 2. Different types of com-
pounds 2 underwent smooth cross-coupling with a variety
of aroyl chlorides to afford products 3 in good to high
yields. This coupling reaction was successfully applied to
compound 2 with a structurally and electronically diverse
substituent R1 (Table 2, entries 1–4). The cross-coupling
reaction with various aroyl chlorides was carried out using
both (E)-dec-3-en-1-yne (2a) and (E)-4-phenylbut-3-en-
1-yne (2b). It is noteworthy that the use of compound 2b
provides p-conjugated molecules (Table 2, entries 2, 6, 8,
10, 12, 14, and 16). Electron-donating as well as electron-
withdrawing aroyl chlorides could be used as coupling

partner (Table 2, entries 5–10). Using condensed aroyl
chloride such as 2-naphthoyl chloride, the cross-coupling
reaction could also proceed smoothly (Table 2, entries 11
and 12). In addition, heteroaroyl chlorides such as 2-fu-
royl and 2-thiophenecarbonyl chlorides were good sub-
strates for this coupling reaction (Table 2, entries 13–16).

In summary, we have developed a two-step, one-pot,
three-component synthesis of (E)-1-arylalk-4-en-2-yn-1-
ones 3 using a Suzuki-type reaction–Sonogashira reaction
sequence. This protocol is the first method for preparing
compounds 3 in good to high yields. The extended scope
of this transformation will be reported in due course.
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