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Based on the Michael addition reaction of thiolhviite C=C bond under mild conditions,
we herein report a new fluorescent probe whichufeata rapid signal response time, a
good linearity range and a low detection limit. Tpetential application of this new
fluorescent probe was demonstrated by fluoresogaging of thiol in living cells.
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Abstract: With the biological importance of biothiols, thewve&tlopment of probes for
thiols has been an active research area in recesmtsy Here, we report a novel
thiol-reactive fluorescent probe based on Michaddiiteon reaction for selectively
detecting thiols over other relevant biological @ps. The thiol adduct was
characterized using NMR and mass spectroscopy etetttbn mechanism was further
confirmed. This sensor with excellent selectivity biothiols over other amino acids
features a rapid signal response time, a goodrligaange and a low detection limit.
For the practical application of the sensor, it benused to monitor thiol in live cells
with turn-on fluorescence imaging.
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1. Introduction

Biological thiols including cysteine (Cys), homotgise (Hcy), and glutathione
(GSH) are components of many peptides, which ptagial roles in maintaining the
biological redox homeostasis through the equilioriof free thiols and oxidized
disulfides in biological systems [1-3]. It is knowhat intracellular concentration of
GSH is much higher than Cys (Cys: 30-200 uM; GSH0InM) [4,5]. In contrast, in
healthy human plasma, Cys concentration is typickdltimes that of GSH, 20-30 times
that of Hcy, which normally presents below 12-15 |4yl However, the alterations in
the level of thiols in biological fluids are impéited in a variety of diseases [6-8]. For
example, Cys deficiency is involved in many syndesnsuch as slow growth in
children, hair depigmentation, edema, lethargyerlidamage, loss of muscle and fat,
skin lesions, and weakness [9]. At elevated lewelplasma, Hcy is a risk factor for
Alzheimer’s disease [10], folate and cobalaminawiin B12) deficiencies [11], and
cardiovascular diseases [12]. GSH is the most aminidtracellular non-protein thiol
[13], which serves many cellular functions, incluglimaintenance of intracellular redox
activities, xenobiotic metabolism, intracellulagrsal transduction, and gene regulation
[14, 15]. Owing to their important roles, sensitaed selective detection of thiols has
received growing attention in recent years.

In recent times, fluorescent molecular probes lawerged as an attractive tool for
selective detection of various chemical and biaafjcomponents [16—19], including
thiols [20-27]. Compared to traditional techniquediemical probes based on

absorption or fluorescence changes are more feafibldetecting analyses owing to



their many appealing advantages such as low detedimit, high selectivity, its
real-time monitoring and its potential for in vivmaging of living cells. However,
fluorescence quenching may be caused by a numbgactdrs other than the target
analyte, and thus the sensing behavior may be eoifgp[28]. Probes that rely on
fluorescence quenching suffer from inherent drawbancluding low signal-to-noise
ratio and non-specific quenching [29], so that riton” type fluorescence probes are
preferred [30-33].

Maleimide groups are known to react fairly seleslvwith thiols via addition
reactions involving their C=C double bond. They aakso known to quench
fluorescence in their conjugated form, but nothesrtthiol adduct products [34]. These
properties were demonstrated in the characterizabd fluorophores bearing a
maleimide group whose fluorescence increased dreatigtupon reaction with thiols
[35-37]. Based on these issues, we synthesizedvatimel-reactive fluorescent probe
containing triphenylamine and maleimide (SchemaAhen the concentration of probe
is low, Hcy/GSH induced a significant enhancemantiuorescence intensity whereas
Cys induced almost no change, while increasing amnai probe, fluorescence
enhancement induced by Cys was enough to make tbleaecognition. Furthermore,
this probe was successfully applied in fluoresomatging in living cells.

<Inserted Scheme 1>

2. Materialsand Methods
2.1. Materials

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic agtEPES) was purchased from



Sigma-Aldrich (St. Louis, MO). Sodium hydroxide swbn (0.1 mol/L) was added to
aqueous HEPES (10 mmol/L) to adjust the pH to Amino acids were purchased from
Shanghai Experiment Reagent Co., Ltd (Shanghaina}hiAll other chemicals used
were of analytical grade.
2.2. Instruments

A pH meter (Mettler Toledo, Switzerland) was used determine the pH.
Ultraviolet—visible (UV-vis) spectra were recorded an Agilent 8453 UV-Visible
spectrophotometer. Fluorescence spectra were nmeehsuwon F-7000 FL
Spectrophotometer. A PO-120 quartz cuvette (10 mvag purchased from Shanghai
Huamei Experiment Instrrument Plants, Chifd. NMR, *C NMR spectra were
recorded on a Bruker AVANCE-300 MHz (and 600MHz)dai@5 MHz NMR
spectrometer, respectively (Bruker, Billerica, MESI was measured with an LTQ-MS
(Thermo) instrument. LC-MS was measured with Brudaari X FTMS. The ability of
probe reacting to thiols in the living cells wassalevaluated by laser confocal
fluorescence imaging using an Olympus FV1000 lasanning microscope.
2.3. Preparation and characterization of probes
2.3.1. Preparation and characterization of B

The synthesis route is summarized in Scheme 1. P@CImL)was addedo a

DMF solution (250 mL) with stirring for 2 h in ioeater bath. After the color change to
nacarat, added triphenylamine (100 mmol) to thetswi with stirring at 4Q. After
the reaction was complete, the reaction mixture p@sed into ice water (1000 mL)

and adjusted pH to 9 with NaOH to separate fairloye crystals out. The solid



obtained by filtered, washed with water and reailiged in ethanol to give compound
B in 86% as a faint yellow powdeitd NMR (DMSO-ds, 300 MHz):5 (ppm): 9.77 (s,
1H), 7.72 (d, 2H,) = 8.7 Hz), 7.43 (t, 4H] = 15.6 Hz), 7.23 (m, 6H), 6.88 (d, 2Bi=
8.7 Hz);®C NMR (DMSO4ds, 75 MHz): 6 (ppm): 117.7, 125.0, 126.0, 128.1, 129.6,
130.9, 145.1, 152.3, 190.1; Elemental analysisc¢ceto) for GoH1sNO: C, 83.49, H,
5.53, N, 5.12, Found: C, 83.46, H, 5.54, N, 5.18]-81S m/z: [B + HJ Calcd for
C1oH16NO 274.12, Found 273.92 (Fig. S1).
2.3.2. Preparation and characterization of C

A mixture of C (triphenylphosphine, 0.16 mol) anditobenzyl chlorine (0.15
mol) in paraxylene (200 mL) was stirred and refia 150C for 2 h. The mixture
was then cooled to’O and filtered. The taupe solid thus obtained wasddunder
vacuum to give compound D in 9295 NMR (DMSO-ds, 300 MHz):6 (ppm): 8.11 (d,
2H,J = 8.1 Hz), 7.93 (s, 3H), 7.75 (d, 128= 9.9 Hz), 7.30 (d, 2H] = 8.1 Hz), 5.60 (s,
1H), 5.54 (s, 1H)**C NMR (DMSO4ds, 75 MHz):d (ppm): 116.0, 117.1, 122.9, 129.3,
129.5, 131.4, 133.2, 133.4, 134.5, 135.4, 135.6,51&lemental analysis (calcd. %) for
C2sH21CINOLP: C, 69.21, H, 4.88, N, 3.23, Found: C, 69.204140; N, 3.20 (Fig. S2).
2.3.3. Preparation and characterization of D

In a 250 mL 3 mouth flask, added potassium terbxide to a THF solution (100
mL) of D (12.5 mmol) in ice-water bath with stirgrfor 1h. Afterwards 8.5 mmol B
was added to the solution with stirring and refhgkiat 70C. After the reaction was
complete, parts of the solvents were then evapbratevacuo and the residue was

dissolved in dichloromethane. 30 mL of water waantladded to the dichloromethane



solution, and the organic layer was purified byochatography on a silica gel column
to give a crimson product in 82% vyield. A g solution containing the product was
allowed to evaporate slowly at room temperaturestreral days, and the crystals that
subsequently formed were suitable for X-ray crystaaphyH NMR (DMSO-ds, 300
MHz): 6 (ppm): 8.21 (d, 2HJ = 8.7 Hz), 7.81 (d, 2H] = 8.7 Hz), 7.55 (t, 2H] = 15.6
Hz), 7.30 (m, 6H), 7.09 (m, 6H), 6.95 (d, 2H= 8.4 Hz);**C NMR (DMSO4ds, 75
MHz): 6 (ppm): 121.7, 123.2, 124.1, 126.4, 127.9, 129.8.4,2132.4, 144.0, 145.3,
146.2, 147.3; Elemental analysis (calcd. %) fesHzoN2O,: C, 79.57, H, 5.14, N, 7.14,
Found: C, 79.59, H, 5.14, N, 7.12; ESI-MS m/z: [B} Calcd for GgH»:N,O, 393.15,
Found 393.08; Crystal data fopdEl,oN2O,: crystal size: 0.20 x 0.16 x 0.06, monoclinic,
space group P 1 21/n 1. a = 8.4057(13) A, b = 888) A, ¢ = 27.015(4) Ap =
96.654(3)°, V =1997.2(5) AZ =4, T=173.1500 K, max = 27.483°, 13867 wiftns
measured, 4562 uniqué&{ = 0.0355). Final residual for 271 parameters abh@24
reflections with 1 > 2(1)R; = 0.0596 wR, = 0.1248 and GOF = 1.104 (Fig. S3).
2.3.4. Preparation and characterization of F

A solution of E (10 mmol) dissolved in 150 mL etbarwas added into a
round-bottom flask equipped with a magnetic stimed heated at 80. Then 0.3 g of
Pd/C catalyst was added into the preceding reasiistem and a solution of 4.9 mL of
85% hydrazine hydrate was added dropwise for alibbt h. The reaction was
monitored by TLC. After the completion of the reant the reaction mixture was
filtered immediately and the solution was pouredb isaturated sodium chloride

solution to give a faint yellow solid. The solidtalmed by filtered was purified by



chromatography on a silica gel column to give conmbF in 65% vyield'H NMR
(DMSO-ds, 300 MHz):d (ppm): 7.40 (d, 2HJ = 8.1 Hz), 7.27 (m, 6H), 6.85 (m, 10H),
6.53 (d, 2H,J = 8.1 Hz), 5.26 (s, 2H}’C NMR (DMSO+s, 75 MHz):d (ppm): 112.2,
112.7, 121.0, 121.7, 122.5, 12.7, 125.6, 126.2,712628.3, 131.5, 14.4, 145.9, 147.3;
Elemental analysis (calcd. %) fopdH2N2: C, 86.15, H, 6.12, N, 7.73, Found: C, 86.14,
H, 6.12, N, 7.74; ESI-MS m/z: [F + HTalcd for GgH23N»363.18, Found 362.92 (Fig.
S4).
2.3.5. Preparation and characterization of prbbe

The synthesis of prob# is that a mixture of F (2 mmol), maleic anhydri@@
mmol) in glacial acetic acid (10 mL) was heatedamaflux with monitoring by TLC.
The mixture solution was poured into saturated wsodcarbonate solution to separate
crystals out. The solid obtained by filtered wasifpjrd by chromatography on a silica
gel column to give compound F in 58% yild. NMR (DMSO-ds, 600 MHz):6 (ppm):
7.67 (d, 2HJ = 8.5 Hz), 7.53 (d, 2H] = 8.6 Hz), 7.35 — 7.32 (m, 4H), 7.31 (d, 2H:
2.0 Hz), 7.25 (d, 2H] = 16.4 Hz), 7.19 (s, 2H), 7.15 (d, 2H= 16.4 Hz), 7.07 (t, 2H]
= 7.4 Hz), 7.05 (d, 4H) = 7.6 Hz), 6.97 (d, 2H] = 8.6 Hz).®*C NMR (DMSO4ds, 75
MHz): ¢ (ppm): 122.5, 122.9, 123.8, 125.5, 126.1, 126.5,.4,2128.4, 129.2, 130.0,
130.7, 134.3, 136.4, 146.5, 169.5; Elemental amalfealcd. %) for GoH22N20,: C,
81.43, H, 5.01, N, 6.33, Found: C, 81.44, H, 582,6.31. LC-MS m/z: [probe +
CH30H] Calcd for GiH26N203 474.19434, Found 474.19364 (Fig. S5).
2.4. General UV-Vis and fluorescence spectra measurements

Probe stock solutions were prepared in DMSO. Agseamino acid solutions



were also prepared using deionized water. Fluonegcmeasurements were carried out
with a slit width of 5 nmAgx = 370 nm). Fluorescence spectra were obtainedEiRES
aqueous buffer (10 mmol/L, pH 7.4) solutions.
2.5. Detection range

Fluorescence spectra were measured from 385 n20tor with excitation at 370
nm. The detection threshold for Cys, Hcy and GSH %@® to 10’ mol/L, and at this
level the fluorescence color change was very olsviou
3. Resultsand discussion
3.1. The Sdlectivity over thiols

The spectral responses of probeowards various amino acids, including thiols
with mercapto groups (GSH, Hcy and Cys), and thasthout mercapto groups
(L-alanine (Ala), L-arginine (Arg), L-asparagine(@s L-glutamine (GIn), L-glutamic
acid (Glu), L-glycine (gly), L-histidine (His), Lsbleucine (lle), L-leucine (Leu),
L-lysine (Lys), L-methionine (Met), L-phenylalanin®he), L-proline (Pro), L-serine
(Ser), L-threonine (Thr), L-tryptophan (Trp), L-bgine (Tyr), L-valine (Val) and SH
were examined. The proliels essentially non-fluorescent in the absencéiotf.tOnly
in the presence of thiols there was a significaritamcement in fluorescence intensity
observed for probé. In the buffer containing 0.5 pumol/L probe, adutitiof Hcy/GSH
will induce a significant fluorescence enhancemeigreas Cys induce a little (Fig.1).
Interestingly, only using 5 pmol/L prolde fluorescence enhancement induced by Cys
was obvious (Fig. S6). The other amino acid samgksbited no noticeable increase

of the fluorescence signal. For ultraviolet spetirthere is no significant change even



in the presence of 20 eq. of thiols (Fig. S7). Fdher thiols, such as ME
(2-mercaptoethanol)}, showed similar fluorescence responses (Fig. S6).
<Inserted Figure 1>

3.2. The fluorescence spectra for thiol

As a typical biological thiol, GSH was used to hat examine the fluorescence
response of probe The changes in the fluorescence spectra of ptdbes pmol/L) in
the absence or presence of GSH (0-3.5 umol/L) iREEbuffer are displayed in Fig.
2. The probel is essentially non-fluorescent in the absence 8HGhowever, the
addition of GSH caused a dramatic change in therdlscence spectra. A strong new
emission peak at 480 nm appeared, and an enhantcehtba fluorescence intensity by
up to 24-fold was observed. Upon addition of Hcyo(Bmol/L) to probe, a similar
phenomenon on fluorescence spectra could be olikdfig. S6). Cys induced a
negligible response for 0.5 pmol/L probeHowever, Cys (35 pumol/L) caused 12-fold
fluorescence enhancement in the presence of 5 himabel.

<Inserted Figure 2>

To investigate the detection limit of probe for GSbtobel (0.5 pumol/L) was
treated with various concentrations of GSH (0—-3m0o|iL) and the relative emission
intensity at 480 nm was plotted as a function & @SH concentration (Fig. 3). The
emission intensity of probe was linearly proportional to GSH concentration©e8.5
umol/L. The detection limit, based on the defimtiby IUPAC (G = 3 Sb/m) [38],
was found to be 0.085 pumol/L. Similarly, the detatiimits were estimated to be 0.12

pmol/L for Hcy and 0.13 pmol/L for Cys, respectivéFig. S8). The probe shows a
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high sensitivity towards thiols which is comparalite that of other reported thiol
chemosensors (Table 1) [39-41].

<Inserted Figure 3>

<Inserted Table 1>
3.3. Time-dependence in the detection process of thiols

Time-dependent modulations in the fluorescence tepeof probe 1 were

monitored in the presence of 10 eq. of thiol. Thmetic study (Fig. 4) showed that the
reaction was complete within 75 s for Hcy and G8tdicating that probé reacts
rapidly with Hcy/GSH under the experimental coraiis. Slightly inferior to Hcy/GSH,
the reaction time for Cys is 150 s which is alsstda than that of reported probes
[26,42].

<Inserted Figure 4>

3.4. pH dependence

To investigate the effect of pH on the fluorescenegponse ofl to GSH, the
fluorescence intensity changeslohduced by GSH were measured at various pHs (Fig.
S9). When the solution pH was between 2.0 andtBeDprobe has slight fluorescence.
When pH value exceeds 4.0, the prdbalmost has no fluorescence. However, when
the solution pH exceeds 5.0, fluorescence incréaseced by GSH is obvious with
intensifying pH value. Therefore, physiological @H was chosen for further studies
3.5. Michael addition mechanism

Maleimide groups are known to react fairly seleslyvwith thiols via addition

reactions involving their C=C double bond. Michaatldition of thiols to the
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electron-deficient alkene groups in probgave rise to emission enhancemehf €
370 nm,lem = 480 nm). Mass spectrometry analysis of a prodibtained from the
reaction of probe with 2-mercaptoethanol also sugpthe formation of probe-thiol
derivatives. A peak at 521.16 corresponding toljpeME + HJ was clearly observed
(Fig. S10). Further NMR spectroscopic analysis gisavided the evidence for the
1,2-addition of the thiol to the maleimide ring pnobe 1. With addition of 2 eq. of
2-mercaptoethanol (ME) to probe in DMSk)-the resonance of the original proton
(CHmateimide ring at 7.19 ppm disappeared and new peaks at 4188, 3.62, 2.7-3.0 ppm
appeared (Fig. S11). Thus, the sensing mechanigrobgl towards thiol, which is in
keeping with reported literature [43], was basedttma Michael addition as shown in
Scheme 2.
<Inserted Scheme 2>

3.6. Cdlular Imaging

In order to evaluate the cell permeability and tédpg of probe 1 to selectively
detect intracellular thiols, live-cell imaging stesl were carried out. As shown in Fig.
5a, HepG2 cells that were pre-treated with 10 ploglethylmaleimide (NEM, a thiol
blocking reagent) and then incubated with 0.5 pimplkobe 1 for 30 min at 37°C
showed no fluorescence. In a further experimentvais found that HepG2 cells
displayed cyan fluorescence when the cells wesd fircubated with 0.5 pumol/L of
probel for 30 min at 37T and then incubated with 3.5 umol/L GSH (Fig. Si)ese
cell experiments show the good cell-membrane pditiigeof probe, and it can thus be

used to mark thiols within living cells.
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<Inserted Figure 5>
4. Conclusions
In summary, here we report an easy-prepared prabedbon triphenylamine for

the detection of thiol-containing molecules withgthiselectivity and sensitivity. The
observed fluorescence enhancement is ascribedskleative thiol-induced addition
reactions to C=C double bond of maleimide groupe fidsults of the investigation show
that thiol induce an enhancement of the fluoreseemiensity ofl in pH 7.4 solutions.
Moreover, because of its good water solubility, I-pehetration ability and
biocompatibility, 1 serves as a fluorescent sensor to visualize thidive cells at
micromolar concentrations. However, one shortcomisgthat the excitation and
emission wavelengths are in the ultraviolet regwhich might be avoided in the future
directions.
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Figure captions

Scheme 1. The synthesis of the probe 1.

Fig. 1. (a) Fluorescence emission spectra of the probe .5 {@mol/L) in
CH3OH-HEPES buffer (10 mmol/L, pH=7.4, 1 : 1, v/v)tle presence of 50 pmol/L
Ala, Arg, Asp, GIn, Glu, Gly, His, lle, Leu, Lys, &, Phe, Pro, Ser, Thr, Trp, Val and
3.5 umol/L Cys, GSH, Hcy. (f)ptical density two-dimensional graph of the praibe
480 nm upon the addition of amino acids.

Fig. 2. Fluorescence spectra of the probe (0.5 pumol/L)hm presence of various
concentrations of GSH (0-3.5 pumol/L) in gpH-HEPES buffer (10 mmol/L, pH 7.4,
1:1, VIV) gex= 370 nm, slit: 5 nm/5 nm).

Fig. 3. The linearity of the relative fluorescence intepsiersus GSH concentration.
Table 1. A comparison table of the detection limits foryHc

Fig. 4. Reaction time profiles of probe (0.5 pumol/L) wiSH, Hcy and probe (5
pmol/L) for Cys.

Scheme 2. Proposed detection mechanism of the probe tésthio

Fig. 5. Confocal fluorescence images of HepG2 cellsFla)rescence image of HepG2
cells pre-treated with 10 pmol/L NEM and then inatgal with 0.5 umol/L probe for 30
min at 37C and its bright field image (c); (b) fluorescenogapge of HepG2 cells first
incubated with 0.5 pumol/L of probe for 30 min at@7and then incubated with 3.5

pumol/L GSH for 30 min at 3¢ and its bright field image (d).
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Figure 1(a)
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Figure 3
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Table 1

Method Analyte Signal output Solvent Detectionmiti
Ref.[39] Hey Fluorescence DMSO/E 1.19 uM
Ref.[40] Hey Fluorescence DMSO/8 1.96uM
Ref.[41] Hey Fluorescence GEBN/HO 0.13uM
This work Hey Fluorescence DMSOmB 0.12uM
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Figure 4
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Scheme 2
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Figure 5
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Supporting Information for

A triphenylamine as a fluorophor e and maleimide as a bonding group

selective turn-on fluor escent imaging probefor thiols
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Figure S1: The characterization data of the compoBnd
FigureS2: The characterization data of the compoDnd
Figure S3: The characterization data of the compoknd
Figure$4: The characterization data of the compoEnd
Figure S5: The characterization data of the prdbe

Figure S6: The fluorescence titration spectra of Cys, Hogt WE
Figure S7: The absorption titration spectra of thiols

Figure S8: The detection limits of Hcy and Cys

Figure S9: Choice of pH range for the measurements

Figure S10: LC-MS spectra of the probe-ME adduct

FigureS11: NMR spectra of probe and probe-ME
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Figure S1: *H NMR, *C NMR, ESI-MS of the compour!
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Figure S2: 'H NMR, °C NMR, ESI-MS of the compound D
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Figure $4: 'H NMR, **C NMR, ESI-MS of the compourfd
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Figure S5: *H NMR, 3C NMR, ESI-MS of the prob
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Figure S6: The fluorescence titration spectra of Cys, Hcy kit
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Figure S6: (a) Fluorescence spectra of the probe (5 pmoifL)the presence of various
concentrations of Cys (0-35 pmol/L) in gPH-HEPES buffer (10 mmol/L, pH=7.4,1: 1, viv)) (b
and (c) Fluorescent titrations of probe (QrBol/L) in response to the additién~3umol/L Hcy and
ME (2-mercaptoethanol) in HEPES buffer (10 mmofiH, 7.4) gex = 370 nm, slit: 5.0 nm/5.0 nm).
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Figure S7: The absorption titration spectra of thiols.
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Figure S7: absorption spectra of probe ({LM) with 200uM GSH (a), Hey (b), Cys (c) in HEPES
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Figure S8: The detection limits of Hcy and Cys
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Figure S9: Choice of pH range for the measurements
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Figure S10: LC-MS spectra of the probe-ME adduct
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Figure S10: The LC-MS of product obtained by probe react witm@rcaptoethanol: HRMS (FTMS)
m/z: [probe-ME + H] Calcd 521.18989, Found 521.16608
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NMR spectra of probe and probe-ME

Figure S11.
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Highlight
1. A green turn on fluorescent probe for biothiols in solution was devel oped.

2. Thedetection limit isaslow as 10°M.

3. The probe can be applied in bioimaging.



