

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 343 (2008) 1574-1584

Synthesis of a tetrasaccharide phosphate from the linkage region of the arabinogalactan-peptidoglycan complex in the mycobacterial cell wall

Yong Joo Lee, Dinanath Baburao Fulse and Kwan Soo Kim*

Center for Bioactive Molecular Hybrids and Department of Chemistry Yonsei University, Seodaemun-gu Sinchon-dong 134, Seoul 120-749, Republic of Korea

Received 20 March 2008; received in revised form 5 May 2008; accepted 6 May 2008 Available online 13 May 2008

Abstract—The synthesis of dibenzyl 6-O-naphthylmethyl-2,3,5-tri-O-benzoyl- β -D-galactofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl-6-O-benzyl- β -D-galactofuranosyl- $(1 \rightarrow 4)$ -3-O-benzyl-2-O-pivaloyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy-4,6-di-O-benzoyl- α -D-glucopyranosyl phosphate (1), a protected form of the tetrasaccharide phosphate of the linkage region of the arabinogalactan—peptidoglycan complex in the mycobacterial cell wall, has been accomplished. Key steps include the coupling of four monosaccharide building blocks with complete stereoselectivity by glycosylations employing thioglycosides, 2'-carboxybenzyl glycosides, and glycosyl fluorides as glycosyl donors. The α -glycosyl phosphate linkage was also stereoselectively elaborated by reaction of a tetrasaccharide hemiacetal with tetrabenzyl pyrophosphate in the presence of a base.

Keywords: Oligosaccharides; Glycosylation; Glycosyl phosphate; CB glycosides; Mycobacterial cell wall

1. Introduction

Mycobacterial infections have attracted a great deal of attention in recent years mainly due to the emergence of multi-drug resistant strains¹ of Mycobacterium tuberculosis, the causative agent of tuberculosis, one of the most threatening of human infectious diseases. The resistance of *M. tuberculosis* to many therapeutic agents is partly attributable to its extremely robust and largely impermeable cell wall envelope.² One of the major structural components of the cell wall of M. tuberculosis is composed of a covalently linked complex of mycolic acid, D-arabinan, D-galactan, and peptidoglycan and is often referred to as the mAGP complex, which plays a crucial role for the survival and pathogenicity of M. tuberculosis.³ Within the mAGP complex, the D-galactan, composed of about 30 alternating β -(1 \rightarrow 5)-, and β -(1 \rightarrow 6)-galactofuranose units,^{3a} is attached to the peptidoglycan via a linkage unit, \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-GlcNAc-1-P^{3b} as shown in Figure 1.

Ethambutol, an effective anti-TB drug, inhibits the polymerization step of D-arabinan biosynthesis⁴ while the D-galactan moiety was suggested to be essential for the growth and viability of mycobacteria⁵ and the biosynthetic pathway for the linkage unit has been elucidated.⁶ Very recently, it has also been reported that the biosynthesis of the D-galactan is catalyzed by two galactofuranosyltransferase enzymes.⁷

Because of their biological importance as substrates for enzymes involved in the biosynthesis of mycobacterial cell wall, as well as their potential as anti-TB agents, several motifs of the mAGP complex have been synthesized. For example, Lowary and co-workers succeeded in the synthesis of a highly complex 22 unit arabinan domain containing the β -D-arabinofuranosyl linkages of D-arabinogalactan.⁸ Arabinosyl–galactosyl disaccharides,⁹ trisaccharides,¹⁰ and tetrasaccharides¹¹ have also been synthesized. Galactosyl trisaccharides¹² and linkage di-¹³ and oligosaccharides⁷ have also been prepared.

^{*} Corresponding author. Tel.: +82 2 2123 2640; fax: +82 2 365 7608; e-mail: kwan@yonsei.ac.kr

^{0008-6215/\$ -} see front matter 0 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2008.05.009

Figure 1. Structure of the linkage region of the arabinogalactan-peptidoglycan complex of the mycobacterial cell wall and target tetrasaccharide phosphate 1.

Herein we report for the first time the synthesis of compound 1 (Fig. 1) a protected form of the tetrasaccharide phosphate, β -D-Galf-(1 \rightarrow 5)- β -D-Galf-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-GlcNAc-1-P, of the linkage region of mAGP complex in the mycobacterial cell wall. The naphthylmethyl (NAP) protective group of the target molecule 1 was chosen after consideration of the future connection of the linkage region with the arabinogalactan moiety.

2. Results and discussion

The synthesis of the rhamnose building block started with a selective benzylation of known thio-L-rhamnoside 2^{14} by using the dibutyltin oxide method¹⁵ to afford exclusively monobenzyl ether 3 in 76% yield as shown in Scheme 1. Selective protection of the diol 3 employing bis(tributyltin) oxide¹⁶ and pivaloyl chloride followed by naphthylmethylation of resulting 2-*O*-pivaloyl sugar 4 provided the fully protected rhamnosyl donor 5. Because the glycosylation of the known glucosamine derivative 6^{17} with donor 5 gave the desired disaccharide in poor yield, compound 6 was converted into a properly protected glycosyl acceptor by the following

sequence: (i) protection of **6** with a levulinyl group, (ii) debenzylidenation of resulting **7** with camphorsulfonic acid, (iii) benzoylation of resulting diol to give dibenzoate **8**, and (iv) conversion of levulinyl ester **8** with hydrazine acetate into desired glucosamine derivative **9**.

Glycosylation of 9 with 5 was carried out by activation of the donor 5 with 1-benzenesulfinyl piperidine $(BSP)^{18}$ and Tf₂O in the presence of tri-*t*-butylpyrimidine (TTBP) at -40 °C followed by addition of the acceptor 9 at -40 °C to afford exclusively the α -Lrhamnosyl disaccharide 10 in 85% yield as shown in Scheme 2. It is worth commenting that the efficiency of the glycosylation was quite sensitive to the protecting groups on the glycosyl donor 5. Thus, the glycosylation of 9 with a donor having an acetyl or levulinyl group instead of the NAP group at O-4 of the compound 5 provided the desired disaccharide 10 in a much lower yield. The glycosyl donor having a benzoyl group in place of the pivaloyl group at O-2 of 5 was not satisfactory in the glycosylation of 9. Deprotection of the NAP group of disaccharide 10 with DDQ gave disaccharide acceptor 11 in 84% yield. The stereochemistry of the newly generated anomeric center of the disaccharide was unequivocally determined to be of the α -configuration on the

Scheme 1. Reagents and conditions: (a) (i) *n*-Bu₂SnO, benzene, reflux, 10 h; (ii) BnBr, *n*-Bu₄NI, DMF, 50 °C, 3 h, 76% in two steps; (b) (i) (*n*-Bu₃Sn)₂O, benzene, reflux, 10 h; (ii) PivCl, benzene, 60 °C, 3 h, 79% in two steps; (c) NAPBr, NaH, *n*-Bu₄NI, DMF, 0 °C to rt, 2 h, 86%; (d) levulinic acid, EDC, DMAP, CH₂Cl₂, DMF, rt, 3 h, 83%; (e) (i) CSA, CH₂Cl₂, MeOH, rt, 2 h; (ii) BzCl, DMAP, pyridine, rt, 5 h, 62% in two steps; (f) NH₂NH₂, AcOH, THF, MeOH, rt, 30 min, 95%.

Scheme 2. Reagents and conditions: (a) BSP, Tf₂O, TTBP, 4 Å MS, CH₂Cl₂, -40 °C→0 °C, 2 h, 85%; (b) DDQ, CH₂Cl₂, MeOH, rt, 2 h, 84%.

Scheme 3. Reagent and conditions: (a) (i) *n*-Bu₂SnO, benzene, reflux, 10 h; (ii) NAPBr, NaH, *n*-Bu₄NI, DMF, 60 °C, 3 h, 82% in two steps; (b) BzCl, Et₃N, DMAP, CH₂Cl₂, 0 °C to rt, 30 min, 96%; (c) H₂, Pd–C, NH₄OAc, MeOH, EtOAc, rt, 1 h, 89%; (d) (i) *n*-Bu₂SnO, benzene, reflux, 10 h; (ii) BnCl, NaH, *n*-Bu₄NI, DMF, 60 °C, 3 h, 86% in two steps; (e) DTBMP, Tf₂O, CH₂Cl₂, 4 Å MS, -78 °C to 0 °C, 2 h, 88%; (f) H₂, Pd(OH)₂, NH₄OAc, MeOH, EtOAc, rt, 5 h, 89%; (g) 4Å MS, DTBMP, Tf₂O, CH₂Cl₂, Deoxofluor, HF–pyridine, 2 h, 84%.

basis of the one-bond C1'-H1' coupling constant of compound **11**, $J_{C1'-H1'} = 170$ Hz at $\delta_C 100.4$.¹⁹

The synthesis of a galactose disaccharide started with selective naphthylmethylation of the known 2'-(benzyloxycarbonyl)benzyl (BCB) galactoside 12^{20} using *n*-Bu₂SnO and subsequent benzoylation of the resulting NAP ether 13 to give the fully protected galactoside 14 as shown in Scheme 3. The BCB galactoside 14 was converted into 2'-carboxybenzyl (CB) galactoside 15 by selective hydrogenolysis of the benzyl ester functionality of the BCB moiety of 14 in the presence of ammonium acetate.²¹ On the other hand, selective benzylation of 12 afforded compound 16 as a glycosyl acceptor. Glycosylation of 16 with 15 was performed by sequential addition of Tf_2O and the donor 15 to a solution of the acceptor 16 and DTBMP in CH₂Cl₂ at -78 °C to give exclusively the β -D-galactosyl disaccharide 17 in 88% yield.

The BCB disaccharide **17** was transformed to CB disaccharide **18** by selective hydrogenolysis. However, coupling of the disaccharide acceptor **11** and the disac-

charide donor 18 did not provide a desired tetrasaccharide because of the generation of an undesired selfcondensed ester of the CB glycoside 18.22 This result led us to examine another glycosyl donor in place of 18, such as a glycosyl fluoride. We have previously shown that CB glycosides could be readily converted into glycosyl fluorides by treatment with Tf₂O followed by HF-pyridine²⁰ or by (diethylamino)sulfur trifluoride (DAST).²³ However, neither HF-pyridine nor DAST with Tf₂O, was quite satisfactory for the conversion of the CB disaccharide 18 into fluoride 19, but a combination of Tf₂O, bis(2-methoxyethyl)aminosulfur trifluoride (Deoxofluor),²⁴ and HF-pyridine cleanly converted 18 into 19. Thus, sequential addition of Tf₂O, Deoxofluor, and HF-pyridine to a solution of 18 in CH₂Cl₂ in the presence of DTBMP at -78 °C provided desired disaccharide fluoride 19 in 84% yield. The anomeric carbon chemical shifts at $\delta_{\rm C}$ 105.3 of 17, $\delta_{\rm C}$ 105.5 or 105.6 of 18, and $\delta_{\rm C}$ 105.3 of 19 clearly indicated that the newly generated galactosyl linkage of the disaccharides is in the β -configuration.^{20,25}

Scheme 4. Reagents and conditions: (a) SnCl₂, AgClO₄, Et₂O/CH₂Cl₂, 0 °C to rt, 30 min, 90%; (b) PdCl₂, NaOAc, 95% aq AcOH, rt, 12 h, 71%; (c) LDA, [(BnO)₂P(O)]₂O, THF, -78 °C to 0 °C, 2 h, 92%.

A proposed mechanism of the conversion of **18** into **19** could be as follows: Addition of Tf_2O to **18** would give a highly reactive mixed anhydride intermediate, a glycosyl acyl triflate. Then, upon addition of Deoxofluor, the triflate would be displaced by the fluoride anion from Deoxofluor to provide a glycosyl acyl fluoride intermediate. Finally, HF–pyridine would facilitate the lactonization of the acyl fluoride to generate a glycosyl oxocarbenium ion, which would readily react with a fluoride ion to afford the glycosyl fluoride **19**. In fact, we were able to isolate the glycosyl acyl fluoride intermediate.

The stage was set now for the construction of the tetrasaccharide by coupling of the pyranose disaccharide acceptor 11 and the furanose disaccharide donor 19. Glycosylation of 11 with 19 employing SnCl₂ and Ag-ClO₄ as promoters in Et₂O and CH₂Cl₂ at 0 °C gave exclusively β -tetrasaccharide **20** in 90% yield (see Scheme 4). The anomeric allyl group of 20 was removed by PdCl₂ and sodium acetate in aqueous acetic acid to afford tetrasaccharide hemiacetal 21 in 71% yield. Phosphorylation of 21 with tetrabenzyl pyrophosphate in the presence of LDA²⁶ provided exclusively the α -glycosyl dibenzyl phosphate 1 in 92% yield. The stereochemistry at the newly generated anomeric center of the tetrasaccharide was determined to be the β -configuration on the basis of their anomeric carbon chemical shifts at $\delta_{\rm C}$ 105.2 for all three tetrasaccharides, 20, 21, and 1. The stereochemistry at all other anomeric centers in the tetrasaccharide was confirmed by ¹³C NMR spectral data. One-bond C1–H1 coupling constants of 1, $J_{C1-H1} =$ 179 Hz and $J_{Cl'-Hl'} = 172$ Hz, indicated that the anomeric linkages of both pyranose rings of 1 were in α-configuration²⁶ while the presence of another anomeric carbon chemical shift at $\delta_{\rm C}$ 106.6 of **1** indicated that the galactofuranosyl linkage formed in the coupling of 11 and 19 was also in the β -configuration.^{20,25}

In summary, the synthesis of compound 1, a protected form of the tetrasaccharide phosphate, β -D-Galf-(1 \rightarrow 5)- β -D-Galf-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-GlcNAc-1-P, of the linkage region of the mAGP complex in the mycobacterial cell wall has been accomplished. The synthesis of more complex oligosaccharide phosphates and biological evaluation of their deprotected forms are currently underway.

3. Experimental

3.1. General methods

All reactions were conducted under a positive pressure of dry argon with dry, freshly distilled solvents unless otherwise noted. All reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. Optical rotations were determined at 20 °C with an automatic polarimeter. ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz spectrometer (400 MHz for ¹H, 100 MHz for ¹³C). Chemical shifts are given in ppm downfield from internal tetramethylsilane for spectra recorded in CDCl₃. Flash column chromatography was performed employing 230–400 mesh silica gel. Thin-layer chromatography was performed using Silica Gel 60 F254 precoated plates (0.25 mm thickness) with a fluorescent indicator. Visualization on TLC was achieved by UV light (254 nm) and a typical TLC indication solution (cerium sulfate-molybdic acid solution). Solutions were concentrated at below 40 °C under reduced pressure.

3.2. Phenyl 3-O-benzyl-1-thio-α-L-rhamnopyranose (3)

A solution of phenyl 1-thio- α -L-rhamnopyranose¹⁴ (9.65 g, 37.7 mmol) and *n*-Bu₂SnO (11.25 g, 45.2 mmol) in benzene (100 mL) was stirred under reflux using a Dean–Stark trap for 10 h. After removal of the solvent in vacuo, the residue was dissolved in DMF (50 mL) and then benzyl chloride (5.2 mL, 45.2 mmol) and *n*-Bu₄NI (16.7 g, 45.2 mmol) were added to the DMF solution. After being stirred at 50 °C for 3 h, the reaction mixture was diluted with EtOAc (100 mL). The organic layer was washed with satd aq NH₄Cl (2 × 50 mL) and brine (50 mL), dried (MgSO₄), and concentrated in vacuo. The residue was purified by silica gel flash

column chromatography (hexane–EtOAc 2:1, v/v) to afford compound **3** (9.91 g, 28.6 mmol, 76%) as a colorless oil, $R_{\rm f}$ 0.20 (hexane–EtOAc 2:1, v/v); IR (CHCl₃ film) 3424, 1103, 1070 cm⁻¹; $[\alpha]_{\rm D}^{20}$ –184.3 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.31 (d, J = 6 Hz, 3H, CH₃), 2.28 (d, J = 1.6 Hz, 1H, OH), 2.60 (d, J = 2.4 Hz, 1H, OH), 3.60–3.67 (m, 2H, *H*-3,4), 4.11–4.18 (m, 1H, H-5), 4.25 (d, J = 1.2 Hz, 1H, H-2), 4.61 and 4.73 (ABq, J = 11.2 Hz, 2H, PhCH₂), 5.53 (d, J = 1.2 Hz, 1H, H-1), 7.25–7.46 (m, 10H, Ph-H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 17.7, 69.2, 69.6, 71.98, 71.99, 80.0, 87.4 (C-1), 127.5, 128.2, 128.5, 129.0, 129.2, 131.5, 134.2, 137.5. Anal. Calcd for C₁₉H₂₂O₄S: C, 65.87; H, 6.40; S, 9.26. Found: C, 65.80; H, 6.39; S, 9.17.

3.3. Phenyl 3-*O*-benzyl-2-*O*-pivaloyl-1-thio-α-L-rhamnopyranose (4)

A solution of diol 3 (5.0 g, 14.43 mmol) and (n-Bu₃Sn)₂O (3.67 mL, 7.22 mmol) in benzene (50 mL) was stirred under reflux using a Dean-Stark trap for 10 h and cooled to room temperature. After addition of PivCl (1.95 mL, 15.83 mmol) to the above solution, the reaction mixture was stirred at 60 °C for 3 h, cooled to room temperature, and diluted with EtOAc (100 mL). The combined organic layer was washed with brine (50 mL), dried (MgSO₄), and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 7:1, v/v) to afford compound 4 (4.92 g, 11.43 mmol, 79%) as a colorless amorphous solid, $R_{\rm f}$ 0.60 (hexane-EtOAc 2:1, v/v); IR (CHCl₃ film) 3473, 1728, 1483, 1160, 1111, 1074 cm⁻¹; $[\alpha]_{D}^{20}$ -43.2 (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ_{H} 1.21 (s, 9H, 3 × CH₃C), 1.34 (d, J = 6 Hz, 3H, CH₃), 2.39 (d, J = 6.8 Hz, 1H, OH), 3.61 (t, J = 9.2 Hz, 1H, H-4), 3.71 (dd, J = 2.8, 9.2 Hz, 1H, H-3), 4.18-4.22 (m, 1H, H-5), 4.43 and 4.71 (ABq, J = 10.8 Hz, 2H, PhCH₂), 5.40 (br s, 1H, H-1), 5.59 (t, J = 1.4 Hz, 1H, H-2), 7.25–7.49 (m, 10H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 17.9, 27.3, 39.1, 69.3, 69.4, 71.4, 72.3, 78.2, 86.6 (C-1), 127.9, 128.2, 128.4, 128.7, 129.3, 132.1, 134.0, 137.5, 177.7 (CO). Anal. Calcd for C₂₄H₃₀O₅S: C, 66.95; H, 7.02; S, 7.45. Found: C, 67.05; H, 7.01; S, 7.33.

3.4. Phenyl 3-*O*-benzyl-4-*O*-naphthylmethyl-2-*O*-piva-loyl-1-thio-α-L-rhamnopyranose (5)

To a solution of compound 4 (2.18 g, 5.06 mmol) in DMF (20 mL) were added NaH (60%, 243 mg, 6.08 mmol) and 2-bromomethyl naphthalene (1.34 g, 6.06 mmol) at 0 °C and then the ice bath was removed. After being stirred at room temperature for 2 h, the reaction mixture was quenched by the addition of water (10 mL) and extracted with EtOAc (2×50 mL). The combined organic layer was washed with satd aq NH₄Cl (3×50 mL) and brine (50 mL), dried (MgSO₄), and

concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 9:1, v/v) to afford compound 5 (2.48 g, 4.34 mmol, 86%) as a colorless oil, R_f 0.38 (hexane-EtOAc 9:1, v/v); IR (CHCl₃ film) 1728, 1160, 1103 cm⁻¹; $[\alpha]_{D}^{20}$ –98.3 (c 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.21 (s, 9H, $3 \times CH_3C$), 1.34 (d, J = 6 Hz, 3H, CH₃), 3.54 (t, J =9.2 Hz, 1H, H-4), 3.97 (dd, J = 3.2, 9.2 Hz, 1H, H-3), 4.28–4.32 (m, 1H, H-5), 4.49 and 4.69 (ABq, J =11.2 Hz, 2H, PhCH₂), 4.79 and 5.04 (ABq, J =11.2 Hz, 2H, PhCH₂), 5.42 (d, J = 1.6 Hz, 1H, H-1), 5.67 (dd, J = 1.6, 2.8 Hz, 1H, H-2), 7.04–7.76 (m, 17H, Ph-H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 18.1, 27.1, 38.9, 68.9, 70.0, 71.5, 75.3, 78.7, 79.8, 86.2 (C-1), 125.9, 126.0, 126.2, 126.9, 127.6, 127.7, 127.9, 128.0, 128.3, 129.0, 131.9, 133.0, 133.2, 133.9, 135.7, 137.9, 177.3 (CO). Anal. Calcd for C₃₅H₃₈O₅S: C, 73.65; H, 6.71; S, 5.62. Found: C, 73.61; H, 6.58; S, 5.53.

3.5. Allyl 2-acetamido-2-deoxy-3-*O*-levulinyl-4,6-*O*-benzylidene-α-D-glucopyranoside (7)

A solution of allyl 2-acetamido-2-deoxy-4,6-O-benzylidene- α -D-glucopyranoside (6)¹³ (4.15 g, 11.88 mmol), levulinic acid (2.07 g, 17.83 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (3.42 g, 17.84 mmol), 4-(dimethylamino)pyridine (436 mg, 3.57 mmol) in CH₂Cl₂ (20 mL) and DMF (20 mL) was stirred at room temperature for 3 h. The reaction mixture was diluted with CHCl₃ (100 mL) and washed with satd aq NH₄Cl (2×50 mL) and brine (50 mL). The organic laver was dried over MgSO₄ and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (CH₂Cl₂-MeOH 9:1, v/v) to afford compound 7 (4.40 g, 9.83 mmol, 83%) as a colorless oil, $R_{\rm f}$ 0.53 (CH₂Cl₂-MeOH 9:1, v/v); IR (CHCl₃ film) 3273, 1740, 1716, 1659, 1548, 1377, 1095 cm⁻¹; $[\alpha]_{\rm D}^{20}$ +50.5 (c 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.98 (s, 3H, COCH₃), 2.09 (s, 3H, COCH₃), 2.50–2.68 (m, 4H), 3.68-3.77 (m, 2H), 3.87-3.99 (m, 2H), 4.16 (dd, J = 5.2, 12.8 Hz, 1H), 4.25 (dd, J = 4.4, 10.0 Hz, 1H), 4.34–4.40 (m, 1H), 4.87 (d, J = 3.2 Hz, 1H, H-1), 5.18– 5.36 (m, 3H), 5.49 (s, 1H), 5.80-5.90 (m, 1H, allyl CH), 6.13 (d, J = 9.2 Hz, 1H), 7.31–7.44 (m, 5H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 22.8, 27.8, 29.4, 37.6, 52.0, 62.8, 68.4, 68.5, 70.1, 78.9, 97.0 (C-1), 101.1 (PhCH), 117.9, 126.0, 127.9, 128.8, 133.2, 136.9, 170.2 (CO), 172.6 (CO), 205.89 (CO). Anal. Calcd for C₂₃H₂₉NO₈: C, 61.73; H, 6.53; N, 3.13. Found: C, 61.93; H, 6.50; N, 3.09.

3.6. Allyl 2-acetamido-2-deoxy-4,6-di-*O*-benzoyl-3-*O*-levulinyl-α-D-glucopyranoside (8)

A solution of compound 7 (4.40 g, 9.83 mmol) and camphorsulfonic acid (457 mg, 1.97 mmol) in CH₂Cl₂

(20 mL) and MeOH (20 mL) was stirred at room temperature for 2 h. The reaction mixture was concentrated in vacuo, diluted with CH₂Cl₂, and washed with satd aq NaHCO₃ (2 \times 50 mL) and brine (50 mL). The organic phase was dried over MgSO₄ and concentrated in vacuo. The residue was dissolved in pyridine (20 mL). After addition of BzCl (2.78 mL, 23.93 mmol) and DMAP (293 mg, 2.61 mmol) to the above solution, the reaction mixture was stirred at room temperature for 5 h, diluted with CHCl₃ (100 mL), and washed with 1 N HCl $(2 \times 50 \text{ mL})$ and brine (50 mL). The organic layer was dried over MgSO₄ and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (CH₂Cl₂-MeOH 20:1, v/v) to afford compound 8 (3.45 g, 6.08 mmol, 62% in two steps) as a colorless amorphous solid, $R_{\rm f}$ 0.53 (CH₂Cl₂–MeOH 20:1, v/v); IR (CHCl₃ film) 3371, 1728, 1279, 1034 cm⁻¹; $[\alpha]_{D}^{20}$ +73.4 (c 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\bar{\delta}_{H}$ 2.02 (s, 3H, COCH₃), 2.04 (s, 3H, COCH₃), 2.31-2.62 (m, 4H), 4.05 (dd, J = 6.0, 12.4 Hz, 1H), 4.22–4.27 (m, 2H), 4.38 (dd, J = 5.2, 12.0 Hz, 1H), 4.44–4.50 (m, 1H), 4.53 (dd, J = 2.4, 12.0 Hz, 1H), 4.97 (d, J = 3.6 Hz, 1H, H-1), 5.23 (d, J = 10.4 Hz, 1H), 5.30 (dd, J = 1.4, 17.2 Hz, 1H), 5.46-5.53 (m, 2H), 5.83 (d,J = 9.6 Hz, 1H), 5.87–5.97 (m, 1H, allyl CH), 7.40– 7.58 (m, 6H, Ar), 7.98 (d, J = 7.6 Hz, 2H, Ar), 8.02 (d, J = 7.6 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 23.3, 28.2, 29.6, 37.8, 51.9, 63.0, 68.2, 68.9, 69.4, 71.2, 96.6 (C-1), 118.6, 128.5, 128.6, 129.0, 129.7, 129.8, 130.0, 133.19, 133.21, 133.6, 165.2 (CO), 166.2 (CO), 170.5 (CO), 172.9 (CO), 206.0 (CO). HRMS calcd for [M+Na]⁺: 590.2002. Found: 590.2006.

3.7. Allyl 2-acetamido-2-deoxy-4,6-di-*O*-benzoyl-α-D-glucopyranoside (9)

To a stirred solution of compound 8 (238 mg, 0.42 mmol) in THF-MeOH (10:1 v/v, 10 mL) was added 80% hydrazine-acetic acid (1:2 v/v, 3 mL) in THF-MeOH (5:1 v/v, 2 mL) at room temperature. After being stirred at room temperature for 30 min, the reaction mixture was concentrated in vacuo. The resulting oil was dissolved in CHCl₃ (50 mL), washed with sat. NaHCO₃ $(2 \times 50 \text{ mL})$ and brine (50 mL). The organic phase was dried (MgSO₄) and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (CH₂Cl₂-MeOH 20:1, v/v) to afford compound 9 (188 mg, 0.40 mmol, 95%) as a colorless amorphous solid, Rf 0.25 (CH₂Cl₂-MeOH 20:1, v/v); IR (CHCl₃ film) 3375, 3305, 1728, 1654, 1552, 1274, 1123, 1029 cm⁻¹; $[\alpha]_D^{20}$ +79.6 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 2.04 (s, 3H, COCH₃), 3.33 (br s, 1H), 3.97-4.07 (m, 2H), 4.20-4.33 (m, 3H), 4.39 (dd, J = 5.6, 12.0 Hz, 1H), 4.56 (dd, J = 2.8, 12.0 Hz, 1H), 4.95 (d, J = 4.0 Hz, 1H), 5.22–5.35 (m, 3H), 5.88–5.96 (m, 2H), 7.39–8.06 (m, 10H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 23.1, 54.1, 63.4, 68.1, 68.7, 71.5, 72.6, 96.5 (C-1), 118.3, 128.4, 128.42, 129.5, 129.7, 129.73, 130.0, 133.1, 133.3, 133.4, 166.0 (CO), 166.3 (CO), 171.7 (CO). Anal. Calcd for C₂₅H₂₇NO₈: C, 63.96; H, 5.80; N, 2.98. Found: C, 63.70; H, 5.72; N, 3.23.

3.8. Allyl 3-*O*-benzyl-4-*O*-naphthylmethyl-2-*O*-pivaloyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy-4,6-di-*O*-benzoyl- α -D-glucopyranoside (10)

To a solution of thioglycoside 9 (133 mg, 0.23 mmol), 1benzenesulfinyl piperidine (73 mg, 0.34 mmol), and tri-tbutylpyrimidine (174 mg, 0.70 mmol) in the presence of activated 4 Å powdered molecular sieves in CH₂Cl₂ (10 mL) at $-40 \text{ }^{\circ}\text{C}$ under an argon atmosphere was added Tf₂O (59 µL, 0.35 mmol). After 5 min, a solution of the glycosyl acceptor 5 (164 mg, 0.35 mmol) in CH₂Cl₂ (2 mL) was added to the above solution at -40 °C. The reaction mixture was stirred for 1 h at -40 °C, then warmed to 0 °C, diluted with CH₂Cl₂ (50 mL), and filtered. The filtrate was washed with satd aq NaHCO₃ (50 mL) and brine (50 mL), dried over MgSO₄, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 2:1, v/v) to afford disaccharide 10 (185 mg, 0.12 mmol, 85%) as a white foam, $R_{\rm f}$ 0.25 (hexane-EtOAc 2:1, v/v); IR (CHCl₃ film) 3264, 1727, 1274, 1122 cm⁻¹; $[\alpha]_{D}^{20}$ +22.6 (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 0.62 (d, J = 6.0 Hz, 3H, L-Rha CH_3 , 1.15 (s, 9H, Piv (CH_3)₃C), 2.12 (s, 3H, acetyl CH₃), 3.26 (t, J = 9.6 Hz, 1H), 3.55–3.60 (m, 1H), 3.94 (dd, J = 3.2, 9.6 Hz, 1H), 4.00-4.08 (m, 2H), 4.19-4.23(m, 2H), 4.34 (dd, J = 4.8, 12.0 Hz, 1H), 5.00–4.63 (m, 5H), 4.87-4.89 (m, 3H), 5.13 (br s, 1H), 5.22-5.31 (m, 2H), 5.49 (t, J = 9.6 Hz, 1H), 5.86–5.96 (m, 2H), 7.22– 8.04 (m, 22H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 17.7, 23.6, 27.1, 39.0, 52.9, 63.1, 68.4, 68.6, 68.8, 69.4, 70.2, 71.3, 74.5, 77.6, 79.4, 79.9, 96.9 (C-1), 100.1 (C-1'), 118.7, 125.7, 125.9, 126.1, 126.5, 127.4, 127.7, 127.8, 127.86, 127.9, 128.2, 128.4, 128.44, 129.5, 129.7, 129.8, 130.1, 132.9, 133.2, 133.22, 133.3, 136.1, 138.5, 165.1 (CO), 166.3 (CO), 170.5 (CO), 178.0 (CO). Anal. Calcd for C₅₄H₅₉NO₁₃: C, 69.74; H, 6.39; N, 1.51. Found: C, 69.72; H, 6.14; N, 1.49.

3.9. Allyl 3-*O*-benzyl-2-*O*-pivaloyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy-4,6-di-*O*-benzoyl- α -D-gluco-pyranoside (11)

To a solution of compound **10** (220 mg, 0.24 mmol) was added dichlorodicyanobenzoquinone (161 mg, 0.71 mmol) in CH_2Cl_2 (4.5 mL) and MeOH (0.25 mL) in two portions over 20 min at 0 °C. After being stirred at room temperature for 2 h, the reaction mixture was

diluted with CH_2Cl_2 (50 mL), washed with satd ag NaHCO₃ $(2 \times 50 \text{ mL})$ and brine (50 mL), dried $(MgSO_4)$, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 1:1, v/v) to afford compound 11 (156 mg, 0.20 mmol, 84%) as a white foam, $R_{\rm f}$ 0.43 (hexane-EtOAc, 1:1, v/v); IR (CHCl₃ film) 3273, 1728, 1663, 1279, 1140, 1050 cm⁻¹; $[\alpha]_{\rm D}^{20}$ +55 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 0.62 (d, J = 6.0 Hz, 3H, L-Rha CH₃), 1.15 (s, 9H, Piv (CH₃)₃C), 2.10 (s, 3H, acetyl CH₃), 2.16 (br s, 1H), 3.37 (t, J = 9.6 Hz, 1H), 3.46– 3.50 (m, 1H), 3.69 (dd, J = 3.2, 9.6 Hz, 1H), 4.01–4.07 (m, 2H), 4.18-4.24 (m, 2H), 4.34 (dd, J = 4.8, 12.0 Hz, 1H), 4.39 (d, J = 11.2 Hz, 1H), 4.50–4.60 (m, 3H), 4.88–4.89 (m, 2H), 5.09 (d, J = 2.4 Hz, 1H), 5.24–5.32 (m, 2H), 5.49 (t, J = 9.6 Hz, 1H), 5.86–5.93 (m, 2H), 7.22–8.04 (m, 15H, Ar); 13 C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 17.4, 23.6, 27.1, 38.9, 52.9, 63.1, 68.4, 68.5, 68.7, 69.2, 70.2, 71.1, 71.7, 80.2, 96.9 ($J_{C-H} = 172 \text{ Hz}$), 100.4 $(J_{C-H} = 170 \text{ Hz}), 118.8, 127.8, 128.0, 128.4, 128.43,$ 128.5, 129.4, 129.7, 129.8, 130.1, 133.1, 133.15, 133.5, 138.0, 165.2 (CO), 166.2 (CO), 170.5 (CO), 177.9 (CO). Anal. Calcd for C₄₃H₅₁NO₁₃: C, 65.39; H, 6.51; N, 1.77. Found: C, 65.50; H, 6.46; N, 1.79.

3.10. 2'-(Benzyloxycarbonyl)benzyl 6-*O*-naphthylmethyl-2,3-di-*O*-benzoyl-β-D-galactofuranoside (13)

A solution of compound 12 (1.91 g, 3.12 mmol) and n-Bu₂SnO (931 mg, 3.74 mmol) in benzene (100 mL) was stirred under reflux using a Dean-Stark trap for 10 h. After removal of the solvent in vacuo, the residue was dissolved in DMF (50 mL) and then 2-bromomethyl naphthalene (828 mg, 3.74 mmol) and *n*-Bu₄NI (1.38 g, 3.74 mmol) were added to the reaction mixture. After being stirred at 60 °C for 3 h, the reaction mixture was diluted with EtOAc (100 mL), washed with satd aq $NH_4Cl (2 \times 50 \text{ mL})$ and brine (50 mL), dried (MgSO₄), and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 2:1, v/v) to afford compound 13 (1.93 g, 2.56 mmol, 82%) as a colorless oil, R_f 0.35 (hexane-EtOAc 2:1, v/ v); IR (CHCl₃ film) 3501, 1720, 1262, 1115 cm⁻¹; $[\alpha]_D^{20}$ -11.5 (c 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 2.76 (d, J = 7.2 Hz, 1H), 3.64 (dd, J = 5.2, 9.6 Hz, 1H), 3.70 (dd, J = 6.8, 9.6 Hz, 1H), 4.29-4.31 (m, 1H),4.42 (t, J = 3.6 Hz, 1H), 4.64 and 4.68 (ABq, J = 12.0 Hz, 2H), 5.09 and 5.24 (ABq, J = 14.4 Hz, 2H), 5.27 (br s, 2H), 5.41 (br s, 1H), 5.64 (br s, 1H), 5.72 (d, J = 4.4 Hz, 1H), 7.24–8.11 (m, 26H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 66.7, 67.2, 69.8, 71.4, 73.5, 77.9, 81.6, 83.5, 105.5 (C-1), 125.7, 125.8, 126.1, 126.4, 127.1, 127.7, 127.8, 127.9, 128.1, 128.2, 128.3, 128.46, 128.5, 128.6, 129.2, 129.3, 129.9, 130.0, 130.7, 132.5, 133.0, 133.2, 133.4, 133.5, 135.4, 135.9, 140.3, 165.4 (CO), 165.9 (CO), 166.5 (CO). Anal. Calcd for C₄₆H₄₀O₁₀: C, 73.39; H, 5.36. Found: C, 73.39; H, 5.31.

3.11. 2'-(Benzyloxycarbonyl)benzyl 6-*O*-naphthylmethyl-2,3,5-tri-*O*-benzoyl-β-D-galactofuranoside (14)

A solution of compound 13 (1.57 g, 2.09 mmol), benzoyl chloride (291 µL, 2.51 mmol), and 4-(dimethylamino)pyridine (77 mg, 0.63 mmol) in Et₃N (2 mL) and CH₂Cl₂ (10 mL) was stirred at room temperature for 30 min. The reaction mixture was quenched by the addition of satd aq NH₄Cl (2 mL) and extracted with CH_2Cl_2 (2 × 50 mL). The combined organic layer was washed with brine (30 mL), dried (MgSO₄), and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 2:1, v/v) to afford compound 14 (1.71 g, 1.99 mmol, 96%) as a colorless oil, $R_{\rm f}$ 0.5 (hexane–EtOAc, 2:1, v/v); IR (CHCl₃ film) 1728, 1270, 1119 cm⁻¹; $[\alpha]_{\rm D}^{20}$ –22.1 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.90 (dd, J = 6.0, 10.0 Hz, 1 H), 3.96 (dd, J = 6.0, 10.0 Hz, 1 H), 4.67 and 4.72 (ABq, J = 12.0 Hz, 2H), 4.79 (t, J =4.4 Hz, 1H), 5.14 and 5.31 (ABq, J = 14.4 Hz, 2H), 5.27 (br s, 2H), 5.48 (br s, 1H), 5.64 (br s, 1H), 5.71 (d, J = 5.2 Hz, 1H), 5.92–5.94 (m, 1H), 7.24–8.11 (m, 31H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 66.7, 67.1, 68.6, 71.4, 73.4, 77.7, 81.7, 82.2, 105.4 (C-1), 125.6, 125.8, 126.0, 126.4, 127.1, 127.6, 127.7, 127.9, 128.13, 128.15, 128.2, 128.36, 128.4, 128.6, 129.0, 129.2, 129.8, 129.9, 130.0, 130.7, 132.5, 132.9, 133.1, 133.2, 133.3, 133.4, 135.3, 135.9, 140.2, 165.4 (CO), 165.6 (CO), 165.9 (CO), 166.5 (CO). Anal. Calcd for C₅₃H₄₄O₁₁: C, 74.29; H, 5.18. Found: C, 74.31; H, 5.05.

3.12. 2'-Carboxybenzyl 6-*O*-naphthylmethyl-2,3,5-tri-*O*-benzoyl-β-D-galactofuranoside (15)

Compound 14 (1.71 g, 1.99 mmol) was stirred under hydrogen atmosphere using a balloon in the presence of Pd-C (10%, 212 mg) and ammonium acetate (154 mg, 2.00 mmol) as an additive in MeOH-EtOAc (1:1 v/v, 20 mL) at room temperature for 1 h. The reaction mixture was filtered through Celite and the filtrate was concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 1:1, v/v) to afford compound 15 (1.35 g, 1.77 mmol, 89%) as a colorless oil, $R_{\rm f}$ 0.23 (hexane-EtOAc 2:1, v/v); IR (CHCl₃ film) 1724, 1691, 1274, 1115 cm⁻¹; $[\alpha]_D^{20}$ -30.6 (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.89 (dd, J = 6.0, 10.0 Hz, 1H), 3.94 (dd, J = 6.0, 10.0 Hz, 1H), 4.68 and 4.72 (ABq, J = 12.0 Hz, 2H), 4.77 (dd, J = 1.2, 3.6 Hz, 1H), 5.08 and 5.28 (ABq, J = 14.8 Hz, 2H), 5.49 (br s, 1H), 5.61 (d, J = 1.2 Hz, 1H), 5.67 (d, J = 5.2 Hz, 1H), 5.87– 5.91 (m, 1H), 7.24–8.11 (m, 26H, Ar); ¹³C NMR

(100 MHz, CDCl₃) $\delta_{\rm C}$ 67.4, 68.5, 71.4, 73.5, 77.7, 81.7, 82.4, 105.6 (C-1), 125.7, 125.9, 126.1, 126.5, 126.9, 127.3, 127.7, 128.0, 128.2, 128.4, 128.5, 129.1, 129.3, 129.9, 129.91, 130.0, 130.1, 131.6, 133.0, 133.2, 133.24, 133.4, 133.5, 135.3, 141.0, 165.6 (CO), 165.8 (CO), 166.0 (CO), 172.2 (CO). Anal. Calcd for C₄₆H₃₈O₁₁: C, 72.05; H, 5.00. Found: C, 72.04; H, 4.95.

3.13. 2'-(Benzyloxycarbonyl)benzyl 2,3-di-*O*-benzoyl-6-*O*-benzyl-β-D-galactofuranoside (16)

A solution of compound 12 (1.74 g, 2.85 mmol) and n-Bu₂SnO (851 mg, 3.42 mmol) in benzene (100 mL) was stirred under reflux using a Dean-Stark trap for 10 h. After removal of the solvent in vacuo, the residue was dissolved in DMF (50 mL) and then benzyl chloride $(394 \,\mu\text{L}, 3.42 \,\text{mmol})$ and *n*-Bu₄NI $(1.26 \,\text{g}, 3.41 \,\text{mmol})$ were added to the reaction mixture. After being stirred at 60 °C for 3 h, the reaction mixture was diluted with EtOAc (100 mL), washed with satd aq NH₄Cl $(2 \times 50 \text{ mL})$ and brine (50 mL), dried (MgSO₄), and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 2:1, v/v) to afford compound **16** (1.72 g, 2.45 mmol, 86%) as a colorless oil, $R_f 0.35$ (hexane–EtOAc 2:1, v/v); IR (CHCl₃ film), 1106, 1251, 1654, 1718, 3428 cm⁻¹; $[\alpha]_{D}^{20}$ +5.0 (c 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 2.53 (d, J = 7.2 Hz, 1H, OH), 3.60 (dd, J = 5.2, 9.6 Hz, 1H, H-6), 3.66 (dd, J = 6.8, 9.6 Hz, 1H, H-6'), 4.23-4.26 (m, 1H, H-5), 4.38 (dd, J = 3.2, 4.4 Hz, 1H, H-4), 4.51 and 4.55 (ABq, J = 12.0 Hz, 2H, PhCH₂), 5.08 and 5.23 (ABq, J = 14.4 Hz, 2H, PhCH₂), 5.31 (br s, 2H, PhCH₂), 5.41 (br s, 1H, H-1), 5.61 (d, J = 1.2 Hz, 1H, H-2), 5.67 (d, J = 4.8 Hz, 1H, H-3), 7.28-8.08 (m, 24H, Ph-H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 66.9, 67.3, 69.9, 71.4, 73.6, 78.0, 81.7, 83.5, 105.6 (C-1), 127.2, 127.75, 127.79, 127.9, 128.3, 128.4, 128.5, 128.6, 128.7, 128.8, 130.0, 130.1, 130.8, 132.6, 133.6, 133.7, 136.1, 138.1, 140.5, 165.5 (CO), 166.0 (CO), 166.8 (CO). Anal. Calcd for $C_{42}H_{38}O_{10}$: C, 71.78; H, 5.45. Found: C, 71.84; H, 5.33.

3.14. 2'-(Benzyloxycarbonyl)benzyl 6-*O*-naphthylmethyl-2,3,5-tri-*O*-benzoyl- β -D-galactofuranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzoyl-6-*O*-benzyl- β -D-galactofuranoside (17)

A solution of compound **16** (734 mg, 1.04 mmol) and DTBMP (641 mg, 3.12 mmol) in CH₂Cl₂ (40 mL) in the presence of 4 Å molecular sieves was stirred for 10 min at room temperature and cooled to -78 °C. After addition of Tf₂O (350 µL, 2.08 mmol) to the above solution, compound **15** (877 mg, 1.14 mmol) in CH₂Cl₂ (10 mL) was added drop-wise. After being stirred at -78 °C for a further 1 h, the reaction mixture was warmed to 0 °C over 1 h, quenched by the addition of satd aq NaHCO₃ (1 mL), and diluted with CH₂Cl₂

(50 mL). The organic phase was washed with satd aq NaHCO₃ (2×50 mL) and brine (50 mL), dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (hexanes-EtOAc-CH₂Cl₂ 5:1:1, v/v) to afford compound 17 (1.21 g, 0.92 mmol, 88%) as a colorless oil, $R_{\rm f} 0.53$ (hexanes–EtOAc–CH₂Cl₂, 3:1:1, v/v); IR (CHCl₃ film) 1723, 1270, 1114 cm⁻¹; $[\alpha]_D^{20}$ –23.2 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.82–3.85 (m, 1H), 3.91–3.95 (m, 3H), 4.51-4.61 (m, 4H), 4.63 (t, J = 4.8 Hz, 1H), 4.67 (d, J = 12.8 Hz, 1H), 5.03–5.07 (m, 2H), 5.21–5.29 (m, 3H), 5.38 (br s, 1H), 5.66–5.67 (m, 2H), 5.71 (d, J = 1.2 Hz, 1H), 5.81 (br s, 1H), 5.89 (d, J = 4.0 Hz, 1H), 5.95–5.99 (m, 1H), 7.14–8.10 (m, 46H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 66.6, 67.1, 68.7, 69.5, 70.2, 71.3, 72.9, 73.4, 74.0, 77.7, 81.5, 81.7, 82.1, 82.5, 105.3 (C-1 \times 2), 122.0, 125.39, 125.4, 125.5, 125.6, 125.8,126.1,126.7, 127.4,127.5, 127.6, 127.7, 127.9, 128.07, 128.14, 128.2, 128.23, 128.3, 128.4, 128.5, 128.8, 128.9, 129.0, 129.1, 129.68, 129.7, 129.73, 129.8, 129.9, 130.5,132.4, 132.7, 132.95, 133.0,133.04, 133.2, 133.3, 133.8, 135.3, 135.8, 137.8, 140.2, 146.4, 165.2, 165.3, 165.5 (CO × 2), 165.8 (CO), 166.3 (CO). HRMS calcd for [M+Na]⁺: 1339.4303. Found: 1339.4307.

3.15. 2'-Carboxybenzyl 6-*O*-naphthylmethyl-2,3,5-tri-*O*-benzoyl- β -D-galactofuranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzoyl-6-*O*-benzyl- β -D-galactofuranoside (18)

Compound 17 (570 mg, 0.43 mmol) was stirred under hydrogen atmosphere using a balloon in the presence of Pd(OH)₂ (20%, 30 mg) and ammonium acetate (17 mg, 0.22 mmol) as an additive in MeOH-EtOAc (1:1 v/v, 20 mL) at room temperature for 5 h. The reaction mixture was filtered through Celite and the filtrate was concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 1:1, v/v) to afford compound 18 (473 mg, 0.38 mmol, 89%) as a colorless oil, $R_{\rm f}$ 0.45 (hexane-EtOAc 1:1, v/v); IR (CHCl₃ film) 1724, 1274, 1115 cm⁻¹; $[\alpha]_D^{20}$ -19.2 (c 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.80–3.88 (m, 4H), 4.49–4.55 (m, 4H), 4.60 (t, J = 4.8 Hz, 1H), 4.65 (d, J = 12.8 Hz, 1H), 4.90 and 5.20 (ABq, J = 14.0 Hz, 2H), 4.97 (t, J = 4.4 Hz, 1H), 5.33 (br s, 1H), 5.57–6.00 (m, 2H), 5.62 (br s, 1H), 5.69 (br s, 1H), 5.81 (d, J = 4.8 Hz, 1H), 5.85–5.89 (m, 1H), 7.13–8.05 (m, 41H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 67.5, 68.8, 70.1, 71.4, 73.2, 73.6, 74.3, 77.3, 77.8, 81.6, 82.0, 82.4, 82.6, 105.5 (C-1), 105.6 (C-1), 127.0,127.3, 127.59,127.6, 127.7, 127.8, 127.9, 128.1, 128.2, 128.4, 128.5, 128.54, 129.1, 129.15, 129.2, 129.3, 129.86, 129.88, 129.9, 130.0, 130.1, 131.6, 133.0, 133.1, 133.2, 133.22, 133.3, 133.4, 135.4, 138.0, 140.9, 165.4 (CO), 165.55 (CO), 165.66 (CO), 165.7 (CO), 166.0 (CO), 171.4 (CO). Anal. Calcd for C₇₃H₆₂O₁₈: C, 71.44; H, 5.09. Found: C, 71.53; H, 4.93.

3.16. 6-O-Naphthylmethyl-2,3,5-tri-O-benzoyl- β -D-galactofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl-6-O-benzyl- β -Dgalactofuranosyl fluoride (19)

A solution of compound 18 (304 mg, 0.25 mmol) and DTBMP (153 mg, 0.74 mmol) in CH₂Cl₂ (20 mL) in the presence of 4 Å molecular sieves was stirred for 10 min at room temperature and cooled to -78 °C. After sequential addition of Tf₂O (63 µL, 0.37 mmol), Deoxofluor (69 µL, 0.37 mmol), and hydrogen fluoride (70% in pyridine, 10 µL, 0.385 mmol) to the above solution, the reaction mixture was stirred at -78 °C for further 1 h, allowed to warm to 0 °C over 1 h, quenched by the addition of satd aq NaHCO₃ (1 mL), and diluted with CH₂Cl₂ (50 mL). The organic phase was washed with satd aq NaHCO₃ (2×30 mL) and brine (50 mL), dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane-EtOAc 2:1, v/v) to afford compound 19 (228 mg, 0.21 mmol, 84%) as a colorless oil, $R_{\rm f}$ 0.45 (hexane-EtOAc 2:1, v/v); IR (CHCl₃ film) 1724, 1270, 1115 cm⁻¹; $[\alpha]_D^{20}$ -3.5 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.82–3.90 (m, 4H), 4.49–4.55 (m, 3H), 4.58 and 4.68 (ABq, J = 12.4 Hz, 2H), 4.78 (t, J = 4.0 Hz, 1H), 4.97 (dd, J = 3.6, 5.2 Hz, 1H), 5.62–5.63 (m, 3H), 5.72 (br s, 1H), 5.89 (d, J =58.4 Hz, 1H, H-1), 5.84-5.88 (m, 2H), 7.15-8.08 (m, 37H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 68.6, 69.6, 71.4, 73.3, 73.5, 73.8, 76.0, 77.6, 80.9 (d, *J* = 40 Hz, C-2), 81.5, 82.2, 85.8, 105.1 (C-1'), 112.4 (d, J = 225 Hz, C-1), 125.6, 125.8, 126.0, 126.4, 127.6, 127.7. 127.9. 128.1. 128.2. 128.4. 128.5. 128.58. 128.6. 128.9,129.0, 129.1, 129.9, 129.94, 130.0, 132.9, 133.1, 133.19, 133.24, 133.3, 133.6, 133.7, 135.3, 137.8, 165.1 (CO), 165.4 (CO), 165.55 (CO), 165.6 (CO), 165.9 (CO). Anal. Calcd for C₆₅H₅₅FO₁₅: C, 71.29; H, 5.06. Found: C, 71.33; H, 5.01.

3.17. Allyl 6-*O*-naphthylmethyl-2,3,5-tri-*O*-benzoyl- β -D-galactofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzoyl-6-*O*-benzyl- β -D-galactofuranosyl-(1 \rightarrow 4)-3-*O*-benzyl-2-*O*-pivaloyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-acetamido-2-deoxy-4,6-di-*O*-benzoyl- α -D-glucopyranoside (20)

A solution of compound **11** (134 mg, 0.17 mmol), SnCl₂ (71 mg, 0.37 mmol), and AgClO₄ (78 mg, 0.37 mmol) in Et₂O (10 mL) and CH₂Cl₂ (10 mL) in the presence of 4 Å molecular sieves was stirred for 30 min at room temperature and cooled down to 0 °C. After drop-wise addition of a solution of glycosyl fluoride (205 mg, 0.19 mmol) in Et₂O (5 mL) and CH₂Cl₂ (5 mL) to the above solution at 0 °C, the reaction mixture was stirred for a further 30 min and concentrated to half its volume. After dilution of the concentrated solution with CH₂Cl₂ (50 mL), the organic solution was washed with satd aq NaHCO₃ (2 × 30 mL) and brine (30 mL), dried over

MgSO₄, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane-EtOAc 1:1, v/v) to afford compound 20 (286 mg, 0.15 mmol, 90%) as a white foam, $R_{\rm f}$ 0.3 (hexane-EtOAc 1:1, v/v); IR (CHCl₃ film) 3301, 1728, 1458, 1270, 1119 cm⁻¹; $[\alpha]_D^{20}$ +19.8 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 0.64 (d, J = 6.0 Hz, 3H, L-Rha CH_3), 1.11 (s, 9H, Piv (CH_3)₃C), 2.12 (s, 3H, acetyl CH₃), 3.55–3.60 (m, 1H), 3.64–3.68 (m, 2H), 3.74–3.80 (m, 3H), 3.98–4.06 (m, 3H), 4.16–4.30 (m, 3H), 4.35– 4.47 (m, 5H), 4.50-4.59 (m, 5H), 4.82-4.84 (m, 2H), 4.92 (d, J = 3.2 Hz, 1H), 5.11 (m, 1H), 5.25–5.33 (m, 2H), 5.52-5.57 (m, 4H), 5.64 (br s, 1H), 5.69 (br s, 1H), 5.70–5.78 (m, 2H), 5.85 (d, J = 10.0 Hz, 1H), 5.87–5.99 (m, 1H, allyl CH), 6.89–8.08 (m, 52H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 17.9, 23.7, 27.2, 39.0, 52.8, 63.1, 68.1, 68.4, 68.9, 69.0, 69.1, 70.2, 70.3, 71.47, 71.5, 73.0, 73.5, 73.6, 75.8, 77.4, 77.7, 77.8, 81.5, 81.6, 82.1, 83.0, 97.0 (C-1), 101.0 (C-1'), 105.2, 106.6, 118.9, 125.6, 125.7, 125.9, 126.2, 127.3, 127.5, 127.60, 127.65, 127.7, 127.90, 127.98, 128.00, 128.04, 128.10, 128.13, 128.26, 128.32, 128.35, 128.40, 128.48, 128.5, 128.7, 128.8, 129.10, 129.18, 129.2, 129.4, 129.5, 129.80, 129.84, 129.90, 129.99, 130.1, 132.9, 133.0, 133.18, 133.23, 133.4, 133.5, 135.6, 137.9, 138.0, 165.0 (CO), 165.1 (CO), 165.3 (CO), 165.6 (CO), 165.7 (CO), 165.9 (CO), 166.3 (CO), 170.4 (CO), 178.3 (CO). Anal. Calcd for C₁₀₈H₁₀₅NO₂₈: C, 69.55; H, 5.67; N, 0.75. Found: C, 69.45; H, 5.64; N, 0.78.

3.18. 6-*O*-Naphthylmethyl-2,3,5-tri-*O*-benzoyl- β -D-galactofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzoyl-6-*O*-benzyl- β -D-galactofuranosyl-(1 \rightarrow 4)-3-*O*-benzyl-2-*O*-pivaloyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-acetamido-2-deoxy-4,6-di-*O*-benzoyl- α -D-glucopyranose (21)

A solution of compound 20 (78 mg, 0.04 mmol), NaOAc (14 mg, 0.17 mmol), and PdCl₂ (15 mg, 0.08 mmol) in 95% ag HOAc (1 mL) was stirred for 12 h at room temperature. The reaction mixture was filtrated through a Celite pad, diluted with EtOAc (50 mL), washed with satd aq NaHCO₃ (2×50 mL) and brine (50 mL), dried (MgSO₄), and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (CH₂Cl₂-MeOH 20:1, v/v) to afford compound 21 (54 mg, 0.03 mmol, 71%) as a white foam, $R_{\rm f} 0.33$ (CH₂Cl₂-MeOH 20:1, v/v); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 0.64 (d, J = 5.6 Hz, 3H, L-Rha CH₃), 1.11 (s, 9H, Piv (CH₃)₃C), 2.06 (s, 3H, acetyl CH₃), 3.57 (t, J = 9.2 Hz, 1H), 3.65–3.68 (m, 2H), 3.76–3.82 (m, 3H), 3.93-4.09 (m, 2H), 4.28-4.60 (m, 12H), 4.76-4.87 (m, 3H), 5.12 (br s, 1H), 5.25 (br s, 1H), 5.55-5.75 (m, 8H), 6.10 (d, J = 9.6 Hz, 1H), 6.90–8.07 (m, 52H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 18.0, 23.5, 27.2, 39.0, 53.4, 68.0, 68.1, 69.0, 69.1, 70.2, 70.3, 71.5, 71.54, 73.0 (2), 73.5 (2), 73.6, 75.8, 77.7, 77.8, 81.1, 81.6, 81.7,

1583

82.1, 83.0, 92.2 (C-1), 100.9 (C-1'), 105.2, 106.6, 128.0, 128.1, 128.20, 128.28, 128.33, 128.37, 128.4, 128.5, 128.56, 128.7, 129.1, 129.2, 129.4, 129.6, 129.80, 129.88, 129.92, 129.95, 130.0, 130.1, 132.9, 133.0, 133.2, 133.3, 133.5, 135.5, 137.9, 138.0, 165.1(CO \times 2), 165.3 (CO), 165.7 (CO \times 2), 166.0 (CO), 166.5 (CO), 171.0 (CO). MALDI-TOFMS calcd for C₁₀₅H₁₀₁-NNaO₂₈ [M+Na]⁺: 1846.6408. Found: 1846.6321.

3.19. Dibenzyl 6-O-naphthylmethyl-2,3,5-tri-O-benzoyl- β -D-galactofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl-6-O-benzyl- β -D-galactofuranosyl- $(1 \rightarrow 4)$ -3-O-benzyl-2-O-pivaloyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy-4,6di-O-benzoyl- α -D-glucopyranosyl phosphate (1)

To a stirred solution of compound 21 (100 mg, 0.05 mmol) in THF (3 mL) was added 2.0 M LDA in THF (55 µL, 0.11 mmol) at -78 °C under an argon atmosphere. The solution was stirred for 30 min and then a solution of tetrabenzyl pyrophosphate (35 mg, 0.06 mmol) in THF (1 mL) was added. After being stirred at -78 °C for further 1 h, the reaction mixture was allowed to warm to 0 °C over 30 min, diluted with EtOAc (50 mL), washed with satd ag NaHCO₃ $(2 \times 50 \text{ mL})$ and brine (50 mL), dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (CH₂Cl₂-MeOH 20:1, v/v) to afford compound 1 (105 mg, 0.05 mmol, 92%) as a white foam, Rf 0.48 (CH₂Cl₂-MeOH 20:1, v/v); IR (CHCl₃ film) 3210, 2953, 2923, 2854, 1725, 1688, 1451, 1270, 1109, 1046 cm⁻¹ $[\alpha]_{\rm D}^{20}$ +8.5 (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 0.64 (d, J = 5.6 Hz, 3H, L-Rha CH₃), 1.13 (s, 9H, Piv $(CH_3)_3C$), 1.89 (s, 3H, acetyl CH₃), 3.54-3.59 (m, 2H), 3.66-3.69 (m, 1H), 3.72–3.81 (m, 3H), 3.82–3.90 (m, 2H), 4.22– 4.29 (m, 3H), 4.36-4.47 (m, 7H), 4.49-4.59 (m, 2H), 4.75 (d, J = 1.6 Hz, 1H), 4.83 (dd, J = 4.0, 4.8 Hz, 1H), 5.02–5.13 (m, 5H), 5.49 (d, J = 1.6 Hz, 1H), 5.53– 5.56 (m, 3H), 5.63–5.68 (m, 3H), 5.71–5.77 (m, 3H), 6.89–8.06 (m, 62H, Ar); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 17.9, 23.2, 27.2, 39.0, 52.8, 52.9, 62.3, 68.2, 68.9, 69.0, 69.3, 70.1, 70.2 (2), 70.3, 71.4, 71.5, 72.0, 73.5, 75.7, 77.4, 77.67, 77.7, 79.7, 81.6, 81.7, 82.1, 82.9, 97.2 (d, J = 6.0 Hz; $J_{C-H} = 179$ Hz), 100.7 ($J_{C-H} = 172$ Hz), 105.2 $(J_{C-H} = 181 \text{ Hz})$, 106.6 $(J_{C-H} = 181 \text{ Hz})$, 125.7, 125.9, 126.2, 127.4, 127.5, 127.64, 127.66, 127.7, 127.9, 128.0, 128.04, 128.06, 128.1, 128.2, 128.3, 128.4, 128.4, 128.5, 128.7, 128.9, 129.10, 129.14, 129.2, 129.3, 129.4, 129.6, 129.7, 129.8, 129.90, 129.99, 130.00, 130.05, 130.1, 132.9, 133.0, 133.2, 133.2, 133.5, 135.3 (d, J = 6.0 Hz), 135.5 (d, J = 6.0 Hz), 135.6, 137.8, 137.9, 164.9 (CO), 165.1 (CO), 165.3 (CO), 165.6 (CO × 2), 166.0 (CO), 166.2 (CO), 170.8 (CO), 178.1 (CO). MAL-DI-TOFMS calcd for $C_{119}H_{114}NNaO_{31}P [M+Na]^+$: 2106.7010. Found: 2106.6941.

Acknowledgments

This work was supported by a grant from the Korea Science and Engineering Foundation through Center for Bioactive Molecular Hybrids (CBMH). Y.J.L. and D.B.F. thank the fellowship of the BK 21 program from the Ministry of Education and Human Resources Development.

References

- (a) Nettleman, M. D. JAMA 2005, 293, 2788–2790; (b) Long, R. CMAJ 2000, 163, 425–428; (c) Pablos-Mendez, A.; Raviglione, M. C.; Laszlo, A.; Binkin, N.; Rieder, H. L.; Bustreo, F.; Cohn, D. L.; Weezenbeek, C. S. B. L.; Kim, S. J.; Chaulet, P.; Nunn, P. N. Eng. J. Med. 1998, 338, 1641–1649.
- (a) Brennan, P. J. Tuberculosis 2003, 83, 91–97; (b) Lowary, T. L. In Glycoscience: Chemistry and Chemical Biology; Springer: Berlin, 2001; pp 2005–2080; (c) Chatterjee, D. Curr. Opin. Chem. Biol. 1997, 1, 579–588; (d) Brennan, P. J.; Nikaido, H. Annu. Rev. Biochem. 1995, 64, 29–63; (e) Jarlier, V.; Nikaido, H. FEMS Microbiol. Lett. 1994, 123, 11–18.
- (a) Daffe, M.; Brennan, P. J.; McNeil, M. J. Biol. Chem. 1990, 265, 6734–6743; (b) McNeil, M.; Daffe, M.; Brennan, P. J. J. Biol. Chem. 1990, 265, 18200–18206; (c) Bersa, G. S.; Khoo, K.-H.; McNeil, M. R.; Dell, A.; Morris, H. R.; Brennan, P. J. Biochem. 1995, 34, 4257–4266; (d) Lee, R. E. B.; Li, W.; Chatterjee, D.; Lee, R. E. Glycobiology 2005, 15, 139–151.
- (a) Takayama, K.; Kilburn, J. O. Antimicrob. Agents Chemother. 1989, 33, 1493–1499; (b) Mikusov, K.; Slayden, R. A.; Bersa, G. S.; Brennan, P. J. Antimicrob. Chemother. 1995, 39, 2484–2489.
- (a) Kremer, L.; Dover, L. G.; Morehouse, C.; Hitchin, P.; Everett, M.; Morris, H. R.; Dell, A.; Brennan, P. J.; McNeil, M. R.; Flaherty, C.; Ducan, K.; Besra, G. S. J. *Biol. Chem.* 2001, 276, 26430–26440; (b) Pan, F.; Jackson, M.; Ma, Y.; McNeil, M. J. *Bacteriol.* 2001, 183, 3991– 3998.
- (a) Crick, D. C.; Mahapatra, S.; Brennan, P. *Glycobiology* 2001, 11, 107R–118R; (b) Mikusova, K.; Mikus, M.; Besra, G. S.; Hancock, I.; Brennan, P. J. J. Biol. Chem. 1996, 271, 7820–7828; (c) Mikusova, K.; Yagi, T.; Stern, R.; McNeil, M. R.; Besra, G. S.; Crick, D. C.; Brennan, P. J. J. Biol. Chem. 2000, 275, 33890–33897.
- Belanova, M.; Dianiskova, P.; Brennan, P. J.; Completo, G. C.; Rose, N. L.; Lowary, T. L.; Mikusova, K. J. Bacteriol. 2008, 190, 1141–1145.
- 8. Joe, M.; Bai, Y.; Nacario, R. C.; Lowary, T. L. J. Am. Chem. Soc. 2007, 129, 9885–9901.
- (a) Pathak, A. K.; Pathak, V.; Suling, W. J.; Gurcha, S. S.; Morehouse, C. B.; Besra, G. S.; Maddry, J. A.; Reynolds, R. C. *Bioorg. Med. Chem.* 2002, *10*, 923–928; (b) Gandolfi-Donadio, L.; Gallo-Rodriguez, C.; de Lederkremer, R. M. *Can. J. Chem.* 2006, *84*, 486–491.
- (a) Gurjar, M. K.; Reddy, L. K.; Hotha, S. J. Org. Chem. 2001, 66, 4657–4660; (b) Wang, H.; Ning, J. J. Org. Chem. 2003, 68, 2521–2524.
- Gandolfi-Donadio, L.; Gallo-Rodriguez, C.; de Lederkremer, R. M. *Carbohydr. Res.* doi:10.1016/j.carres.2008. 01.024. Available online January 29, 2008.

- Gandolfi-Donadio, L.; Gallo-Rodriguez, C.; de Lederkremer, R. M. J. Org. Chem. 2003, 68, 6928–6934.
- Wen, X.; Crick, D. C.; Brennan, P. J.; Hultin, P. G. Bioorg. Med. Chem. 2003, 11, 3579–3587.
- Groneberg, R. D.; Miyazaki, T.; Stylianides, N. A.; Schulze, T. J.; Stahl, W.; Schreiner, E. P.; Suzuki, T.; Iwabuchi, Y.; Smith, A. L.; Nicolaou, K. C. J. Am. Chem. Soc. 1993, 115, 7593–7611.
- 15. Grindley, T. B. Adv. Carbohydr. Chem. Biochem. 1998, 53, 117–142.
- 16. David, S.; Hanessian, S. Tetrahedron 1985, 41, 643-663.
- Feng, F.; Okuyama, K.; Niikura, K.; Ohta, T.; Sadamoto, R.; Monde, K.; Noguchi, T.; Nishimura, S. I. *Org. Biomol. Chem.* 2004, 2, 1617–1623.
- Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015– 9020.
- Bock, K.; Pedersen, C. J. Chem. Soc., Perkin Trans. 2 1974, 293–297.

- Lee, Y. J.; Lee, B-. Y.; Jeon, H. B.; Kim, K. S. Org. Lett. 2006, 8, 3971–3974.
- 21. Kim, K. S.; Kim, J. H.; Lee, Y. J.; Lee, Y. J.; Park, J. J. Am. Chem. Soc. 2001, 123, 8477–8481.
- Kim, K. S.; Kang, S. S.; Seo, Y. S.; Kim, H. J.; Lee, Y. J.; Jeong, K.-S. Synlett 2003, 1311–1314.
- Lee, Y. J.; Baek, J. Y.; Lee, B.-Y.; Kang, S. S.; Park, H.-S.; Jeon, H. B.; Kim, K. S. *Carbohydr. Res.* 2006, 341, 1708–1716.
- Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org. Chem. 1999, 64, 7048–7054.
- 25. Gelin, M.; Ferriéres, V.; Plusquellec, D. Eur. J. Org. Chem. 2000, 1423-1431.
- (a) Yuko, N.; Tomoharu, N.; Hironobu, H.; Yoshiaki, N. Biosci. Biotechnol. Biochem. 2003, 67, 1761–1766; (b) Muller, T.; Danac, R.; Ball, L.; Gurr, S. J.; Fairbanks, A. Tetrahedron: Asymmetry 2007, 18, 1299–1307.