Tetrahedron 65 (2009) 6626-6634

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Alkaloids from alkaloids: total synthesis of (\pm) -7a-*epi*-hyacinthacine A₁ from Z-protected tropenone via Baeyer–Villiger oxidation

Olena Affolter, Angelika Baro, Wolfgang Frey, Sabine Laschat*

Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

ARTICLE INFO

Article history Received 16 March 2009 Received in revised form 26 May 2009 Accepted 26 May 2009 Available online 3 June 2009

Dedicated to Professor Larry E. Overman for his great accomplishments in Organic Synthesis

Keywords: Pyrrolizidine alkaloids Tropane alkaloids Baeyer-Villiger oxidation

ABSTRACT

Baeyer-Villiger oxidations of several tropane derivatives have been investigated. Whereas tropenones 15a-c underwent exclusive epoxidation to 21a-c, the corresponding 6-oxotropane derivative 28 vielded the desired lactone 29. Baeyer-Villiger oxidation was also possible for the O-isopropylideneprotected diols **32a,b**. The resulting lactones **33a,b** were employed in the total synthesis of (\pm) -7a-epihyacinthacine A₁ (7a-*epi*-**7**) via an intramolecular nucleophilic alkyllithium addition to a carbamate as the key lactamization step. The target compound was prepared from tropenone 15b in 10 steps and 14% overall yield. Enzymatic resolution of pyrrolidine (\pm)-**36** provided a formal total synthesis to both enantiomers of 7.

© 2009 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Pyrrolizidine alkaloids are common constituents of a large number of plants, among them are medicinal plants such as butterbur, coltsfoot Tussilago farfara, and comfrey Symphytum offici*nale.*¹ These compounds act as a constitutive plant defence mechanism, and depending on the structure and substitution pattern of the pyrrolizidine ring system several derivatives display hepatoxic and cancerogenic properties.^{1,2} The toxicity is particularly high for those derivatives, which contain at least one ester moiety,

Scheme 1.

0040-4020/\$ - see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.05.071

usually at the hydroxymethyl group, and a C=C double bond at the C-1 position.³ Prominent examples of pyrrolizidines with toxic properties are supinidine (1), heliotridine (2), and retronecine (3) (Scheme 1) and their corresponding esters. The cancerogenic

^{*} Corresponding author. Tel.: +49 711 685 64565; fax: +49 711 685 64285. *E-mail address:* sabine.laschat@oc.uni-stuttgart.de (S. Laschat).

Scheme 3

properties arise from hepatic metabolism of pyrrolizidines such as retronecine (**3**) to pyrrole derivatives like **4**. Pyrroles such as **4** are strong alkylating agents and induce DNA cross-linking.^{1d,g,4}

On the other hand, polyhydroxylated pyrrolizidines gained attention for medicinal chemistry.⁵ Alexine (**5**) and australine (**6**), which were isolated in 1988 by Nash from *Leguminosae* possess potent antiviral properties.^{6,7} In 2000 Asano isolated hyacinthacines A_1-A_3 (**7–9**) from *Muscari armeniacum* (*Hyacinthaceae*)⁸ and later in 2002 the hyacinthacines A_4-A_7 (**10–13**).⁹ Due to their structural similarity with one of the most potent glycosidase inhibitors (2*R*,3*R*,4*R*,5*R*)-2,5-bis(hydroxymethyl)-3,4-dihydroxypyrrolidine (DMDP) (14) compounds 7–13 were intensively investigated with regard to their selective glycosidase inhibition. Total syntheses of hyacinthacines and their epimers mostly relied on *ex chiral pool* approaches, starting from carbohydrates,^{5,10} amino acids¹¹ or diethyltartrate,¹² which provided the proper stereochemistry. Another route utilized a sequence of partial reduction of *N*-Boc-pyrrole and enzymatic resolution as the key steps.¹³ The first auxiliary-mediated approach involved a [2+2] cycloaddition of dichloroketene to Stericol[®]-based enol ethers,¹⁴ and furthermore, a chemo-enzymatic route employing aldolases has been reported.¹⁵

During our work on tropane derivatives we envisaged an alternative route to hyacinthacines utilizing functionalized tropenones as valuable starting materials. We recently reported that *N*-protected tropenone **15** can be easily converted to enantiomerically pure 6-hydroxytropinone **16** via enantioselective hydroboration¹⁶ or enzymatic desymmetrization¹⁷ and to mono-protected dihydroxytropinone **17** via enzymatic resolution (Scheme 2).^{18,19}

Motivated by an early report of Donnini²⁰ on the conversion of *O*-protected dihydroxytropenone to the pyrrolidine we anticipated that a sequence of Baeyer–Villiger oxidation followed by lactone opening should allow the transformation of tropenones **15–17** to the corresponding pyrrolidines **18–20** as precursors to hyacinthacine derivatives. The results toward this goal and the application in the total synthesis of 7a-*epi*-hyacinthacine A₁ are reported.

2. Results and discussion

Baeyer–Villiger oxidations of tropane derivatives are rarely reported.²⁰ For norbornenone derivatives, however, Mehta has shown that the chemoselectivity strongly depended on the reaction condition.²¹ Whereas the use of MCPBA produced a (60:40) mixture of epoxide and unsaturated lactone, the use of H₂O₂/NaOH resulted in exclusive lactone formation.²¹ When carbamate protected tropenone **15b** was submitted to H₂O₂/NaOH either in MeOH at 0 °C for 2 h or in Et₂O/H₂O at room temperature for 2 h the starting material **15b** could be recovered quantitatively. In contrast, MCPBA treatment of *N*-protected tropenones **15a–c** in CH₂Cl₂ at room temperature yielded only the epoxides **21a–c** in 55–82% (Scheme 3). No traces of the corresponding lactones **22** were found.

In analogy to Donnini's method, next the epoxide **21a** was treated with MCPBA in the presence of 2,4,6-tri(*tert*-butyl)phenol in dichloroethane at 55 °C (Scheme 3). However, even after 7 days, only traces of the desired lactone **23a** were detected at very low conversion.

Surprisingly, also MOM-protected hydroxytropenone acetal **25a**, which was obtained from hydroxyacetal **24a**¹⁶ by treatment with MOMCI in the presence of Hünig's base and DMAP in CH₂Cl₂ in 95% yield, gave the expected regioisomeric Baeyer–Villiger products **26a**, **27a** only in traces after cleavage of the acetal moiety with PPTS in acetone and subsequent Baeyer–Villiger oxidation (Scheme 4).

In contrast, treatment of *Z*-protected ketone **28**, which was obtained by modified Swern oxidation of alcohol **24b** in 70% yield, with MCPBA in the presence of NaHCO₃ in CH₂Cl₂ at room temperature gave exclusively lactone **29** in 57%. The regioisomeric lactone **30** was not detected. Presumably, the 1,2-migration of the bridgehead C–C bond is favored due to neighbor group assistance of the carbamate nitrogen. It should be noted, that Chambers²² and Ruiz²³ reported 1,2-migration of the 'internal' C1–C2 bond rather than the bridgehead C2–C3 bond for Baeyer–Villiger oxidations of norcamphor derivatives.

Finally, the diols **31a**,**b**^{24,18} were acetalized with dimethoxypropane to give the tricyclic acetals **32a**,**b** in 93% and >99% yield, respectively (Scheme 5). Acetals **32a**,**b** were oxidized with MCPBA under Donnini's conditions²⁰ and the desired lactones **33a**,**b** were isolated in 50% and 55% yield, respectively. At this point it is not clear why tropane derivatives **15a–c**, **21**, and **24** behaved differently under the Baeyer–Villiger conditions as compared to **28** and **32a**,**b**.

From these results we concluded that those pyrrolizidine alkaloids should be easily accessible via Baeyer–Villiger oxidation/ lactone opening sequence, which contain a cis-diol subunit at C-1,

C-2. Thus, the methodology was applied in the total synthesis of 7aepi-hyacinthacine A₁ (7a-epi-7). The retrosynthesis is shown in Scheme 6. 7a-epi-Hyacinthacine A₁ (7a-epi-7) should be available from the pyrrolizidinone **34**, which can be traced back to the protected pyrrolidine derivative **35**. It was planned to prepare compound **35** from the pyrrolidine **36** by a sequence of protection of the primary hydroxy group, reduction, and chain extension. Compound **36** is derived from the lactone **33b** via opening and esterification.

As shown in Scheme 7, tricyclic lactone **33b** was treated with K_2CO_3 in MeOH according to the method by Ogawa²⁵ to give quantitatively pyrrolidine methylester **36**. The relative stereochemistry of **36** was proven by a NOESY NMR experiment, which not only displayed cross peaks for 2-H/5-H and 3-H/4-H but also cross peaks between the cis-oriented methylene groups and the hydrogen atoms, i.e., 2-CH₂/3-H, 5-CH₂/4-H, and 2-CH₂/5-CH₂. Subsequent protection of the primary hydroxy group in **36** with TBSCI in the presence of imidazole in DMF at room temperature yielded TBS ether **37** in 97%, which was then treated with LiAlH₄ in Et₂O. When the reaction was carried out at 0 °C and warmed to room temperature over 1 h, the desired alcohol **38** was isolated in 87% together with the tricyclic hemiaminal **39** in 8%. This byproduct is probably due to intramolecular nucleophilic attack of the primary

Scheme 7.

hydroxy group at the carbamate C=O, followed by extrusion of benzylic alcohol. The intermediate hexahydropyrrolo[1,2c][1,3]oxazin-1-one is then further reduced by LiAlH₄ to the hemiaminal **39**. The formation of this byproduct could be minimized by lowering the reaction temperature to -5 °C and the yield of the desired product **38** was improved to 94%. Subsequent bromination of **38** under Appel conditions²⁶ with CBr₄ and PPh₃ in CH₂Cl₂ at room temperature yielded the bromide **40** almost quantitatively. For the conversion of the bromide **40** to the pyrrolizidinone **41** we applied a one step lactamization discovered by Dominguez.²⁷ Upon addition of pyrrolidine **40** to a solution of *t*-BuLi in THF at -80 °C followed by aqueous workup the desired lactam **41** could be isolated in 59% yield. Our assignment of the relative configuration in **36** was confirmed by an X-ray crystal structure analysis of **41** (Fig. 1).²⁸

Figure 1. ORTEP presentation of lactam 41 in the solid state.

For completion of the synthesis of 7a-*epi*-**7** we first anticipated a deprotection of lactam **41** followed by reduction of the lactam moiety. Although **41** was deprotected with TFA in THF/H₂O (7:1) under reflux, all attempts failed to isolate the product from subsequent LiAlH₄ treatment. Therefore, protected lactam **41** was reduced with LiAlH₄ in THF to pyrrolizidine **42** albeit with 24% yield. The yield was improved to 60% by alternative reduction of lactam **41**

Table 1

Enzymatic resolution of hydroxymethyl pyrrolidine (\pm) -36 under various conditions^{a,b}

Entry	Lipase	Solvent	Temp [°C]	Time [h]	Conversion [%]	(-)- 43 Yield [%]	[% ee]	E ^c	(+)- 36 Yield [%]	[% ee]	Ε
1	Novozyme 435	Et ₂ O	40	0.5	65	_	_	_	_	_	
2	Chirazyme L-6	Et ₂ O	40	0.5	70	_	_	_	_	—	—
3	Novozyme 435	Toluene	40	2.0	45	39	45	4	50	35	3
4	Chirazyme L-6	Toluene	40	0.5	52	47	94	_	44	80	16
5	Novozyme 435	Et ₂ O	20	0.5	60	_	79	_	_	93	14
6	Chirazyme L-6	Et ₂ O	20	1.0	65	d	56	_	_	99	16
7	Novozyme 435	Toluene	20	3.5	50	_	48	5	_	32	3
8	Chirazyme L-6	Toluene	20	1.5	48	42	99	>100	48	75	22

^a The following lipases were used: Novozyme 435 from *C. antarctica*, Chirazyme L-6 from *P. cepacia*.

^b Conversions were determined by capillary GC. Enantioselectivities were determined by chiral HPLC (see Experimental section for details). Yields refer to isolated yields. ^c $E = \ln\{1-c[1+ee(\mathbf{43})]\}/\ln[1-c[1-ee(\mathbf{43})]\}$,³² (whereby *c* was determined by GC).

^d Not isolated.

with $BH_3 \cdot SMe_2$ in THF at room temperature, followed by refluxing in MeOH according to a method by Izquierdo.²⁹ Final deprotection was achieved by sequential treatment of **42** with HCl in MeOH under reflux and DOWEX 1×8 ion exchange resin following the method by Landais and Renaud.³⁰ In this way, the target compound 7a-epi-7 was isolated quantitatively in analytically pure form.

In order to allow access to enantiomerically pure compound **7** as well, the lipase-catalyzed resolution of hydroxymethyl pyrrolidine **36** was investigated (Table 1). Treatment of (\pm) -**36** with Novozyme 435 from *Candida antarctica* or Chirazyme L-6 from *Pseudomonas cepacia* and vinyl acetate in Et₂O or toluene³¹ yielded (–)-acetate (–)-**43** and (+)-alcohol (+)-**36**. The best results were obtained with Chirazyme L-6 (entries 4, 6, and 8). In toluene (–)-acetate (–)-**43** was obtained in 42% yield with 99% ee and the remaining (+)-alcohol (+)-**36** was isolated in 48% yield albeit with 75% ee (entry 8).

When the reaction was performed in Et₂O (–)-acetate (–)-**43** was isolated with decreased optical purity (56% ee), however, the enantiomeric excess of the alcohol (+)-**36** could be raised to 99% ee (entry 6).

3. Conclusion

In conclusion, we have demonstrated that *N*-protected tropenones **15** could be converted into the pyrrolizidine alkaloid (\pm) -7a*epi*-hyacinthacine A₁ (7a-*epi*-**7**) in 10 steps and 14% overall yield employing a Baeyer–Villiger oxidation/lactone opening sequence and a lactamization via intramolecular nucleophilic attack of an alkyllithium species to a carbamate as the key steps. This route gives also access to both enantiomeric series of **7** as was shown by the enzymatic resolution of the pyrrolidine intermediate **36**. Attempts toward the synthesis of other pyrrolizidines from tropane alkaloids are currently in progress.

4. Experimental section

4.1. General

Melting points (uncorrected) were determined on a Büchi 510 melting point apparatus. Optical rotations were determined with a Perkin–Elmer 241 LC polarimeter. IR spectra: Bruker Vektor 22 FT-IR spectrometer. Mass spectra: Finnigan MAT 95, Varian MAT 711, and Bruker Daltonics micrOTOF_Q spectrometers. NMR spectra: Bruker AC-250F, Bruker ARX 300, and Bruker ARX 500

spectrometers. The spectra were recorded with TMS as an internal standard. ¹³C NMR multiplicities were determined by DEPT135 experiments. Signals of the second rotamer are indicated by *. Column chromatography: Fluka silica gel 60 (40–63 μ m). Compounds **24a,b** were prepared according to Ref. 16

4.2. Synthesis and characterization

4.2.1. Methyl 7-oxo-3-oxa-9-azatricyclo[3.3.1.0^{2,4}]nonane-9-carboxylate (**21a**)

To a solution of 15a (52 mg, 287 µmol) in CH₂Cl₂ (2 mL) was added MCPBA (193 mg, 861 µmol, 77%) and the mixture was stirred at rt for 2 days. The reaction mixture was filtered, the filtrate was diluted with CH₂Cl₂, dried (Na₂SO₄), concentrated in vacuo, and purified by column chromatography (silica gel, EtOAc/ hexane 1:1) to give 21a (43 mg, 220 µmol, 77%) as a colorless oil. *R*_f=0.21 (EtOAc/hexane 1:1). ¹H NMR (500 MHz, CDCl₃): δ 2.36– 2.38 (m, 1H), 2.38-2.41 (m, 2H), 2.42-2.44 (m, 1H) (H_a-2, H_a-4, H_å-2, H_å-4), 2.65 (d, J=5.1 Hz, 1H), 2.67 (d, J=5.1 Hz, 1H), 2.69 (d, J=5.1 Hz, 1H), 2.72 (d, J=5.1 Hz, 1H) (Hb-2, Hb-4, Hb-2, Hb-4), 3.49 (d, J=3.0 Hz, 2H), 3.51 (d, J=3.0 Hz, 2H) (H-6, H-7, H*-6, H*-7), 3.75 (s, 6H, CH₃, CH₃), 4.60 (d, J=4.4 Hz, 2H), 4.73 (d, J=4.4 Hz, 2H) (H-1, H-5, H*-1, H*-5). ¹³C NMR (125 MHz, CDCl₃): δ 42.4, 42.5 (C-2, C-4, C-2*, C-4*), 52.1, 52.4 (C-1, C-5, C-1*, C-5*), 52.7, 53.1 (C-6, C-7, C-6*, C-7*), 53.0 (CH3, CH3), 156.9 (COO, COO*), 205.0 (C-3, C-3*). IR (neat, cm⁻¹): $\nu_{\rm max}$ 2959, 2916, 1695, 1447, 1384, 1330, 1294, 1192, 1103, 1036, 922, 867, 704. MS (ESI): *m/z* 220 [MNa]⁺, 182, 164. HRMS (ESI, [MNa]⁺): calcd for C₉H₁₁NO₄+Na 220.0586, found 220.0582.

4.2.2. Benzyl 7-oxo-3-oxa-9-azatricyclo[3.3.1.0^{2,4}]nonane-9-carboxylate (**21b**)

Following the procedure described for 21a, epoxide 21b (19 mg, 70.0 μ mol, 82%) was obtained as a colorless oil. $R_f=0.34$ (EtOAc/ hexane 1:1). ¹H NMR (500 MHz, CDCl₃): δ 2.34–2.35 (m, 1H), 2.37– 2.40 (m, 2H), 2.42–2.44 (m, 1H) (H_a-2, H_a-4, H_a-2, H_a-4), 2.63 (d, *I*=5.1 Hz, 1H), 2.67 (d, *I*=5.1 Hz, 1H), 2.69 (d, *I*=5.1 Hz, 1H), 2.73 (d, J=5.1 Hz, 1H) (H_b-2, H_b-4, H_b-2, H_b-4), 3.48 (d, J=3.0 Hz, 2H), 3.51 (d, J=3.0 Hz, 2H) (H-6, H-7, H*-6, H*-7), 4.63-4.66 (m, 2H), 4.73-4.76 (m, 2H) (H-1, H-5, H*-1, H*-5), 5.17 (s, 4H, CH₂Ph, CH₂Ph*), 7.29–7.38 (m, 10H, Ph, Ph*). ¹³C NMR (125 MHz, CDCl₃): δ 42.4, 42.5 (C-2, C-4, C-2*, C-4*), 52.2, 52.5 (C-1, C-5, C-1*, C-5*), 52.7, 53.1 (C-6, C-7, C-6*, C-7*), 67.7 (CH₂Ph, CH₂Ph*), 128.1, 128.3, 128.4 (Ph, Ph*), 136.1 (C-1', C-1'*), 156.4 (COO, COO*), 204.9 (C-3, C-3*). IR (neat, cm⁻¹): *v*_{max} 2941, 2906, 1698, 1465, 1420, 1365, 1330, 1296, 1220, 1198, 1105, 1032, 992, 929, 857, 765, 739. MS (EI): *m*/*z* 273 [M⁺], 228, 186, 166, 139, 107, 91 ([C₇H⁺₇]), 65. HRMS (APCI, [MH]⁺): calcd for C₁₅H₁₅NO₄+H 274.1079, found 274.1078.

4.2.3. tert-Butyl 7-oxo-3-oxa-9-azatricyclo[3.3.1.0^{2,4}]nonane-9-carboxylate (**21c**)

Following the procedure described for **21a**, epoxide **21c** (13 mg, 54.3 µmol, 55%) was obtained as a colorless oil. R_{f} =0.17 (EtOAc/hexane 1:2). ¹H NMR (500 MHz, CDCl₃): δ 1.47 [s, 18H, C(CH₃)₃, C(CH₃)₃], 2.33–2.34 (m, 1H), 2.35–2.38 (m, 2H), 2.39–2.41 (m, 1H) (H_a-2, H_a-4, H_a^{*-2}, H_a^{*-4}), 2.64 (d, *J*=5.1 Hz, 1H), 2.68 (d, *J*=5.1 Hz, 2H), 2.71 (d, *J*=5.1 Hz, 1H) (H_b-2, H_b-4, H_b-2, H_b-4), 3.46 (d, *J*=3.0 Hz, 2H), 3.48 (d, *J*=3.0 Hz, 2H) (H-6, H-7, H*-6, H*-7), 4.54 (d, *J*=4.8 Hz, 2H), 4.68 (d, *J*=4.8 Hz, 2H) (H-1, H-5, H*-1, H*-5). ¹³C NMR (125 MHz, CDCl₃): δ 28.3 [C(CH₃)₃, C(CH₃)₃], 42.4, 42.5 (C-2, C-4, C-2*, C-4), 51.6, 52.7 (C-1, C-5, C-1*, C-5*), 52.8, 53.2 (C-6, C-7, C-6*, C-7*), 81.0 [C(CH₃)₃, C(CH₃)₃], 155.9 (COO, COO*), 205.6 (C-3, C-3*). IR (neat, cm⁻¹): ν_{max} 2970, 2930, 1691, 1480, 1393, 1333, 1297, 1160, 1099, 1033, 963, 862, 705. MS (ESI): *m*/z 262 [MNa]⁺, 224, 206, 184, 162, 145, 140, 122, 94, 84. HRMS (ESI, [MNa]⁺): calcd for C₁₂H₁₇NO₄+Na 262.1056, found 262.1045.

4.2.4. Methyl 6-(methoxymethoxy)-8H-spiro[8-azabicyclo-[3.2.1]octane-3,2'-[1,3]dioxolane]-8-carboxylate (**25a**)

To a cooled solution of 24a (110 mg, 453 µmol) in CH₂Cl₂ (2 mL) were added MOMCl (170 µL, 2.26 mmol), *i*-Pr₂NEt (384 µL, 2.26 mmol), and DMAP (10 mg) and the reaction mixture was stirred for 30 min at 0 °C, then warmed to rt and stirred for 16 h. The mixture was diluted with CH₂Cl₂ (30 mL), washed with a satd NH₄Cl solution, dried (Na₂SO₄), and evaporated. The residue was purified by flash chromatography (silica gel, EtOAc/hexane 2:1) to give **25a** (124 mg, 432 µmol, 95%) as a colorless oil. *R_t*=0.40 (EtOAc/hexane 2:1). ¹H NMR (500 MHz, CDCl₃): δ 1.71 (ddd, *I*=13.8, 4.1, 2.1 Hz, 2H, H_a-4, H_a-4), 1.82–1.89 (m, 2H, H_a-7, H_a-7), 1.86 (ddd, J=13.8, 2.4, 2.1 Hz, 2H, H_a-2, H_a-2), 1.89–1.95 (br m, 1H, H_b-4), 1.93 (dd, *J*=13.8, 4.1 Hz, 1H, H_b-2), 2.00–2.06 (br m, 2H, H_b-2, H_b-4), 2.55 (dd, J=13.3, 7.3 Hz, 1H, H_b-7), 2.58 (dd, J=13.3, 7.3 Hz, 1H, H_b-7), 3.36 (s, 3H, CH₂OCH₃), 3.37 (s, 3H, CH₂OCH₃), 3.70 (s, 3H, COOCH₃), 3.71 (s, 3H, COOCH₃), 3.80-3.86 (m, 4H, OCH2, OCH2), 3.92-3.98 (m, 4H, OCH2, OCH2), 4.21-4.24 (br m, 1H, H-1), 4.30-4.33 (br m, 1H, H*-1), 4.35-4.39 (br m, 1H, H*-5), 4.44 (dd, J=7.3, 2.4 Hz, 1H, H*-6), 4.45-4.48 (br m, 1H, H-5), 4.45 (dd, J=7.4, 2.4 Hz, 1H, H-6), 4.62 (d, J=7.2 Hz, 1H, CH_aOCH₃), 4.64 (br s, 2H, CH₂OCH₃), 4.65 (d, J=7.2 Hz, 1H, CH_bOCH₃). ¹³C NMR (125 MHz, CDCl₃): δ 37.1 (C-7), 37.8 (C-7*), 38.5 (C-2*), 39.3 (C-2), 39.8 (C-4), 40.6 (C-4*), 52.4 (COOCH3, COOCH3), 52.8 (C-5*), 52.9 (C-5), 55.4 (CH₂OCH₃), 55.5 (CH₂OCH₃), 59.3 (C-1*), 59.6 (C-1), 63.5, 64.5 (OCH₂, OCH₂), 78.8 (C-6*), 79.7 (C-6), 95.6 (CH₂OCH₃, CH₂OCH₃), 106.9 (C-3, C-3*), 154.4 (COO*), 154.5 (COO). IR (neat, cm⁻¹): *v*_{max} 2995, 2978, 2890, 1681, 1455, 1406, 1323, 1217, 1098. 1029, 982, 912, 868, 818, 760, 685, 641, MS (APCI): m/z 288 [MH]⁺. 256, 226, 212, 194, 182, 151, 140. HRMS (APCI): calcd for C₁₃H₂₁NO₆+H 288.1447, found 288.1445.

4.2.5. Methyl 2,2-dimethyl-6-oxohexahydro-3aH-4,8epiminocyclohepta[d][1,3]dioxole-9-carboxylate (**32a**)

Following the procedure described for **32b**, compound **32a** (34 mg, 133 µmol, 93%) was obtained as a colorless solid. Mp 121 °C. R_{f} =0.6 (EtOAc). ¹H NMR (500 MHz, CDCl₃): δ 1.25 (s, 3H, CH₃), 1.41 (s, 3H, CH₃), 2.43 (dd, J=16.4, 9.4 Hz, 2H, H_a-2, H_a-4), 2.64 (dd, J=16.4, 5.3 Hz, 1H, H_b-4), 2.69 (dd, J=16.4, 5.3 Hz, 1H, H_b-2), 3.77 (s, 3H, CH₃), 4.43 (s, 2H, H-6, H-7), 4.48 (d, J=5.0 Hz, 1H, H-1), 4.59 (d, J=5.0 Hz, 1H, H-5). ¹³C NMR (125 MHz, CDCl₃): δ 24.2, 25.9 [C(CH₃)₂], 44.9, 45.1 (C-2, C-4), 52.9 (CH₃), 58.8 (C-1, C-5), 82.5, 83.0 (C-6, C-7), 111.6 [C(CH₃)₂], 155.4 (COO), 205.3 (C-3). IR (neat, cm⁻¹): ν_{max} 2991, 1697, 1451, 1402, 1204, 1113, 1047, 989, 869, 761, 693. MS (E1): m/z (%) 225 ([M⁺]), 240 (100), 196 (15), 155 (65), 101 (20), 43 (25). C₁₂H₁₇NO₅ (255): calcd C, 56.46%; H, 6.71%; N, 5.49%. Found: C, 56.34%; H, 6.64%; N, 5.35%.

4.2.6. Benzyl 2,2-dimethyl-6-oxohexahydro-3aH-4,8epiminocyclohepta[d][1,3]dioxole-9-carboxylate (**32b**)

To a stirred solution of **31b** (150 mg, 583 μ mol) in acetone (5 mL) was added dimethoxypropane (340 µL, 3.26 mmol) and p-TsOH \cdot H₂O (20 mg, 113 μ mol) and the reaction mixture was kept at rt for 2 h. The reaction mixture was diluted with NaHCO₃ solution (5 mL) and extracted with EtOAc (10 mL). The extract was dried (MgSO₄) and EtOAc removed in vacuo. The residue was purified by flash chromatography (silica gel, EtOAc/hexane 1:2) to give 32b as a colorless solid (173 mg, 582 μ mol, quant.). Mp 92 °C. $R_f=0.22$ (EtOAc/hexane 1:2). ¹H NMR (500 MHz, CDCl₃): δ 1.24 (CH₃, CH₃), 1.35 (CH₃, CH₃), 2.39 (br s, 1H), 2.43 (br s, 2H), 2.46 (br s, 1H) (H_a-2, Ha-4, Ha-2, Ha-4), 2.60 (dd, J=16.4, 5.3 Hz, 2H), 2.71 (dd, J=16.4, 5.3 Hz, 2H) (H_b-2, H_b-4, H_b-2, H_b-4), 4.44 (s, 4H, H-6, H-7, H*-6, H*-7), 4.54-4.58 (m, 2H), 4.61-4.65 (m, 2H) (H-1, H-5, H*-1, H*-5), 5.16–5.25 (m, 4H, CH₂Ph, CH₂Ph*), 7.29–7.40 (m, 10H, Ph, Ph*). ¹³C NMR (125 MHz, CDCl₃): δ 24.2, 25.9 (CH₃, CH₃), 45.0, 45.2 (C-2, C-4, C-2*, C-4*), 58.8, 58.9 (C-1, C-5, C-1*, C-5*), 67.4 (CH₂Ph, CH₂Ph*), 82.5, 83.0 (C-6, C-7, C-6*, C-7*), 111.6 [$C(CH_3)_2$, $C(CH_3)_2$], 128.0, 128.2, 128.6 (Ph, Ph*), 136.3 (C-1', C-1'*), 154.8 (CO, CO*), 205.3 (C-3, C-3*). IR (neat, cm⁻¹): ν_{max} 2985, 2934, 1716, 1700, 1418, 1367, 1232, 1205, 1123, 1053, 987, 870, 734, 695. MS (APCI): m/z 332 [MH⁺], 302, 288, 244, 198, 182, 142, 91 [C_7H_7]⁺. HRMS (ESI, [MNa]⁺): calcd for $C_{18}H_{21}NO_5$ +Na 354.1314, found 354.1318.

4.2.7. Methyl 2,2-dimethyl-7-oxohexahydro-3aH-4,9epimino[1,3]dioxolo[4,5-d]oxocine-10-carboxylate (**33a**)

Following the procedure described for **33b**, compound **33a** (18 mg, 66.4 µmol, 50%) was obtained as a colorless oil. R_f =0.26 (EtOAc/hexane 1:1). ¹H NMR (500 MHz, CDCl₃): δ 1.33 (s, 6H, CH₃, CH₃), 1.49 (s, 6H, CH₃, CH₃), 2.67–2.92 (br m, 4H, H_a-5, H₅-5), H₅-5), 3.69–3.75 (m, 2H, H_a-2, H₅-2), 3.73 (s, 6H, OCH₃, OCH₃), 3.79–3.96 (m, 2H, H_b-2, H₅-2), 4.06 (br, 1H, H*-1), 4.14 (br, 1H, H-1), 4.28–4.42 (br m, 2H, H-6, H*-6), 4.57 (d, *J*=5.8 Hz, 1H, H*-7), 4.58 (d, *J*=5.8 Hz, 1H, H-7), 4.74 (br, 1H, H-8), 4.76 (br, 1H, H*-8). ¹³C NMR (125 MHz, CDCl₃): δ 25.2, 27.3 (CH₃, CH₃), 36.8 (br, C-5*), 37.4 (br, C-5), 53.0 (OCH₃, OCH₃), 61.0, 61.9 (br, C-6, C-6*), 62.4, 63.0 (br, C-2, C-2*), 66.2 (br, C-1*), 67.1 (br, C-1), 81.2 (br, C-8), 82.0 (br, C-8*), 83.6 (br, C-7*), 84.0 (br, C-7), 112.2 [*C*(CH₃)₂, *C*(CH₃)₂], 155.8, 156.1 (CO, CO*), 174.7 (C-4, C-4*).

4.2.8. Benzyl 2,2-dimethyl-7-oxohexahydro-3aH-4,9epimino[1,3]dioxolo[4,5-d]oxocine-10-carboxylate (**33b**)

To a stirred solution of 32b (124 mg, 375 µmol) in dichloroethane (6 mL) was added MCPBA (252 mg, 1.46 mmol, 77%) and 2,4,6-tri(tert-butyl)phenol (2 mg). After stirring at 55 °C for 3 days, the reaction mixture was cooled, the solid filtered off and the filtrate diluted with CH₂Cl₂ (6 mL). The filtrate was washed successively with aqueous solutions of Na₂SO₃ and NaHCO₃ (3 mL each) and brine (3 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo, and purified by column chromatography (silica gel, EtOAc/hexane=1:2) to give **33b** (72 mg, 207 µmol, 55%) as a colorless oil. $R_f=0.21$ (EtOAc/hexane 1:2). ¹H NMR (500 MHz, CDCl₃): δ 1.27 (s 3H), 1.28 (s, 3H) (CH₃, CH₃), 1.34 (s, 3H, CH₃), 1.35 (s, 3H, CH₃), 2.79 (dd, *J*=16.5, 1.8 Hz, 1H, H_a-5), 2.89 (dd, *J*=16.5, 1.8 Hz, 1H, H_å-5), 3.06 (dt, J=16.5, 5.8 Hz, 2H, H_b-5, H_b-5), 4.23 (d, J=13.3 Hz, 1H, H_a-2 or H_å-2), 4.31 (d, J=13.3 Hz, 1H, H_a-2 or H_å-2), 4.36 (dd, J=13.3, 4.5 Hz, 1H, Hb-2 or Hb-2), 4.35-4.38 (m, 1H, H-6 or H*-6), 4.41 (dd, J=13.3, 4.5 Hz, 1H, Hb-2 or Hb-2), 4.44 (dt, J=5.8, 1.4 Hz, 1H, H-6 or H*-6), 4.52 (d, J=4.6 Hz, 1H, H-1 or H*-1), 4.57 (d, J=5.6 Hz, 2H, H-7, H*-7), 4.62 (d, J=4.6 Hz, 1H, H-1 or H-1*), 4.88 (d, J=5.6 Hz, 2H, H-8, H*-8), 5.15 (d, J=12.3 Hz, 1H), 5.16 (d, J=12.3 Hz, 1H), 5.21 (d, J=12.3 Hz, 1H), 5.22 (d, J=12.3 Hz, 1H) (CH₂Ph, CH₂Ph*), 7.31–7.39 (m, 10H, Ph, Ph*). ¹³C NMR (125 MHz, CDCl₃): δ 24.0, 25.9 (CH3, CH3), 41.1 (C-5), 41.6 (C-5*), 57.8, 57.9 (C-6, C-6*), 62.4, 62.6 (C-1, C-1*), 67.6 (CH2Ph, CH2Ph*), 71.3, 71.4 (C-2, C-2*), 80.4, 81.0 (C-8, C-8*), 82.6, 83.1 (C-7, C-7*), 111.9 [C(CH3)2, C(CH3)2], 128.0, 128.4, 128.6 (Ph, Ph*), 136.1 (C-1', C-1'*), 154.2, 154.3 (CO, CO*), 171.9, 172.0 (C-4, C-4*). IR (neat, cm⁻¹): *v*_{max} 2987, 2939, 1697, 1411, 1323, 1208, 1118, 1050, 869, 813, 697. MS (APCI): *m*/*z* 348 [MH⁺], 304, 256, 240, 138, 91 [C₇H₇]⁺. HRMS (ESI, [MNa]⁺): calcd for C₁₈H₂₁NO₆+Na 370.1264, found 370.1267.

4.2.9. Benzyl 6-oxo-8H-spiro[8-azabicyclo[3.2.1]octane-3,2'-[1,3]dioxolane]-8-carboxylate (**28**)

Trifluoroacetic anhydride $(36 \,\mu\text{L}, 0.256 \,\text{mmol})$ was added dropwise to a solution of DMSO $(36 \,\mu\text{L}, 513 \,\mu\text{mol})$ in CH₂Cl₂ $(1 \,\text{mL})$ at $-78 \,^\circ\text{C}$. Then a solution of **24b** $(50 \,\text{mg}, 157 \,\mu\text{mol})$ in CH₂Cl₂ $(100 \,\mu\text{L})$ and DMSO $(10 \,\mu\text{L})$ was added dropwise. After stirring for 30 min, NEt₃ $(70 \,\mu\text{L})$ was added and the mixture warmed to rt and stirred for 3 h. EtOAc $(20 \,\text{mL})$ was added and the mixture washed with water $(3 \times 10 \,\text{mL})$ and aqueous NaCl solution $(3 \times 10 \,\text{mL})$. The organic layer was dried (Na_2SO_4) and evaporated. Purification by column chromatography (silica gel, EtOAc/hexane 1:1) gave **28**

(35 mg, 110 μ mol, 70%) as a colorless oil. R_f =0.38 (EtOAc/hexane 1:1). ¹H NMR (500 MHz, CDCl₃): δ 1.85 (br d, *J*=13.8 Hz, 2H, H_a-2, H_a^{*-2}), 1.93-2.14 (br m, 4H, H_a-4, H_a^{*-4}, H_b-4, H_b^{*-4}), 2.16-2.33 (m, 2H, H_b-2, H_b-2), 2.54 (dd, J=17.6, 7.6 Hz, 2H, H_a-7, H_a-7), 2.69 (d, J=17.6 Hz, 2H, H_b-7, H_b-7), 3.83-3.88 (m, 4H, OCH₂, OCH₂), 3.89-3.97 (m, 4H, OCH₂, OCH₃), 4.16-4.29 (br m, 2H, H-5, H*-5), 4.68-4.81 (br m, 2H, H-1, H*-1), 5.10-5.22 (br m, 4H, CH₂Ph, CH₂Ph*), 7.29–7.41 (m. 10H, Ph, Ph*). ¹³C NMR (125 MHz, CDCl₃): δ 38.8 (br. C-2), 39.2 (br, C-2*), 39.6 (br, C-4*), 40.1 (br, C-4), 42.5 (br, C-7), 42.9 (br, C-7*), 51.2 (br, C-1), 51.4 (br, C-1*), 59.8 (br, C-5, C-5*), 64.1, 64.8 (OCH₂, OCH₂), 67.4 (CH₂Ph, CH₂Ph*), 106.3 (C-3, C-3*), 128.1, 128.3, 128.6 (Ph, Ph*), 136.1 (C-1', C-1'*), 153.5 (COO, COO*), 210.9 (br, C-6, C-6*). IR (neat, cm⁻¹): *v*_{max} 3034, 2958, 2916, 2849, 1765, 1701, 1603, 1563, 1406, 1357, 1304, 1200, 1116, 1097, 1046, 948, 823, 698, 641. MS (ESI): m/z 340 [MNa⁺], 318.1 [MH⁺], 274, 212, 91 [C₇H₇]⁺. HRMS (ESI, [MH]⁺): calcd for C₁₇H₁₉NO₅+H 318.1341, found 318.1336.

4.2.10. Benzyl 7'-oxo-9'H-spiro[1,3-dioxolane-2,3'-

[6]oxa[9]azabicyclo[3.3.1]nonane]-9'-carboxylate (29) MCPBA (111 mg, 495 µmol, 77%) and NaHCO₃ (17 mg) were added to a stirred solution of 28 (30 mg, 94.6 µmol) in CH₂Cl₂ (2 mL) at rt. After stirring overnight, CH₂Cl₂ (10 mL) was added and the mixture washed successively with aqueous solutions of Na₂SO₃ (5 mL) and NaHCO₃ (3 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo, and purified by column chromatography (silica gel, EtOAc/hexane 1:1) to give the **29** (18 mg, 54.0 µmol, 57%) as a colorless oil. R_{f} =0.29 (EtOAc/hexane 1:1). ¹H NMR (500 MHz, $CDCl_3$): δ 1.89 (br d, I = 14.1 Hz, 1H, H_a-6), 1.98 (dd, I = 14.1, 3.3 Hz, 1H, H_a-8), 2.12 (ddd, *J*=14.0, 4.8, 1.0 Hz, 1H, H_b-6), 2.36 (br d, *J*=14.1 Hz, 1H, H_b-8), 2.66 (d, *J*=18.0 Hz, 1H, H_a-4), 2.76–2.96 (br m, 1H, H_b-4), 3.87-3.96 (m, 2H, OCH₂), 3.99-4.07 (m, 2H, OCH₂), 4.78 (br s, 1H, H-5), 5.18 (d, J=12.1 Hz, 1H, CH_aPh), 5.23 (d, J=12.1 Hz, 1H, CH_bPh), 6.39 (br s, 1H, H-1), 7.33-7.41 (m, 5H, Ph). ¹³C NMR (125 MHz, CDCl₃): δ 34.9 (br, C-4), 38.7 (br, C-8), 38.9 (br, C-6), 45.3 (br, C-5), 63.8 (OCH₂), 65.1 (OCH₂), 68.5 (CH₂Ph), 81.6 (C-1), 105.0 (C-7), 128.3, 128.6, 128.7 (C-2', C-3', C-4'), 135.3 (C-1'), 153.3 (NCOO), 167.3 (C-3). IR (neat, cm⁻¹): *v*_{max} 2925, 2854, 1747, 1708, 1422, 1388, 1343, 1262, 1213, 1116, 1054, 960, 912, 887, 754, 695, 671. MS (APCI): m/z 334 [MH⁺], 290, 246, 230, 204, 186, 149, 117, 91 [C₇H⁺₇]. HRMS (APCI, [MH]⁺): calcd for C₁₇H₁₉NO₆+H 334.1290, found 333.1286.

4.2.11. Benzyl 4-(hydroxymethyl)-6-(2-methoxy-2-oxoethyl)-2,2-dimethyltetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrole-5carboxylate (**36**)

To a solution of 33b (482 mg, 1.39 mmol) in MeOH (15 mL) was added K₂CO₃ (20 mg, 147 µmol) and the reaction mixture stirred at rt overnight. The reaction mixture was diluted with water (5 mL) and extracted with CH_2Cl_2 (3×10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography (silica gel, EtOAc/hexane 1:1) to give 36 (496 mg, 1.31 mmol, 94%) as a colorless oil. R_f=0.24 (EtOAc/hexane 1:1). ¹H NMR (500 MHz, CDCl₃): δ 1.32 (s, 6H, CH₃, CH₃), 1.47 (s, 6H, CH₃, CH₃), 1.63–1.84 (m, 6H, CH₂COOMe, CH₂COOMe*, OH, OH*), 3.57 (s, 3H, OCH₃), 3.66 (s, 3H, OCH₃), 3.62-3.74 (m, 2H, CH₂OH, CH₂OH*), 3.85 (d, *J*=10.6 Hz, 1H, CH_aOH*), 3.93 (d, *J*=10.6 Hz, 1H, CH_bOH), 4.04–4.12 (br m, 1H, H*-2), 4.12–4.20 (br m, 1H, H-2), 4.41 (br t, J=7.1 Hz, 2H, H-5, H*-5), 4.52 (2d, J=5.7 Hz, 2H, H-4, H*-4), 4.69-4.74 (br m, 1H, H-3), 4.74-7.80 (br m, 1H, H*-3), 5.07-5.18 (m, 4H, CH₂Ph, CH₂Ph*), 7.29–7.38 (m, 10H, Ph, Ph*). ¹³C NMR (125 MHz, CDCl₃): δ 25.3, 27.3 (CH₃, CH₃), 36.8 (CH₂COOMe*), 37.6 (CH2COOMe), 51.9 (OMe), 52.1 (OMe*), 61.1 (C-5), 61.7 (C-5*), 62.7 (CH2OH*), 63.1 (CH2OH), 66.5 (C-2*), 67.3 (C-2), 67.4 (CH2Ph*), 67.5 (CH₂Ph), 81.2 (C-3), 82.0 (C-3*), 83.5 (C-4*), 84.1 (C-4), 112.2 [C(CH₃)₂, C(CH₃)₂], 127.7, 128.1, 128.6 (Ph, Ph*), 136.1, 136.3 (C-1', C-1'*), 154.8 (CO*), 155.4 (CO), 171.5 (COOMe), 172.2 (COOMe*). IR (neat, cm⁻¹): ν_{max} 3462, 2987, 2950, 1735, 1698, 1409, 1325, 1209, 1120, 1053, 869, 698. MS (EI): m/z (%) 379 ([M⁺], 5), 348 (15), 304 (30), 214 (5), 186 (5), 156 (5), 91 ([C₇H⁺], 100), 65 (5), 43 (5). HRMS (ESI, [MNa]⁺): calcd for C₁₉H₂₅NO₇+Na 402.1529, found 402.1528. HPLC: Chromasil ODH, hexane/isopropanol (70:30), flow rate 0.5 mL min⁻¹, $t_{\rm R}$ =10.84 min and $t_{\rm R}$ =12.65 min.

4.2.12. Benzyl 4-({[tert-butyl(dimethyl)silyl]oxy}methyl)-6-(2-methoxy-2-oxoethyl)-2,2-dimethyltetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate (**37**)

A solution of 36 (254 mg, 0.67 mmol) in DMF (1.5 mL) was added to a solution of *tert*-butyldimethylsilylchloride (136 mg, 0.89 mmol) and imidazole (61 mg, 0.89 mmol) in DMF (1.5 mL). After stirring overnight, the reaction mixture was diluted in CH₂Cl₂ (15 mL) and washed with brine (10 mL) and water (10 mL). The combined organic layers were dried (Na₂SO₄), concentrated, and purified by flash chromatography (silica gel, EtOAc/hexane 1:4) to give 37 (321 mg, 651 μ mol, 97%) as a colorless oil. $R_f=0.59$ (EtOAc/hexane 1:4). ¹H NMR (500 MHz, CDCl₃): δ 0.02 [s, 6H, Si(CH₃)₂], 0.05 [s, 3H, Si(CH₃)²], 0.06 [s, 3H, Si(CH₃)²], 0.87 [s, 9H, C(CH₃)³], 0.89 [s, 9H, C(CH₃)₃], 1.32 (s, 6H, CH₃, CH₃), 1.45 (s, 3H, CH₃), 1.47 (s, 3H, CH₃), 2.59 (dd, J=15.9, 10.5 Hz, 1H, CH_aCOOCH₃), 2.67 (dd, J=15.9, 10.5 Hz, 1H, CH_aCOOCH₃), 2.76 (dd, J=15.9, 4.5 Hz, 1H, CH_bCOOCH₃), 2.93 (dd, J=15.9, 4.5 Hz, 1H, CH_bCOOCH₃), 3.63-3.70 (m, 2H, CH₂OSi*), 3.65 (s, 3H, OCH₃), 3.69 (s, 3H, OCH₃), 3.73 (dd, J=10.5, 2.7 Hz, 1H, CH_aOSi), 3.85 (dd, *J*=10.5, 2.7 Hz, 1H, CH_bOSi), 4.07–4.10 (br m, 1H, H*-2), 4.15-4.18 (br m, 1H, H-2), 4.35 (dd, J=4.5, 1.7 Hz, 1H, H-5), 4.37 (dd, *J*=4.5, 1.7 Hz, 1H, H*-5), 4.50 (dd, *J*=5.9, 1.7 Hz, 1H, H-4), 4.53 (dd, *J*=5.9, 1.7 Hz, 1H, H*-4), 4.67 (d, *J*=5.9 Hz, 1H, H-3), 4.70 (d, *I*=5.9 Hz, 1H, H*-3), 5.08 (d, *I*=12.3 Hz, 1H, CH_aPh or CH_aPh*), 5.18 (s, 2H, CH₂Ph or CH₂Ph*), 5.18 (d, J=12.3 Hz, 1H, CH_bPh or CH_bPh*), 7.28–7.37 (m, 10H, Ph, Ph*). ¹³C NMR (125 MHz, CDCl₃): δ –5.6 [Si(CH₃)₂], -5.4 [Si(CH₃)₂], 18.4 [C(CH₃)₃, C(CH₃)₃], 25.2 [C(CH₃)₂, C(CH₃)^{*}], 26.0 [C(CH₃)₃, C(CH₃)^{*}], 27.3 [C(CH₃)₂, C(CH₃)^{*}], 36.9 (CH₂COOCH₃), 37.8 (CH₂COOCH₃), 51.7 (OCH₃, OCH₃), 61.7, 62.4 (C-5, C-5*), 62.8 (CH₂OSi), 63.5 (CH₂OSi*), 65.8 (C-2*), 66.6 (C-2), 67.0, 67.1 (CH₂Ph, CH₂Ph*), 81.1 (C-3), 82.1 (C-3*), 84.0 (C-4*), 84.8 (C-4), 111.8 [C(CH₃)₂, C(CH₃)₂], 127.6, 127.9, 128.0, 128.1, 128.5 (Ph, Ph*), 136.5 (C-1', C-1'*), 154.2, 154.3 (CO, CO*), 171.4, 171.5 (COOCH₃, COOCH₃). IR (neat, cm⁻¹): *v*_{max} 2952, 2857, 1741, 1704, 1409, 1383, 1327, 1255, 1160, 1118, 1065, 836, 632. MS (ESI): *m/z* 494 ([MH⁺]), 462, 450, 404, 392, 358, 318, 286, 260, 232, 210, 168, 152, 91 ([C₇H⁺₇]). HRMS (ESI, [MNa]⁺): calcd for C₂₅H₃₉NO₇Si+Na 516.2394, found 516.2381.

4.2.13. Benzyl 4-({[tert-butyl(dimethyl)silyl]oxy}methyl)-6-(2-hydroxyethyl)-2,2-dimethyltetrahydro-5H-[1,3]dioxolo-

[4,5-c]pyrrole-5-carboxylate (**38**)

A solution of **37** (617 mg, 1.25 mmol) in Et₂O (15 mL) was added dropwise to a cooled (0 °C) suspension of LiAlH₄ (95 mg, 2.50 mmol) in Et₂O (10 mL). After stirring at rt for 1 h, the reaction mixture was diluted with Et₂O (10 mL), hydrolyzed with a satd Na₂SO₄ solution (2 mL) and filtered. The filtrate was evaporated and purified by flash chromatography (silica gel, EtOAc/hexane 1:2) to give in a first fraction 39 (12 mg, 35.0 µmol, 3%) as a colorless oil and in a second fraction 38 (548 mg, 1.18 mmol, 94%) as the major product. Compound **38**: $R_f=0.28$ (EtOAc/hexane 1:2). ¹H NMR $(500 \text{ MHz, CDCl}_3): \delta -0.02 \text{ [s, 3H, Si(CH}_3)_2\text{], } 0.00 \text{ [s, 3H, Si(CH}_3)_2\text{],}$ 0.86 [br s, 9H, C(CH₃)₃], 1.32 (s, 3H, CH₃), 1.44 (s, 3H, CH₃), 1.59 (dt, J=11.8, 2.6 Hz, 1H, CH_aCH₂OH), 1.82–1.90 (m, 1H, CH_bCH₂OH), 3.53 (td, J=11.8, 2.6 Hz, 1H, CH₂CH_aOH), 3.58-3.64 (m, 1H, CH₂CH_bOH), 3.62 (dd, J=10.5, 4.8 Hz, 1H, CH_aOSi), 3.69 (dd, J=10.5, 3.3 Hz, 1H, CH_bOSi), 4.05–4.08 (m, 1H, H-2), 4.38 (dd, J=11.8, 4.1 Hz, 1H, H-5), 4.41 (d, J=5.7 Hz, 1H, H-4), 4.73 (dd, J=5.7, 2.1 Hz, 1H, H-3), 5.13 (d, J=12.4 Hz, 1H, CH_aPh), 5.24 (d, J=12.4 Hz, 1H, CH_bPh), 7.29–7.38 (m, 5H, Ph). ¹³C NMR (125 MHz, CDCl₃): δ –5.6, –5.5 [Si(CH₃)₂], 18.4 [C(CH₃)₃], 25.4 [C(CH₃)₂], 25.9 [C(CH₃)₃], 27.4 [C(CH₃)₂], 36.3

[CH₂CH₂OH], 58.5 [CH₂CH₂OH], 61.2 (C-5), 63.2 (CH₂OSi), 66.8 (C-2), 67.6 (CH₂Ph), 81.6 (C-3), 84.7 (C-4), 111.8 [*C*(CH₃)₂], 127.8, 128.2, 128.6 (Ph), 136.3 (C-1'), 156.4 (CO). IR (neat, cm⁻¹): ν_{max} 3460, 2952, 2930, 2857, 1680, 1410, 1360, 1328, 1252, 1212, 1159, 1119, 1065, 966, 939, 835, 777, 734, 697. MS (ESI): *m*/*z* 466 [MH⁺], 422, 408, 364, 334, 290, 272, 226, 204, 91 [C₇H⁺]. HRMS (ESI, [MH]⁺): calcd for C₂₄H₃₉NO₆Si+H 466.2626, found 466.2611.

4.2.14. 4-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-2,2-dimethylhexahydro[1,3]dioxolo[3,4]pyrrolo[1,2-c][1,3]oxazine (**39**)

*R*_{*t*}=0.44 (EtOAc/hexane 1:2). ¹H NMR (500 MHz, CDCl₃): δ 0.53 [s, 3H, Si(CH₃)₂], 0.55 [s, 3H, Si(CH₃)₂], 0.88 [s, 9H, C(CH₃)₃], 1.32 (s, 3H, CH₃), 1.52 (s, 3H, CH₃), 1.58–1.75 (br m, 1H, H_a-4), 1.89 (d, J=12.5 Hz, 1H, H_b-4), 2.53–2.63 (br m, 1H, H-4a), 2.78–2.86 (m, 1H, H-7), 3.45 (td, *J*=11.8, 2.7 Hz, 1H, H_a-3), 3.76–3.82 (m, 2H, CH₂OSi), 3.97 (d, J=8.4 Hz, 1H, H_a-1), 4.06 (dd, J=11.8, 4.8 Hz, 1H, H_b-3), 4.21-4.29 (br m, 1H, H-5), 4.33 (dd, J=7.0, 3.8 Hz, 1H, H-6), 4.86 (d, J=8.4 Hz, 1H, H_b-1). ¹³C NMR (125 MHz, CDCl₃): δ -5.5, -5.4 [Si(CH₃)₂], 18.2 [C(CH₃)₃], 25.1 [C(CH₃)₂], 25.9 [C(CH₃)₃], 27.1 [C(CH₃)₂], 29.7 (C-4), 64.9 (CH₂OSi), 66.6 (C-3), 67.2 (C-4a), 68.2 (C-7), 81.1 (C-6), 83.0 (C-5), 83.9 (C-1), 113.8 [*C*(CH₃)₂]. IR (neat, cm⁻¹): *v*_{max} 2930, 2856, 1471, 1380, 1253, 1209, 1189, 1168, 1109, 1068, 976, 872, 837, 777, 632. GC-MS (EI): *m/z* (%) 343 ([M⁺], 5), 328 (5), 286 (10), 270 (5), 228 (5), 198 (100), 156 (5), 140 (5), 124 (5), 101 (5), 73 (5), 59 ([COOCH₃⁺], 5), 41 (5). C₁₇H₃₃NO₄Si (343.54): calcd C, 59.44; H, 9.68; N, 4.08. Found: C, 59.60; H, 9.62; N, 3.92.

4.2.15. Benzyl 4-(2-bromoethyl)-6-({[tert-butyl(dimethyl)silyl]oxy}methyl)-2,2-dimethyltetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate (**40**)

To a solution of **38** (35 mg, 75.3 µmol) in CH₂Cl₂(1 mL) was added tetrabromoethane $(35 \text{ mg}, 105 \mu \text{mol})$ and triphenylphosphine (24 mg, 90.3 µmol) and the mixture was stirred at rt for 2 h and then diluted with water (2 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (4×2 mL). The combined organic layers were dried (Na₂SO₄), concentrated, and the residue purified by flash chromatography (silica gel, EtOAc/hexane 1:5) to give **40** (38 mg, 72 μmol, 96%) as a yellow oil. *R_f*=0.58 (EtOAc/hexane 1:4). ¹H NMR (500 MHz, CDCl₃): δ 0.02–0.06 [m, 12H, Si(CH₃)₂, Si(CH₃)^{*}], 0.88 [s, 9H, C(CH₃)₃], 0.89 [s, 9H, C(CH₃)^{*}], 1.32 (s, 6H, CH₃, CH₃), 1.43 (s, 6H, CH₃, CH₃), 2.03–2.11 (m, 2H, CH_aCH₂Br, CH_aCH₂Br*), 2.22-2.32 (m, 1H, CHbCH2Br), 2.33-2.42 (m, 1H, CHbCH2Br*), 3.28-3.51 (m, 4H, CH₂Br, CH₂Br*), 3.64 (dd, J=10.5, 3.5 Hz, 1H, CH_aOSi), 3.70 (dd, J=10.5, 2.3 Hz, 1H, CH_bOSi), 3.75 (dd, J=10.5, 2.3 Hz, 1H, CH_aOSi*), 3.82 (dd, *J*=10.5, 3.5 Hz, 1H, CH_bOSi*), 4.06–4.11 (br m, 3H, 2-H*, H-5, H*-5), 4.16 (br s, 1H, H-2), 4.38 (d, J=5.7 Hz, 1H, H-4), 4.41 (d, J=5.7 Hz, 1H, H*-4), 4.68 (d, J=5.7 Hz, 1H, H-3), 4.71 (d, J=5.7 Hz, 1H, H*-3), 5.11 (d, J=12.4 Hz, 1H, CH_aPh), 5.18 (d, J=12.4 Hz, 3H, CH_bPh, CH₂Ph*), 7.29–7.39 (m, 10H, Ph, Ph*). ¹³C NMR (125 MHz, CDCl₃): δ -5.5 [Si(CH₃)₂), -5.4 (Si(CH₃)₂], 18.4 [C(CH₃)₃, C(CH₃)₃], 25.4 [C(CH₃)₂, C(CH₃)₂], 26.0 [C(CH₃)₃, C(CH₃)₃], 27.4 [C(CH₃)₂, C(CH₃)^{*}], 29.1 (CH₂Br, CH₂Br^{*}), 37.1 (CH₂CH₂Br), 37.3 (CH₂CH₂Br^{*}), 62.9 (CH₂OSi*), 63.5 (CH₂OSi), 63.6 (C-5), 64.6 (C-5*), 66.0 (C-2*), 66.7 (C-2), 67.1 (CH₂Ph), 67.2 (CH₂Ph*), 81.1 (C-3*), 82.0 (C-3), 84.0 (C-4*), 84.6 (C-4), 111.9 [C(CH₃)₂, C(CH₃)₂], 127.8, 128.0, 128.1, 128.5 (Ph, Ph*), 136.4 (C-1'*), 136.5 (C-1'), 155.0 (CO, CO*). IR (neat, cm⁻¹): *v*_{max} 2953, 2930, 2857, 1703, 1462, 1409, 1383, 1326, 1254, 1212, 1160, 1117, 1067, 1004, 836, 779, 632. MS (ESI): *m*/*z* 528 ([MH⁺]), 484, 470, 426, 392, 358, 334, 314, 294, 226, 187, 168, 91 ([C₇H⁺₇]). HRMS (ESI, [MH]⁺): calcd for C₂₄H₃₈BrNO₅Si+H 528.1782, found 528.1775.

4.2.16. 4-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-2,2-dimethylhexahydro-6H-[1,3]-dioxolo[4,5-a]pyrrolizin-6-one (**41**)

A solution of **40** (133 mg, 252 μ mol) in THF (3.5 mL) was added dropwise to a cooled solution of *t*-BuLi (478 μ L, 758 μ mol, 1.7 M in pentane) in THF (1 mL) at -78 °C. After stirring for 1 h at -78 °C,

a satd NH₄Cl solution (1 mL) was added and the solvent was removed. The residue was extracted with CH_2Cl_2 (3×5 mL) and the combined organic layers were dried (Na₂SO₄) and evaporated. The residue was purified by column chromatography (silica gel, EtOAc/ hexane 1:1) to give 41 (51 mg, 149 μ mol, 59%) as a yellow oil. $R_{f}=0.34$ (EtOAc/hexane 1:1). ¹H NMR (500 MHz, CDCl₃): δ 0.49 [s, 3H, Si(CH₃)₂], 0.64 [s, 3H, Si(CH₃)₂], 0.88 [s, 9H, C(CH₃)₃], 1.34 [s, 3H, C(CH₃)₂], 1.54 [s, 3H, C(CH₃)₂], 1.77 (ddt, J=12.2, 10.0, 8.8 Hz, 1H, H_a-7), 2.30–2.35 (m, 1H, H_b-7), 2.38 (dd, *J*=16.5, 8.8 Hz, 1H, H_a-6), 2.58 (dddd, *J*=16.5, 12.2, 7.9, 1.3 Hz, 1H, H_b-6), 3.71 (dd, *J*=10.3, 2.0 Hz, 1H, CH_aOSi), 3.84–3.86 (br m, 1H, H-4), 3.96 (dt, *J*=10.0, 6.1 Hz, 1H, H-7a), 4.23 (dd, *J*=6.1, 5.7 Hz, 1H, H-7b), 4.59 (dd, *J*=10.3, 2.8 Hz, 1H, CH_bOSi), 4.75 (dd, J=5.7, 0.9 Hz, 1H, H-3a). ¹³C NMR (125 MHz, CDCl₃): δ -5.7 [Si(CH₃)₂], -5.5 [Si(CH₃)₂], 18.2 [C(CH₃)₃], 25.7 [C(CH₃)₂], 25.8 [C(CH₃)₃], 26.9 (C-7), 28.0 [C(CH₃)₂], 36.2 (C-6), 58.6 (CH₂OSi), 61.2 (C-4), 69.2 (C-7a), 81.7 (C-7b), 87.5 (C-3a), 112.5 [*C*(CH₃)₂], 173.3 (C-5). IR (neat, cm⁻¹): ν_{max} 2929, 2857, 1698, 1605, 1471, 1382, 1329, 1257, 1214, 1157, 1116, 1074, 1008, 967, 838, 779. GC-MS (CI): *m*/*z* (%) 342 ([MH⁺], 50), 326 (20), 284 (100), 268 (5), 226 (10), 210 (10), 143 (5), 89 (5), 75 (5), 43 (5). HRMS (ESI, [MH]⁺): calcd for C₁₇H₃₁NO₄Si+H 342.2100, found 342.2080.

4.2.17. 4-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-2,2-dimethylhexahydro-4H-[1,3]dioxolo[4,5-a]pyrrolizine (**42**)

To a solution of 41 (10 mg, 29.3 µmol) in THF (0.5 mL) was added dropwise BH3·SMe2 (31 µL, 293 µmol) and the reaction mixture stirred for 6 h. Then the mixture was diluted slowly with MeOH (0.2 mL) and concentrated. The residue was dissolved in MeOH (0.5 mL), refluxed for 5 h, concentrated, and purified by flash chromatography (silica gel, EtOAc/MeOH 10:1) to give 42 (5.8 mg, 17.7 μ mol, 60%) as a colorless oil. $R_f=0.23$ (EtOAc/MeOH 10:1). ¹H NMR (500 MHz, CDCl₃): δ 0.07 [s, 3H, Si(CH₃)₂], 0.08 [s, 3H, Si(CH₃)₂], 0.90 [s, 9H, C(CH₃)₃], 1.32 [s, 3H, C(CH₃)₂], 1.53 [s, 3H, C(CH₃)₂], 1.54–1.70 (br m, 1H, H-7), 1.79–1.94 (br m, 2H, H-6), 2.08– 2.20 (br m, 1H, H-7), 2.83 (br s, 2H, H-5), 3.27 (br s, 1H, H-4), 3.54 (br s, 1H, H-7a), 3.80 (dd, J=11.2, 5.8 Hz, 1H, CH_aOSi), 3.96 (d, J=11.2 Hz, 1H, CH_bOSi), 4.36 (dd, J=6.4, 3.8 Hz, 1H, H-7b), 4.61–4.68 (m, 1H, H-3a). ¹³C NMR (125 MHz, CDCl₃): δ –5.6 [Si(CH₃)₂], –5.5 [Si(CH₃)₂], 18.3 [C(CH₃)₃], 25.5 [C(CH₃)₂], 25.9 [C(CH₃)₃], 26.6 (C-6), 27.6 [C(CH₃)₂], 28.8 (C-7), 48.2 (C-5), 61.6 (CH₂OSi), 67.9 (C-4), 70.9 (C-7a), 82.5 (C-3a), 85.3 (C-7b), 113.4 [*C*(CH₃)₂]. IR (neat, cm⁻¹): *v*_{max} 2929, 2857, 2360, 2341, 1636, 1541, 1462, 1379, 1254, 1211, 1109, 1068, 836, 777, 631. GC–MS (CI): *m/z* (%) 328 ([MH⁺], 20), 312 (15), 298 (5), 270 (20), 254 (5), 212 (5), 182 (100), 124 (5), 96 (5), 73 (5). HRMS (ESI, $[MH]^+$): calcd for $C_{17}H_{33}NO_3Si+H$ 328.2308, found 328.2307.

4.2.18. 6,7-Dihydroxy-5-(hydroxymethyl)hexahydro-3H-pyrrolizin-3-one (**34**)

To a solution of 41 (10 mg, 29.3 µmol) in THF (0.5 mL) was added TFA (67 µL, 870 µmol) in water (200 µL) and the reaction mixture refluxed for 1.5 h. After azeotropic codestillation with toluene (0.5 mL), the residue was directly purified by flash chromatography (silica gel, EtOAc/MeOH 5:1) to give 34 (5.5 mg, 29.3 µmol, quant.) as a colorless amorphous solid. $R_{f}=0.17$ (EtOAc/MeOH 5:1). ¹H NMR (500 MHz, CD₃OD): δ 1.87 (tt, *J*=12.3, 9.3 Hz, 1H, H_a-1), 2.31 (dddd, J=12.3, 8.3, 6.1, 1.0 Hz, 1H, H_b-1), 2.45 (dd, J=16.5, 8.8 Hz, 1H, H_a-2), 2.72 (dddd, J=16.5, 12.3, 8.3, 1.5 Hz, 1H, H_b-2), 3.53-3.56 (m, 1H, H-5), 3.76 (dd, *J*=11.7, 4.1 Hz, 1H, CH_aOH), 3.81 (dd, *J*=8.5, 4.9 Hz, 1H, H-7), 4.00–4.05 (m, 1H, H-7a), 4.07 (dd, J=11.7, 4.1 Hz, 1H, CH_bOH), 4.16 (dd, *J*=4.9, 1.5 Hz, 1H, H-6). ¹³C NMR (125 MHz, CD₃OD): δ 27.1 (C-1), 37.1 (C-2), 59.8 (CH2OH), 66.2 (C-5), 67.1 (C-8), 76.2 (C-7), 78.9 (C-6), 176.2 (C-3). IR (neat, cm⁻¹): *v*_{max} 3277, 2888, 2361, 2341, 1647, 1547, 1426, 1375, 1203, 1113, 1046, 721, 630. MS (ESI): m/z 188 [MH⁺], 170, 152, 124, 110. HRMS (ESI, [MH]⁺): calcd for C₈H₁₃NO₄+H 188.0923, found 188.0907.

4.2.19. 7a-epi-Hyacinthacine A₁ (7a-epi-7)

A solution of **42** (5.8 mg, 16.2 µmol) in a (2:1) mixture of MeOH/ H₂O (450 µL) was refluxed for 1 h. The solvent was removed and the residue diluted with water and purified on DOWEX 1×8 (OH⁻) to give 7a-*epi*-**7** (2.8 mg, 16.2 µmol, quant.) as a colorless oil. ¹H NMR (500 MHz, CD₃OD): δ 1.49 (ddt, *J*=12.6, 10.6, 7.7 Hz, 1H, H_a-7), 1.64– 1.74 (m, 1H, H_a-6), 1.83–1.89 (m, 1-H, H_b-6), 2.11–2.17 (m, 1H, H_b-7), 2.76 (ddd, *J*=10.3, 9.5, 5.8 Hz, 1H, H_a-5), 2.88 (ddd, *J*=9.5, 6.6, 2.7 Hz, 1H, H_b-5), 3.19 (ddd, *J*=8.5, 8.2, 4.2 Hz, 1H, H-3), 3.36 (dt, *J*=7.7, 2.7 Hz, 1H, H-7a), 3.75 (dd, *J*=5.4, 2.7 Hz, 1H, H-1), 3.79–3.89 (m, 3H, CH₂OH, H-2). ¹³C NMR (125 MHz, CD₃OD): δ 27.3 (C-6), 31.0 (C-7), 48.6 (C-5), 61.3 (CH₂OH), 67.0 (C-3), 71.3 (C-7a), 72.7 (C-2), 77.4 (C-1). IR (neat, cm⁻¹): ν_{max} 3367, 2923, 2360, 2341, 1622, 1572, 1418, 1338, 1302, 1103, 978, 823, 669, 592. MS (ESI): *m*/*z* 174 [MH⁺], 156, 138, 125, 120, 110, 100, 96. HRMS (ESI, [MH]⁺): calcd for C₈H₁₅NO₃+H 174.1130, found 174.1117.

4.2.20. Benzyl 4-[(acetyloxy)methyl]-6-(2-methoxy-2-oxoethyl)-2,2-dimethyltetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrole-5carboxylate (**43**)

Ac₂O (8.4μ L, 84.4μ mol) was added to a solution of **36** (16 mg, 42.2 μ mol), DMAP (2 mg), and NEt₃ (20 μ L) in CH₂Cl₂ (1 mL) and the mixture stirred at rt for 0.5 h. Then CH₂Cl₂ was added (2 mL) and the mixture washed successively with 0.1 N NaOH and brine (2 mL each). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, EtOAc/hexane 1:2) to give **43** (16 mg, 38.0 µmol, 90%) as a colorless oil. R_f=0.21 (EtOAc/hexane 1:2). ¹H NMR (500 MHz, CDCl₃): δ 1.31 (s, 6H, CH₃, CH₃), 1.46 (s, 6H, CH₃, CH₃), 2.08 (s, 6H, Ac-CH₃, Ac-CH₃), 2.51 (dd, *J*=15.6, 10.0 Hz, 2H, CH_aCOOCH₃, CH_aCOOCH₃), 2.76 (dd, *I*=15.6, 4.0 Hz, 1H, CH_bCOOCH₃), 2.90 (dd, *I*=15.6, 4.0 Hz, 1H, *CH*_bCOOCH₃), 3.66 (s, 3H, OCH₃), 3.69 (s, 3H, OCH₃), 4.09-4.22 (m, 4H, CH₂OAc, CH₂OAc*), 4.24 (br s, 1H, H-2), 4.32 (br s, 1H, H*-2), 4.37-4.44 (m, 2H, H-5, H*-5), 4.56-4.62 (m, 2H, H-4, H*-4), 4.63 (dd, J=5.8, 1.5 Hz, 2H, H-3, H*-3), 5.15 (br s, 4H, CH₂Ph, CH₂Ph*), 7.29–7.38 (m, 10H, Ph, Ph*). ¹³C NMR (125 MHz, CDCl₃): δ 20.9 (Ac-CH₃, Ac-CH₃), 25.1, 27.2 (CH₃, CH₃), 37.2 (CH2COOCH3), 38.1 (CH2COOCH3), 51.9 (OCH3, OCH3), 61.5, 62.2 (C-5, C-5*), 63.2 (C-2), 63.6 (CH2OAc*), 63.9 (C-2*), 64.1 (CH2OAc), 67.4 (CH₂Ph, CH₂Ph*), 81.3 (C-3*), 82.1 (C-3), 83.6 (C-4), 84.5 (C-4*), 112.3 [C(CH₃)₂, C(CH₃)₂], 127.8, 127.9, 128.2, 128.6 (Ph, Ph*), 136.2 (C-1', C-1'*), 154.4 (CO, CO*), 170.4 (OCOCH3, OCOCH3), 170.9 (COOCH3), 171.1 (COOCH₃). IR (neat, cm⁻¹): *v*_{max} 2987, 2952, 1737, 1699, 1498, 1407, 1381, 1324, 1232, 1158, 1123, 1059, 870, 770, 699, 632. MS (EI): m/z 422 [MH⁺], 378, 364, 348, 320, 304, 286, 272, 260, 240, 228, 121, 170, 91 [C₇H⁺₇]. HRMS (ESI, [MH]⁺): calcd for C₂₁H₂₇NO₈+H 422.1815, found 422.1810. HPLC: Chromasil ODH, hexane/isopropanol (70:30), flow rate 0.5 mL min⁻¹, t_R =14.53 min and t_R =16.20 min.

4.2.21. Enzymatic resolution of benzyl 4-(hydroxymethyl)-6-(2methoxy-2-oxoethyl)-2,2-dimethyltetrahydro-5H-[1,3]dioxolo[4,5c]pyrrole-5-carboxylate ((±)-**36**)

To a solution of *rac*-**36** (67 mg, 177 µmol) in toluene (3 mL) was added vinyl acetate (82 µL, 883 µmol), molecular sieves (4 Å; 10 pellets), and Chirazyme L-6 (122 mg). The mixture was stirred at rt for 1.5 h, and then filtered through Celite. The filtrate was concentrated and the residue purified by flash chromatography (EtOAc/hexane 1:1) to give as a colorless oil in the first fraction (–)-43 (31 mg, 73.6 µmol, 42%); $[\alpha]_D^{20}$ –19.3 (*c* 1.00, CHCl₃), 98.5% ee, and in the second fraction (+)-**36** (32 mg, 84.3 µmol, 48%); $[\alpha]_D^{20}$ +12.4 (*c* 1.00, CHCl₃), 75% ee.

Acknowledgements

Generous financial support by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg is gratefully acknowledged.

References and notes

- (a) Crews, C.; Krska, R. In *Bioactive Compounds in Foods*; Gilbert, J., Senyuva, H. Z., Eds.; Blackwell Publishing Ltd.: Oxford, 2008; pp 10–30; (b) Pyne, S. G.; Tang, M. *Curr. Org. Chem.* **2005**, 9, 1393–1418; (c) Pyne, S. G.; Davies, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machess, T.; Tang, M. *Synlett* **2004**, 2670–2680; (d) Fu, P. P.; Xia, Q.; Lin, G.; Chou, M. W. *Drug Metab. Rev.* **2004**, 36, 1–55; (e) Ober, D. *Rec. Adv. Phytochem.* **2003**, 37, 203–230; (f) Edgar, J. A. *Chem. Aust.* **2003**, 70, 6–7; (g) Fu, P. P.; Xia, Q.; Lin, G.; Chou, M. W. *Int. J. Mol. Sci.* **2002**, 3, 948–964; (h) Yoda, H. *Curr. Org. Chem.* **2002**, 6, 223–243; (i) Liddell, J. R. *Nat. Prod. Rep.* **2002**, 19, 773– 781; (j) Coulombe, R. A. *Adv. Food Nutr. Res.* **2003**, 45, 61–99; (k) Mroczek, T.; Glowniak, K. *Proc. Phytochem. Soc. Eur.* **2002**, 47, 1–46.
- Mattocks, A. R. Chemistry and Toxicology of Pyrrolizidine Alkaloids; Academic: London, 1986.
- 3. Wiedenfeld, H.; Röder, E. Deutsche Apotheker Zeitung 1984, 43, 2116-2122.
- Fu, P. P.; Chou, M. W.; Xia, Q.; Yang, Y.-C.; Yan, J.; Doerge, D. R.; Chan, P. C. J. Environ. Sci. Health 2001, C19, 353–385.
- Izquierdo, I.; Plaza, M. T.; Tamayo, J. A.; Yanez, V.; Lo Re, D.; Sanchez-Cantalejo, F. Tetrahedron 2008, 64, 4613–4618.
- Nash, R. J.; Fellows, L. E.; Dring, J. V.; Fleet, G. W. J.; Derome, A. E.; Hamor, T. A.; Scofield, A. M.; Watkin, D. J. *Tetrahedron Lett.* **1988**, *29*, 2487–2490.
- (a) Vlietinck, A. J.; DeBruyne, T.; Apers, S.; Pieters, L. A. Planta Med. **1998**, 64, 97– 109; (b) Taylor, D. L.; Nash, R. J.; Fellows, L. E.; Kang, M. S.; Tyns, A. S. Antiviral Chem. Chemother. **1992**, 3, 273–277.
- (a) Asano, N.; Kuroi, H.; Ikeda, K.; Kiz, H.; Kameda, Y.; Kato, A.; Adachi, I.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J. *Tetrahedron: Asymmetry* **2000**, *11*, 1–8; (b) Kato, A.; Adachi, I.; Miyauchi, M.; Ikeda, K.; Komae, T.; Kizu, H.; Kameda, Y.; Watson, A. A.; Nash, R. J.; Wormald, M. R.; Fleet, G. W. J.; Asano, N. *Carbohydr. Res*. **1999**, *316*, 95–103.
- Yamashita, T.; Yasuda, K.; Kizu, H.; Kameda, Y.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J.; Asano, N. J. Nat. Prod. 2002, 65, 1875–1881.
- (a) Izquierdo, I.; Plaza, M. T.; Tamayo, J. A.; Sanchez-Cantalejo, F. *Eur. J. Org. Chem.* 2007, 6078–6083; (b) Izquierdo, I.; Plaza, M. T.; Tamayo, J. A.; Sanchez-Cantalejo, F. *Tetrahedron: Asymmetry* 2007, 18, 2211–2217; (c) Zhou, L.; Chen, J.; Cao, X.-P. Synthesis 2007, 1359–1365; (d) Izquierdo, I.; Plaza, M. T.; Tamayo, J. A.; Rodriguez, M.; Martes, A. *Tetrahedron* 2006, 62, 6006–6011; (e) Desvergenes, S.; Py, S.; Vallee, Y.J. Org. Chem. 2005, 70, 1459–1462; (f) Izquierdo, I.; Plaza, M. T.; Robles, R.; Franco, F. *Tetrahedron: Asymmetry* 2004, *15*, 1465–1469; (g) Izquierdo, I.; Plaza, M. T.; Robles, R.; Franco, F. *Tetrahedron: Asymmetry* 2003, *14*, 3933–3935; (h) Izquierdo, I.; Plaza, M. T.; Franco, F. *Tetrahedron: Asymmetry* 2002, *13*, 1581–1585; (i) Izquierdo, I.; Plaza, M. T.; Robles, R.; Franco, F. *Tetrahedron: Asymmetry* 2001, *12*, 2481–2487.

- (a) Sengoku, T.; Sato, Y.; Oshima, M.; Takahashi, M.; Yoda, H. Tetrahedron 2008, 64, 8052-8058; (b) Dressel, M.; Restorp, P.; Somfai, P. Chem.—Eur. J. 2008, 14, 3072-3077; (c) Izquierdo, I.; Plaza, M. T.; Yanez, V. Tetrahedron: Asymmetry 2005, 16, 3887-3891; (d) Izquierdo, I.; Plaza, M. T.; Tamayo, J. A. Tetrahedron: Asymmetry 2004, 15, 3635-3642.
- Chandrasekhar, S.; Parida, B. B.; Rambabu, C. J. Org. Chem. 2008, 73, 7826– 7828.
- (a) Donohoe, T. J.; Thomas, R. E.; Cheeseman, M. D.; Rigby, C. L.; Bhaley, G.; Linney, I. D. Org. Lett. **2008**, *10*, 3615–3618; (b) Donohoe, T. J.; Cheeseman, M. D.; O'Riordan, T. J. C.; Kershaw, J. A. Org. Biomol. Chem. **2008**, *6*, 3896– 3898; (c) Donohoe, T. J.; Sintim, H. O.; Hollinshead, J. J. Org. Chem. **2005**, *70*, 7297–7304.
- Reddy, P. V.; Veyran, A.; Koos, P.; Bayle, A.; Greene, A. E.; Delair, P. Org. Biomol. Chem. 2008, 6, 1170–1172.
- 15. Calveras, J.; Casas, J.; Parella, T.; Joglar, J.; Clapes, P. Adv. Synth. Catal. 2007, 349, 1661–1666.
- 16. Cramer, N.; Laschat, S.; Baro, A.; Frey, W. Synlett 2003, 2175-2177.
- 17. Cramer, N.; Laschat, S.; Baro, A. Synlett 2003, 2178-2180.
- (a) Affolter, O.; Baro, A.; Laschat, S.; Fischer, P. Helv. Chim. Acta 2007, 90, 1987– 1999; (b) Affolter, O.; Baro, A.; Laschat, S.; Fischer, P. Z. Naturforsch., B: Chem. Sci. 2007, 62, 82–92.
- 19. For desymmetrization via sulfoxides see: Piccardi, R.; Renaude, P. Eur. J. Org. Chem. 2007, 4752–4757.
- 20. Just, G.; Donnini, G. P. Can. J. Chem. 1977, 55, 2998–3006.
- 21. Mehta, G.; Lakshminath, S. Tetrahedron Lett. 2006, 47, 327-330.
- Chambers, R. D.; Hutchinson, J.; Sandford, G.; Shah, A.; Vaughan, J. F. S. Tetrahedron 1997, 53, 15833–15842.
- Llamas, R.; Jimenez-Sanchidrian, C.; Ruiz, J. R. *Tetrahedron* 2007, 63, 1435–1439.
 Moreno-Vargas, A. J.; Schütz, C.; Scopelliti, R.; Vogel, P. J. Org. Chem. 2003, 68, 5632–5640
- 25. Ogawa, T.: Suemune, H.: Sakai, K. Chem. Pharm. Bull. **1993**, 41, 1652–1654.
- 26. Leigh, D. A.; Thomson, A. R. *Tetrahedron* **2008**, 64, 8411–8416.
- (a) de la Fuente, M.; Dominguez, D. Tetrahedron 2004, 60, 10019–10028; (b) Kratzat, K.; Nader, F. W.; Schwarz, T. Angew. Chem. 1981, 93, 611–613.
- 28. Crystallographic data (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-721053. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk).
- 29. Izquierdo, I.; Plaza, M. T.; Tamayo, J. A. J. Carbohydr. Chem. 2006, 25, 281-295.
- 30. Chabaud, L.; Landais, Y.; Renaud, P. Org. Lett. 2005, 7, 2587-2590.
- For a related approach see: Chenevert, R.; Jacques, F.; Giguere, P.; Dassner, M. Tetrahedron: Asymmetry 2008, 19, 1333–1338.
- Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 7294–7299.