

Tris(pentafluorophenyl)borane-Catalyzed Stereoselective C-Glycosylation of Indoles with Glycosyl Trichloroacetimidates: Access to 3-Indolyl-C-glycosides

Atul Dubey, Ashwani Tiwari, and Pintu Kumar Mandal*

Figure 1. Some examples of bioactive molecules containing indole-*C*-glycosides.

Received: March 24, 2021 **Published:** May 31, 2021

ACS Publications

the treatment of type-2 diabetes.

many others.⁷ It is worth mentioning that recently synthetic 3-

indolyl-C-glycosides have also been approved as sodiumdependent glucose cotransporter 2 (SGLT2) inhibitors⁸ for

In this context, different synthetic methods have been

established to construct these valuable scaffolds. The first most common approach involves the formation of a C-glycosides through sequential addition of a carbanion to gluconolactone^{5d,9} or 1,2-anhydro sugars¹⁰ followed by reductive deoxygenation and C-glycosylation of indole derivatives with

various glycosyl donors¹¹ using either the heteroaryl compounds in the presence of Lewis acids or the metalated heteroaryl compounds (Scheme 1a).

Scheme 1. Representative Methods for the Synthesis of Aryl-C-glycosides and Indole-C-glycosides

(a) Conventional processes

(b) Cyclization o-alkynylanilines with 1-iodoglycals (Sun and co-workers)

(c) Pd-catalysed ortho-directed C-H glycosylation of indoles (Chen and co-workers)

Table 1. Optimization of the Reaction Conditions^a

pubs.acs.org/joc

However, these traditional methods suffer from unsatisfactory yields, harsh reaction conditions, or low regio- as well as stereoselectivities. The other approach includes the generation of a nitrogen-containing heterocyclic ring,¹² which allows the reaction of the sugar one carbon unit with the corresponding benzene derivatives. In this regard, a sequential heterocyclization and C-glycosylation sequence of *o*-alkynylanilines with 1-iodoglycals was developed to construct 3-indolyl-C-glycosides (Scheme 1b).^{12a} Moreover, recently, the formation of indoles glycosides via *ortho*-directed C–H glycosylation promoted by palladium catalyst using glycosyl chloride as a donor was developed by Chen and co-workers (Scheme 1c).¹³

Despite these advances, some of these syntheses are equivocal, as they are performed under a strident environment and often require a multistep reaction sequence with auxiliary and delicate operation conditions. Although significant progress has been made over the past few decades, only one report on the effective synthesis of stereoselective 3-indolyl-*C*-glycosides has been reported until date.^{13a} Thus, the study of direct and adequate stereoselective protocols for 3-indolyl-*C*-glycosides is still highly desirable. Keeping these impediments in mind, we have investigated the efficient strategy for directly forming a *C*-glycosylation, like a standard *O*-glycosylation.

Tris(pentafluorophenyl)borane (B(C_6F_5)₃ or BCF) catalyst possess relatively less Lewis acidity which may be the reason for optimal temperature for the activation of Schmidt's trichloroacetimidates donors.¹⁴ In spite of a few reported applications of B(C_6F_5)₃ in carbohydrate synthesis,¹⁵ its function in *C*-glycosylation reactions for the generation of biologically appealing 3-glycosyl indoles has not yet been reported. In addition, the electron-withdrawing nature as well as the steric bulkiness of the three C_6F_5 groups present around the boron also encouraged us to examine the activation of most used Schmidt's glycosyl donors for stereoselective *C*-glycosylation with BCF. Based on this concept, we report our results for the synthesis of 3-indolyl-*C*-glycosides by B(C_6F_5)₃-

	BnO´ Bn	HN CCl ₃ O HN CCl ₃ HN CCl ₃ HN CCl ₃ HN CCl ₃ HN CCl ₃ HN CCl ₃ CCl ₃ HN CCl ₃ HN CCl ₃ CCl ₃ HN CCl ₃ HN C	hyl-1 <i>H-</i> indole 2a	B(C ₆ F ₅) ₃ (x mol%) ► Solvent, Conditions	BnO	OF NH OBn 3a	
entry	D/A	catalyst (mol %)	solvent	temp (°C)	time	yield ^b (%)	α/β^c
1^d	1.2/1	BCF(10)	CH_2Cl_2	25	15 min	42	β only
2 ^e	2.0/1	BCF (10)	CH_2Cl_2	25	45 min	44	β only
3	1.2/1	BCF (10)	CH_2Cl_2	25	15 min	62	β only
4	1.2/1	BCF (20)	CH_2Cl_2	25	45 min	64	β only
5	1.2/1	BCF (10)	CH_2Cl_2	0	15 min	75	β only
6	1.2/1	BCF (10)	CH_2Cl_2	-10	15 min	82	β only
7	1.2/1	BCF (10)	CH_2Cl_2	-20	3 h	66	β only
8	1.2/1	BCF (10)	CH_2Cl_2	-30	6 h	42	β only
9	1.2/1	BCF(10)	THF	-10	3h	20	ND
10	1.2/1	BCF (10)	CH ₃ CN	-10	3h	<10	ND

^{*a*}The reaction was conducted with 1a (1.2 equiv), 2a (1.0 equiv), $B(C_6F_5)_3$ (10 mol %), solvent (4 mL). ^{*b*}Isolated yield. ^{*c*} α/β ratio was measured using ¹H NMR. ^{*d*}Molecular sieves were added. ^{*c*}Decomposition of the donor was observed.

Scheme 2. B(C₆F₅)₃-Catalyzed Direct 3-C-Indole Glycosylation with Donor 1a^a

^aReaction conditions: 1a (1.2 equiv), 2 (1.0 equiv), B(C_6F_5)₃ (10 mol %), solvent (4 mL). ^bIsolated yield. ^c α/β ratio measured using ¹H NMR.

catalyzed with readily accessible glycosyl imidate donors (Scheme 1d).

Our investigation began with the optimization of the reaction conditions with perbenzylated glucose α -imidate $(1a)^{16}$ and 2-methylindole (2a) as the model substrates in dichloromethane (Table 1).

Upon glycosylation of glycosyl donor **1a** with glycosyl acceptor **2a** in 1.2:1 molar ratio in the presence of 10 mol % of $B(C_6F_5)_3$ and a pinch of molecular sieves (4 Å) at room temperature (~25 °C), the desired *C*-glycoside **3a** was isolated in 42% yield within 10 min with exclusively β -selectivity (Table 1, entry 1). However, we have not observed any α -product. The exact structure of **3a** and stereochemistry at the new stereogenic center was unequivocally established by spectroscopic analysis (for details, see the Supporting Information). In the ¹H NMR spectra, the indole 3-H signals were absent and the signal of the anomeric proton (at δ 4.54) with the $J_{1,2}$ values (9.3 Hz) established the β -anomeric configuration.

When the reaction was carried out changing the ratio with donor 1a and acceptor 2a from a 1.2:1 to 2:1 molar ratio, no improvement of yield was observed even after a long time (entry 2). However, when the glycosylation was carried out in the absence of molecular sieves, surprisingly the reaction also proceeded efficiently to give the desired C-glycosides 3a in 62% yield within 15 min with exclusively β -selectivity (Table 1, entry 3). In fact, similar observations were previously reported in the case of $B(C_6F_5)_3$ -catalyzed glycosylation.^{14,17} To further increase the yield, we have screened the higher concentration of 20 mol % of $B(C_6F_5)_3$. However, there was no significant change observed in the product yield even after a longer time (entry 4). Thereafter, we performed the glycosylation reaction at different temperatures without using molecular sieves. As a result, the desired glycoside 3a was obtained in 75% yield with β -selectivity at 0 °C (Table 1, entry 5). However, the glycosylation reaction at -10, -20, and -30 °C showed that the reaction progressed easily at -10 °C to furnish the highest yield 3a in 82% with exclusively β -selectivity (Table 1, entries 6-8). Moving forward, we performed the reaction in other solvents also, such as acetonitrile and THF at -10 °C (Table 1, entries 9 and 10), but obtained lower yield in both cases,

suggesting the dichloromethane was the most suitable solvent for this *C*-glycosylation.

Before evaluating the generality of this new methodology, the standard conditions were applied to the glycosylation of 1a with 2 unsubstituted 5-(benzyloxy)-1*H*-indole and resulted in the desired product 3c in 77% yield with good selectivity (Scheme 2).

This suggests that the optimum conditions would be applied to the C-glycosylation of the unsubstituted indole substrates also. We then evaluated the synthesis of 3-indolyl-C-glycosides with various substituted indoles at different positions using perbenzylated glucose α -imidate (1a). However, examination of the obtained results in Scheme 2 showed a favorable trend of C2-substituted indoles producing a slightly higher yield. Unlike C2-unsubstituted indole, this gave a poor yield possible due to the formation of minor C-2 glycosylated product. Notably, the tested substrates bearing either electron-donating groups (Me, OMe, 3d, 3e) or an electron-withdrawing group $(CO_2Me, 3f)$ at the 5-position of the indole ring were well tolerated. However, electron-donating groups (Me, OMe) at the 5-position of indole enhanced the yield to some extent. It appears that the electronic effect of the substituents exerted influences on the yield. In comparison with indoles containing an electron-withdrawing group such as CO₂Me, indoles with an electron-donating group such as Me and OMe exhibited higher reactivity. Besides, there was no evidence for Nglycosylated isomer formation in any case. Further, Nmethylindole systems were also evaluated, and these also provided good yields of the corresponding 3-indolyl-Cglycosides (3g-3i). Obviously, C-glycosylated indoles are particularly prone to this reaction with β -selectivity. In addition, all of the obtained results indicated that BCF may undergo an intramolecular acid-base-type reaction. However, after fast adduct formation with indole this adduct reacted in stereoselective manner with the donor to afford preferentially β -stereoselective glycoside.

To further explore the effect of different commonly used glycosyl imidate donors (1b-k), such reactions were investigated (Scheme 3).

Scheme 3. Substrate Scope for Various Glycosyl Imidates and Substituted Indoles^a

^aReaction conditions: 1 (1.2 equiv), 2 (1.0 equiv), B(C₆F₅)₃ (10 mol %), solvent (4 mL). ^bIsolated yield. ^cα:β ratio measured using ¹H NMR.

Initially, the glycosylation was tested with perbenzylated galactose α -imidate (1b) with various substituted indoles. Delightfully, the reaction proceeded smoothly and gave the 3-indole *C*-glycosides **3j**-**3m** in 81-87% yield with exclusive β selectivity. Similarly, the glycosylation was again tested with more complex perbenzylated disaccharide α -imidate (1e); as a result, the corresponding desired indole *C*-glycosides **3n**-**3o**

were produced in good yield. Furthermore, when peracetylated glycosyl imidates **1c** and **1d** were applied for *C*-glycosylation with various indoles derivatives, the corresponding products **3p**, **3q**, **3r**, and **3s** were furnished in moderate to good yields. In addition, *C*-glycosylation was also investigated with the acetyl and benzyl group containing-6-deoxy donors, such as L-arabonopyranose α -imidate (**1f**, **1g**) donors. In general, all of

the reactions proceeded smoothly to provide the desired products 3t-3v in 64-68% yield, but with lower stereoselectivity ($\alpha:\beta = 1:4-1:7$) probably due to their high reactivity by the lack of substitution of carbohydrate ring and conformation.¹⁸ On the other hand, the peracetylated rhamnosyl imidate 1h gave α -selective glycoside 3w in 74% yield. Moreover, the reaction between picoloyl-protected rhamnosyl trichloroacetimidate 1i with substituted indoles proceeded in good yield with α -selective product (Scheme 3). Encouraged by these results, we decided to further expand the scope of this methodology by performing the reaction using glycofuranosyl imidates (1j, 1k) as a donor. Glycosylation of perbenzylated ribofuranosyl imidate 1j with 2-methylindole (2a) proceeded smoothly to give indole C-glycosides 3y in good yields (85%) with good selectivity. Similarly, when the isopropylidene protected mannofuranosyl imidate 1k was subjected to establish reaction conditions with different substituted indoles to give their corresponding C-glycosides 3z and 3aa in 68% and 71% yields, respectively, with moderate selectivity (Scheme 3).

However, the exact mechanism is still uncertain. On the basis of the above discussion and previous literature reports, 14,19 we speculate that instead of an $S_N 1$ mechanism the reaction might progress via an S_N^2 or acid-base mechanism. In this regard, we performed the ¹H NMR experiment with 2-methylindole (acceptor) both in the presence as well as the absence of the promoter BCF (1.0 equiv) at room temperature in CDCl₂. We noticed that there are some interaction of the peaks 3-H to the indole in the presence of BCF, thus demonstrating the formation of the acceptor-activator adduct (Figure S1). In addition, the glycosyl imidate donor 1a did not go through disintegration at -10 °C in the presence of 10 mol % of BCF. Only by raising the temperature did slow decomposition of 1a take place. In previous reports, similar observations of glycosyl acceptor activation with boron-based catalysts such as BCF,¹⁴ PhBF₂, and other acid–base catalyst gold chlorides were described.^{19b} Derived from the experimental data and the literature reports, we anticipated that in place of performing a simple S_N²-type mechanism the BCF may undergo an acid-base-type reaction. Incipiently, the nucleophilic acceptor undergoes complex formation with the catalyst, which promotes the perbenzylated α -glucosyl imidate donor to furnish β -selective glycosides, as shown in Scheme 4.

In summary, we have successfully developed the application of tris(pentafluorophenyl)borane as a productive catalyst for stereoselective *C*-glycosylation reactions involving trichloroacetimidate glycosyl donors with indoles. The reaction progresses cleanly in good to excellent yields without the need of molecular sieves and also does not require extremely low temperatures. Furthermore, the conditions are practical and mild, have broad substrate scope, and can be scaled up. Based on these outcomes, we hope that this method will acquire widespread applications in the formation of other heterocycle substrates for biological activities.

EXPERIMENTAL SECTION

General Methods. All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions in ovendried round-bottom flasks unless otherwise noted. Reagents were purchased at the highest commercial quality available and used without further purification unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25

Scheme 4. Plausible Mechanism

mm E. Merck silica gel plates (60F-254) using UV light as the visualizing agent also by warming ceric sulfate $[2\% \text{ Ce}(SO_4)_2 \text{ in } 5\%$ H₂SO₄ in EtOH]-sprayed plates on a hot plate. Silica gel 230-400 mesh was used for column chromatography. ¹H NMR spectra were recorded in CDCl₃ on a Bruker AV 400 (400 MHz) spectrometer. $^{13}\text{C}\{^1\text{H}\}$ NMR spectra were recorded in CDCl₃ on a Bruker 400 (100 MHz) and Bruker 300 (75 MHz) spectrometer. Chemical shifts are reported relative to CDCl₃ (δ 7.26 ppm) for ¹H NMR and CDCl₃ (δ 77.0 ppm) for ¹³C{¹H} NMR. Coupling constants are given in hertz. Structural assignments were made with additional information from gCOSY, gHSQC, and DEPT-135 experiments. High-resolution mass spectra (HRMS) were recorded as ESI-HRMS on Q-TOF mass spectrometer. Either protonated molecular ions $[M + H]^+$, sodium adducts $[M + Na]^+$, or ammonium adducts $[M + NH_4]^+$ were used for empirical formula confirmation. Commercially available grades of organic solvents are used for column chromatography for purifications. The known compounds $1a_1^{16}$ $1b_2^{20a}$ $1c_2^{20b}$ $1d_2^{20b}$ $1e_2^{20c}$ $1f_2^{20d}$ $1g_2^{20e}$ $1h_2^{20f}$ $1g_2^{20g}$ and $1k^{20h}$ showed characterization data in full agreement with previously reported data.

Experimental Procedures. 3-O-Benzyl-4-O-benzoyl-2-O-(2-pyridinecarbonyl)- α -L-rhamnopyranoside Trichloroacetimidate (1i). N-Bromosuccinimide (737 mg, 4.1 mmol) was added at 0 °C to a solution of ethyl 3-O-benzyl-4-O-benzoyl-2-O-(2-pyridinecarbonyl)-1thio- α -L-rhamnopyranoside (1.0 g, 1.9 mmol) in acetone (9 mL) and water (1 mL), and the mixture was stirred for 30 min. The reaction was quenched by addition of saturated aqueous sodium bicarbonate. The organic solvent was removed in vacuo, and the remaining aqueous solution was extracted with ethyl acetate. After being dried over anhydrous sodium sulfate, the extract was concentrated, and then the residue was dissolved in dry dichloromethane (10 mL) and cooled to 0 $^\circ\text{C}.$ Trichloroacetonitrile (0.24 mL, 2.4 mmol) and 1,8diazabicyclo [5.4.0] undec-7-ene (0.15 mL, 0.9 mmol) were added. The reaction mixture was stirred for 2 h. The solvent was evaporated, and the residue was purified over SiO_2 using hexane-EtOAc (9:1) as eluent to give pure compound 1i as colorless oil (0.52 g, 85% yield). IR (neat): 3794, 3344, 3017, 2920, 1727, 1672, 1456, 1216, 1164, 765, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.84-8.83 (m, 1 H), 8.76 (s, 1 H), 8.21 (d, J = 7.9 Hz, 1 H), 7.99-7.98 (m, 2 H), 7.92-7.88 (m, 1 H), 7.63-7.59 (m, 1 H), 7.53-7.50 (m, 1 H), 7.49-7.45 (m, 2 H), 7.18-7.08 (m, 5 H), 6.43 (d, I = 1.6 Hz, 1 H), 5.88-5.87(m, 1 H), 5.53(t, J = 9.9 Hz, 1 H), 4.67 (d, J = 12.5 Hz, 1 H), 4.52 (d, J = 12.5 Hz, 1 H), 4.18-4.12 (m, 2 H), 1.33 (d, J = 6.3 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 165.8, 163.8, 159.9, 150.5, 147.4, 137.4, 137.1, 133.5, 130.1, 129.7, 128.6, 128.5, 128.1, 127.4,

125.9, 95.1, 73.5, 72.4, 71.6, 69.9, 68.4, 7.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₈H₂₅Cl₃N₂NaO₇ 629.0620; Found 629.0615.

General Glycosylation Procedures for the Prepration of 3-Indolyl-C-glycosides (3a–3z, 3aa). To a stirred solution of trichloroacetimidate glycosyl donor 1 (1.2 mmol) in freshly dried DCM (4 mL) was added substituted indole (1.0 mmol) acceptor. The reaction mixture was cooled to -10 °C and allowed to stir for 5 min, to which the activator B(C₆F₅)₃ or BCF (0.12 mmol with respect to donor) was added. The reaction was stirred further for 15–20 min at the same temperature, quenched by the addition of triethylamine (0.1 mL), and diluted with 20 mL of DCM. The organic layer was washed with NaHCO₃ (aq) and dried over Na₂SO₄. Further, the organic layer was filtered, concentrated, and subjected to column chromatography purification (hexane/ethyl acetate) using silica gel (SiO₂: 100–200) to afford the corresponding C-glycosides (3a–3z, 3aa).

3-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)-2-methyl-1H-indole (3a). Glycosyl trichloroacetimidate donor 1a (820 mg, 1.2 mmol) and 2-methylindole (2a, 131.07 mg, 1.0 mmol) were dissolved in freshly dried DCM (4 mL). The reaction mixture was cooled to -10 °C and allowed to stir for 5 min, to which the activator B(C₆F₅)₃ or BCF (61.4 mg, 0.12 mmol with respect to donor) was added. The reaction was stirred further for 15 min at the same temperature, quenched by the addition of triethylamine (0.1 mL), and diluted with 20 mL of DCM. The organic layer was washed with with NaHCO₃ (aq), dried (Na₂SO₄), and concentrated. The crude product was purified over SiO₂ using hexane-EtOAc (7:1) as eluent to give pure compound **3a** (535 mg, yield 82%, β only). Colorless jelly. IR (neat): 3466, 3017, 2920, 1727, 1601, 1456, 1216, 1064, 765, 669 cm⁻¹. ¹H NMR (400 MHz, $CDCl_3$): δ 7.83 (s, 1 H), 7.77 (d, J = 7.9 Hz, 1 H), 7.35-7.23 (m, 16 H), 7.14-7.09 (m, 4 H), 7.05-7.01 (m, 1 H), 6.84–6.82 (m, 2 H), 4.96 (d, J = 11.0 Hz, 1 H), 4.91(dd, J = 10.8 Hz, 2 H), 4.71 (d, J = 10.8 Hz, 1 H), 4.66 (d, J = 12.3 Hz, 1 H), 4.55-4.52 (m, 2 H), 4.30 (d, J = 10.6 Hz, 1 H), 3.97-3.91 (m, 2 H), 3.87 (dd, J = 3.6, 10.8 Hz, 1 H), 3.84–3.77 (m, 2 H), 3.74 (d, J = 10.5 Hz, 1 H), 3.65-3.61 (m, 1 H), 2.36 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.9, 138.6, 138.5, 138.2, 135.5, 133.1, 128.5, 128.4, 128.3, 128.1, 128.0, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 121.3, 120.1, 119.7, 110.3, 109.7, 86.8, 82.5, 79.3, 78.5, 75.7, 75.2, 74.6, 73.4, 69.3, 12.3. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{43}H_{44}NO_5$ 654.3214; Found 654.3217.

 $3-(2,3,4,6-Tetra-O-benzyl-\beta-D-glucopyranosyl)-2-phenyl-1H-in$ dole (3b). Synthesized according to the general procedure on a 1 mmol scale to afford **3b** (586 mg, yield 82%, β only); eluent, hexane-EtOAc (8:1). Colorless jelly. IR (neat): 3455, 3017, 2945, 1750, 1612, 1456, 1256, 1086, 765, 668 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1 H), 7.91 (d, J = 7.9 Hz, 1 H,), 7.69 (d, J = 6.6 Hz, 2 H), 7.41-7.33 (m, 5 H), 7.31-7.24 (m, 14 H), 7.22-7.18 (m, 1H), 7.11-7.02 (m, 4 H), 6.82(d, J = 6.9 Hz, 2 H), 4.96-4.86 (m, 3 H), 4.76–4.69 (m, 2 H), 4.62 (d, J = 12.1 Hz, 1 H), 4.46 (d, J = 12.1 Hz, 1 H), 4.31 (d, J = 10.8 Hz, 1 H), 4.19 (t, J = 7.4 Hz, 1 H), 3.99-3.93 (m, 2 H), 3.86–3.72 (m, 3 H), 3.55–3.52 (m, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.9, 138.7, 138.5, 138.1, 137.1, 136.1, 132.5, 129.1, 128.8, 128.4, 128.3, 128.1, 127.9, 127.8, 127.7, 127.5, 127.4, 127.3, 122.6, 120.1, 110.9, 110.6, 86.9, 82.2, 79.2, 78.4, 75.7, 75.2, 75.1, 74.6, 73.4, 69.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C48H46NO5 716.3371; Found 716.3377.

3-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)-5-O-benzyl-1Hindole (**3c**). Synthesized according to the general procedure on a 1 mmol scale to afford **3c** (573 mg, yield 77%, β only); eluent, hexane– EtOAc (8:1). Colorless jelly. IR (neat): 3466, 3017, 2945, 1750, 1601, 1456, 1240, 1064, 765, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (s, 1 H), 7.39–7.37 (m, 22 H), 7.25–7.20 (m, 6 H), 7.23–7.10 (m, 4 H), 6.92 (dd, *J* = 2.4, 8.8 Hz, 1 H), 6.82 (dd, *J* = 6.8 Hz, 2 H), 4.98–4.91 (m, 5 H), 4.71–4.64 (m, 2 H), 4.54–4.48 (m, 2 H), 4.28 (d, *J* = 10.7 Hz, 1 H), 3.94–3.86 (m, 1 H), 3.85–3.78 (m, 4 H), 3.74 (d, *J* = 10.3 Hz, 1 H), 3.65–3.61 (m, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.7, 138.8, 138.4, 138.1, 137.7, 131.9, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 126.5, 124.1, 113.9, 113.4, 111.9, 103.9, 86.8, 82.6, 79.3, 78.4, 76.6, 75.7, 75.2, 74.6, 73.5, 70.7, 6934. HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for $C_{49}H_{51}N_2O_6$ 763.3742; Found 763.3742.

3-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)-5-methyl-1H-indole (3d). Synthesized according to the general procedure on a 1 mmol scale to afford 3d (490 mg, yield 75%, β only); eluent, hexane– EtOAc (6:1). Colorless jelly. IR (neat): 3455, 3017, 2945, 1765, 1601, 1456, 1064, 765, 655 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 8.05 (s, 1 H), 7.60 (s, 1 H), 7.36–7.26 (m, 16 H), 7.16–7.12 (m, 4 H), 7.01 (d, *J* = 8.1 Hz, 1 H), 6.84–6.82 (m, 2 H), 4.98–4.88 (m, 3 H), 4.69 (t, *J* = 10.8 Hz, 2 H), 4.54–4.51 (m,, 2 H), 4.32 (d, *J* = 10.4 Hz, 1 H), 3.96–3.86 (m, 3 H), 3.84–3.79 (m, 2 H), 3.78–3.75 (m, 1 H), 3.65– 3.62 (m, 1 H), 2.37 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.7, 138.5, 138.4, 137.9, 134.9, 129.1, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 127.4, 126.3, 124.1, 123.4, 120.3, 120.2, 113.7, 110.9, 86.7, 82.8, 79.3, 78.5, 76.6, 75.7, 75.2, 74.6, 73.4, 69.2, 21.4. HRMS (ESI) *m*/*z*: [M + NH₄]⁺ Calcd for C₄₃H₄₇N₂O₅ 671.3479; Found 671.3478.

3-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)-5-methoxy-1H-indole (**3e**). Synthesized according to the general procedure on a 1 mmol scale to afford **3e** (495 mg, yield 74%, β only); eluent, hexane– EtOAc (6:1). Colorless jelly. IR (neat): 3455, 3017, 2945, 1765, 1601, 1490, 1064, 765, 665 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 8.04 (s, 1 H), 7.32–7.23 (m, 19 H), 7.20–7.14 (m, 3 H), 6.86- 6.83 (m, 2 H), 4.98–4.89 (m, 3 H), 4.73–4.62 (m, 2 H), 4.54–4.49 (m, 2 H), 4.35 (d, *J* = 10.4 Hz, 1 H), 3.95 (t, *J* = 8.7 Hz, 1 H), 3.88–3.37 (m, 5 H), 3.64 (s, 3 H), 3.62–3.59 (m, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ154.1, 138.7, 138.4, 138.0, 131.7, 128.5, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 126.6, 123.9, 113.9, 112.9, 112.1, 102.1, 91.3, 86.8, 82.6, 79.2, 78.4, 77.3, 76.6, 75.8, 75.2, 74.7, 73.4, 69.2, 55.7. HRMS (ESI) *m*/*z*: [M + NH₄]⁺ Calcd for C₄₃H₄₇N₂O₆ 687.3429; Found 687.3426.

3-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)-5-methylcarboxylate-1H-indole (**3f**). Synthesized according to the general procedure on a 1 mmol scale to afford **3f** (495 mg, yield 71%, β only); eluent, hexane–EtOAc (8:1). Colorless jelly. IR (neat): 3466, 3017, 2986, 1750, 1601, 1456, 1255, 1064, 765, 635 cm–1; ¹H NMR (400 MHz, CDCl₃): δ 8.58 (s, 1 H), 8.52 (s, 1 H), 7.88 (dd, *J* = 1.6, 8.7 Hz, 1 H), 7.32–7.31 (m, 10 H), 7.25–7.20 (m, 6 H), 7.11–7.04 (m, 4 H), 6.78 (dd, *J* = 1.3, 7.6 Hz, 2 H), 4.93 (m, 3 H), 4.66 (dd, *J* = 10.7 Hz, 2 H), 4.54 (dd, *J* = 12.6 Hz, 2 H), 4.35 (d, *J* = 10.6 Hz, 1 H), 3.91–3.85 (m, 2 H), 3.84 (s, 3 H), 3.83–3.76 (m, 3 H), 3.69–3.65 (m, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 168.1, 139.1, 138.6, 138.3, 138.2, 137.8, 128.5, 128.4, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 125.7, 124.8, 123.7, 123.2, 121.9, 115.4, 111.2, 86.9, 82.9, 79.4, 78.6, 76.1, 75.8, 75.2, 74.7, 73.5, 69.4, 51.8. HRMS (ESI) *m/z*: [M + NH₄]⁺ Calcd for C₄₄H₄₇N₂O₇ 715.3378; Found 715.3378.

 $3-(2,3,4,6-Tetra-O-benzyl-\beta-D-glucopyranosyl)-1,2-dimethylin$ dole (3g). Synthesized according to the general procedure on a 1 mmol scale to afford 3g (554 mg, yield 83%, β only); eluent, hexane-EtOAc (9:1). Brown oil. IR (neat): 3466, 3017, 2920, 1727, 1601, 1456, 1216, 1064, 765, 732, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 7.9 Hz, 1 H), 7.35–7.22 (m, 16 H), 7.18–7.08 (m, 4 H), 7.05–7.01 (m, 1 H), 6.76–6.75 (m, 2 H), 4.96 (d, J = 10.9 Hz, 1 H), 4.91(dd, J = 8.3, 10.8 Hz, 2 H), 4.72 (d, J = 10.6 Hz, 1 H), 4.66 (d, J = 12.2 Hz, 1 H), 4.56–4.51 (m, 2 H), 4.32 (d, J = 10.6 Hz, 1 H), 3.98-3.92 (m, 2 H), 3.89 (dd, J = 3.6, 10.9 Hz, 1 H), 3.84-3.76 (m, 2 H), 3.70 (d, J = 10.5 Hz, 1 H), 3.63–3.62 (m, 1 H), 3.61 (s, 3 H), 2.30 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.9, 138.7, 138.5, 138.2, 137, 134.9, 128.5, 128.4, 128.3, 128.1, 128.0, 127.8, 127.7, 127.6, 127.4, 127.3, 120.9, 120.1, 119.3, 108.9, 108.7, 869, 82.7, 79.4, 78.5, 76.1, 75.7, 75.2, 74.7, 73.4, 69.3, 29.4, 10.9. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₄₄H₄₆NO₅ 668.3371; Found 668.3369.

3-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)-1-methyl-2-phenylindole (**3h**). Synthesized according to the general procedure on a 1 mmol scale to afford **3h** (605 mg, yield 83%, β only); eluent, hexane– EtOAc (9:1). Brown oil. IR (neat): 3455, 3017, 2945, 1750, 1612, 1456, 1256, 1086, 906, 832, 765, 668 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 7.9 Hz, 1 H,), 7.41–7.39 (m, 5 H), 7.35–7.23 (m, 17 H), 7.14–7.05 (m, 4 H), 6.79 (d, J = 7.2 Hz, 2 H), 4.93–4.83 (m, 3 H), 4.70–4.63 (m, 2 H), 4.47 (d, J = 11.5 Hz, 1 H), 4.42 (d, J = 9.6 Hz, 1 H), 4.36 (d, J = 11.8 Hz, 1 H), 4.13 (t, J = 8.4 Hz, 1 H), 3.95–3.90 (m, 2 H), 3.86–3.69 (m, 3 H), 3.58 (s, 1 H), 3.49–3.46 (m, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 140.1, 138.9, 138.8, 138.6, 138.3, 137.7, 131.2, 131.1, 128.4, 128.3, 128.2, 127.9, 127.8, 127.6, 127.5, 127.4, 127.3, 126.3, 122.1, 120.9, 119.9, 110.6, 109.6, 86.9, 82.3, 79.2, 78.5, 75.8, 75.7, 75.6, 75.1, 74.6, 73.4, 69.3, 30.9. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₄₉H₄₈NO₅ 730.3527; Found 730.3530.

3-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)-1-methylindole (**3***i*). Synthesized according to the general procedure on a 1 mmol scale to afford **3***i* (483 mg, yield 74%, β only); eluent, hexane–EtOAc (9:1). Brown oil. IR (neat): 3466, 3017, 2920, 1727, 1601, 1456, 1216, 1064, 765, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 7.8 Hz, 1 H), 7.35–7.21 (m, 17 H), 7.14–7.08 (m, 4 H), 7.06–7.05 (m, 1 H), 6.79–6.77 (m, 2 H), 4.96 (d, *J* = 10.9 Hz, 1 H), 4.90 (dd, *J* = 8.3, 10.9 Hz, 2 H), 4.69 (d, *J* = 10.6 Hz, 1 H), 4.64 (d, *J* = 12.1 Hz, 1 H), 4.54–4.51 (m, 2 H), 4.34 (d, *J* = 10.4 Hz, 1 H), 3.92–3.76 (m, 6 H), 3.73 (s, 3 H), 3.64–3.61 (m, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): *δ*138.8, 138.5, 138.4, 138.1, 137.4, 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 126.7, 121.9, 120.7, 119.4, 112.7, 109.4, 86.9, 83.1, 79.4, 78.5, 76.4, 75.7, 75.2, 74.7, 73.4, 69.3, 32.8. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₄₃H₄₄NO₅ 654.3214; Found 654.3215.

 $3-(2,3,4,6-Tetra-O-benzyl-\beta-D-galactopyranosyl)-2-methyl-1H$ indole (3j). Synthesized according to the general procedure on a 1 mmol scale to afford 3j (561 mg, yield 86%, β only); eluent, hexane-EtOAc (6:1). Colorless jelly. IR (neat): 3455, 3115, 2940, 1765, 1636, 1456, 1064, 765, 665 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, I = 7.9 Hz, 1 H), 7.74 (brs, 1 H), 7.46–7.44 (m, 2 H), 7.39–7.35 (m, 4 H), 7.33-7.21 (m, 10 H), 7.13-7.06 (m, 4 H), 6.97-6.94 (m, 1 H), 6.86–6.84 (m, 2 H), 5.13 (d, J = 11.5 Hz, 1 H), 4.79 (ABq, J = 12.0 Hz, 2 H), 4.67 (d,, J = 11.4 Hz, 1 H), 4.52 (d, J = 9.4 Hz, 1 H), 4.44 (ABq, J = 12.0 Hz, 2 H), 4.41–4.36 (m, 2 H), 4.15 (d, J = 2.3Hz, 1 H), 3.79-3.70 (m, 4 H), 3.65-3.61 (m, 1 H), 2.34 (s, 3 H). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ 139.4, 138.9, 138.5, 138.1, 137.4, 135.5, 132.9, 128.4, 128.3, 128.2, 128.1, 127.9, 127.7, 127.5, 127.4, 127.3, 127.2, 121.3, 121.2, 120.5, 119.6, 110.5, 110.1, 84.4, 79.4, 76.6, 75.6, 75.1, 74.5, 74.4, 73.5, 72.5, 68.8, 12.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₄₃H₄₄NO₅ 654.3214; Found 654.3212.

3- $(2,3,4,6-Tetra-O-benzyl-\beta-D-galactopyranosyl)-2-phenyl-1H$ indole (3k). Synthesized according to the general procedure on a 1 mmol scale to afford 3k (622 mg, yield 87%, β only); eluent, hexane-EtOAc (7:1). Colorless jelly. IR (neat): 3455, 3017, 2955, 1765, 1640, 1456, 1256, 1086, 740, 665 cm. ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 7.9 Hz, 1 H,), 8.03 (brs, 1 H), 7.65–7.63 (m, 2 H), 7.47–7.45 (m, 2 H), 7.38–7.23 (m, 17 H), 7.15–7.12 (m, 1 H), 7.07–6.95 (m, 4 H), 6.85–6.83 (m, 2 H), 5.13 (d, J = 11.2 Hz, 1 H), 4.82–4.73 (m, 2 H), 4.74-4.65 (m, 3 H), 4.44-4.36 (m, 3 H), 4.16 (brs, 1 H), 3.98 (d, J = 10.8 Hz, 1 H), 3.73-3.66 (m, 3 H), 3.57-3.55 (m, 1 H). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ 139.5, 138.9, 138.4, 138.1, 136.7, 136.2, 132.6, 129.1, 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.6, 127.5, 127.4, 127.3, 127.2, 122.5, 120.1, 111.3, 110.8, 84.6, 79.1, 76.4, 75.3, 75.1, 74.7, 74.4, 73.5, 72.5, 68.8. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₄₈H₄₆NO₅ 716.3371; Found 716.3366.

3-(2,3,4,6-Tetra-O-benzyl-β-D-galactopyranosyl)-2-ethylcarboxylate-1H-indole (3l). Synthesized according to the general procedure on a 1 mmol scale to afford 3l (575 mg, yield 81%, β only); eluent, hexane—EtOAc (7:1). Colorless jelly. IR (neat): 3465, 3017, 2945, 1795, 1601, 1490, 1286, 1085, 765, 665 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.74 (s, 1 H), 8.14 (d, J = 8.2 Hz, 1 H), 7.46–7.44 (m, 2 H), 7.39–7.36 (m, 4 H), 7.33–7.25 (m, 11 H), 7.09–7.07 (m, 3 H), 6.96 (t, J = 7.5 Hz, 1 H), 6.85–6.84 (m, 2 H), 5.46 (d, J = 9.3 Hz, 1 H), 5.14 (d, J = 11.4 Hz, 1 H), 4.80 (d, J = 11.9 Hz, 2 H), 4.68 (d, J =11.3 Hz, 1 H), 4.47 (dd, J = 11.9 Hz, 2 H), 4.41 (d, J = 10.8 Hz, 1 H), 4.38–4.29 (m, 3 H), 4.18 (d, J = 2.2 Hz, 1 H), 3.83–3.72 (m, 4 H), 3.63 (dd, J = 5.1, 8.6 Hz, 1 H), 1.33 (t, J = 7.1 Hz, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.8, 139.4, 138.8, 138.5, 137.9, 135.9, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 127.1, 125.6, 124.2, 123.9, 121.1, 120.5, 111.5, 84.3, 79.5, 74.7, 74.6, 74.5, 73.5, 72.5, 68.7, 60.9, 14.4. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₄;H₄₆NO₇ 712.3269; Found 712.3270.

3-(2,3,4,6-Tetra-O-benzyl-β-D-galactopyranosyl)-2-methyl-5-methoxy-1H-indole (**3m**). Synthesized according to the general procedure on a 1 mmol scale to afford **3m** (566 mg, yield 83%, β only); eluent, hexane–EtOAc (6:1). Colorless jelly. IR (neat): 3465, 3017, 2945, 1785, 1601, 1490, 1085, 765, 675 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 7.63 (s, 1 H), 7.40–7.37 (m, 3 H), 7.32–7.24 (m, 14 H), 7.14–7.06 (m, 3 H), 6.89–6.88 (m, 1 H), 6.69–6.67 (m, 1 H), 5.08 (d, *J* = 10.8 Hz, 1 H), 4.82 (brs, 2 H), 4.63 (d, *J* = 10.7 Hz, 1 H), 4.49–4.46 (m, 3 H), 4.39–4.34 (m, 2 H), 4.17 (brs, 1 H), 3.83–3.72 (m, 4 H), 3.65–3.64 (m, 1 H), 3.35 (brs, 3 H), 2.31 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.9, 139.3, 138.9, 138.5, 137.9, 133.5, 130.4, 128.5, 128.4, 128.2, 128.1, 128.0, 127.8, 127.5, 127.3, 111.5, 110.8, 110.2, 101.8, 84.3, 78.8, 76.4, 75.7, 75.2, 74.9, 74.8, 74.7, 73.6, 72.6, 68.7, 55.2, 12.2. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₄₄H₄₆NO₆ 684.3320; Found 684.3318.

3-(2,3,4,6-Tetra-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside-2-methyl-1H-indole (**3n**). Synthesized according to the general procedure on a 1 mmol scale to afford 3n (868 mg, yield 80%, β only); eluent, hexane-EtOAc (4:1). Colorless jelly. IR (neat): 3465, 3017, 2945, 1795, 1601, 1490, 1157, 1250, 1286, 1085, 765, 665 cm $^{-1}$. $^1\mathrm{H}$ NMR (400 MHz, CDCl₃): δ 7.79 (s, 1 H), 7.71 (d, J = 7.8 Hz, 1 H), 7.35-7.27 (m, 28 H), 7.24-7.07 (m, 7 H), 6.98 (t, J = 7.5 Hz, 1 H), 6.82 (d, J = 6.1 Hz, 2 H), 5.14 (d, J = 10.8 Hz, 1 H), 4.99 (d, J = 11.6 Hz, 1 H), 4.84 (quart, 3 H), 4.73 (brs, 3 H), 4.63–4.61 (m, 2 H), 4.57 (d, I = 11.2 Hz, 1 H), 4.50 (d, J = 9.7 Hz, 1 H), 4.41-4.37 (m, 3 H), 4.27-4.25 (m, 2 H),3.99 (dd, J = 3.5, 11.3 Hz, 1 H), 3.95 (d, J = 2.8 Hz, 1 H), 3.88-3.83 (m, 2 H), 3.75-3.69 (m, 3 H), 3.59-3.41 (m, 5 H), 2.33 (s, 3 H). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ 138.8, 138.7, 138.5, 138.2, 135.5, 133.1, 128.4, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6, 127.5, 127.4, 127.3, 127.2, 127.1, 121.2, 120.2, 119.6, 110.2, 109.8, 102.8, 85.1, 82.7, 81.9, 80.2, 79.8, 75.8, 75.5, 75.4, 74.9, 74.8, 73.9, 73.5, 73.1, 72.7, 68.5, 68.2, 12.3. HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₇₀H₇₅N₂O₁₀ 1103.5416; Found 1103.5359.

3-(2,3,4,6-Tetra-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside-2-phenyl-1H-indole (**30**). Synthesized according to the general procedure on a 1 mmol scale to afford **30** (940 mg, yield 82%, β only); eluent, hexane-EtOAc (4:1). Colorless jelly. IR (neat): 3465, 3017, 2945, 1795, 1601, 1490, 1157, 1250, 1286, 1085, 800, 770, 740, 665 cm^{-1.} ¹H NMR (400 MHz, $CDCl_3$: δ 8.09 (s, 1 H), 7.83 (d, J = 8.1 Hz, 1 H), 7.68 (d, J = 7.3 Hz, 2 H), 7.35-7.21 (m, 34 H), 7.12-7.09 (m, 2 H), 7.05-7.01 (m, 3 H), 6.83 (d, J = 7.1 Hz, 2 H), 5.14 (d, J = 10.4 Hz, 1 H), 4.99 (d, J = 11.4 Hz, 1 H), 4.83–4.78 (m, 2 H), 4.72 (t, J = 10.8 Hz, 4 H), 4.62–4.56 (m, 3 H), 4.44-4.26 (m, 5 H), 4.14 (t, J = 9.7 Hz, 1 H), 3.99-3.94 (m, 3 H), 3.82–3.79 (m, 1H), 3.72 (t, J = 8.9 Hz, 1 H), 3.65–3.58 (m, 2 H), 3.48-3.42 (m, 4 H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 139.2, 138.9, 138.7, 138.4, 138.3, 137.1, 129.1, 128.8, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.9, 127.8, 127.7, 127.5, 127.4, 127.4, 127.3, 127.2, 127.0, 122.5, 120.1, 110.8, 102.8, 85.2, 82.6, 80.3, 79.7, 76.7, 75.6, 75.4, 74.9, 74.8, 73.9, 73.5, 73.1, 73.1, 72.8, 68.2. HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for $C_{75}H_{77}N_2O_{10}$ 1165.5573; Found 1165.5510.

3-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-2-methyl-1H-indole (**3p**). Synthesized according to the general procedure on a 1 mmol scale to afford **3p** (350 mg, yield 76%, β only); eluent, hexane–EtOAc (5:1). Colorless jelly. IR (neat): 33375, 3017, 1795, 1490, 1372, 1250, 1085, 924, 770, 665 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.94 (s, 1 H), 7.66 (dd, J = 2.4, 6.3 Hz, 1 H), 7.23–7.21 (m,1 H), 7.11–7.05 (m, 2 H), 5.63 (t, J = 9.9 Hz, 1 H), 5.57 (dd, J = 0.8, 3.3 Hz, 1 H), 5.23 (dd, J = 3.3, 10.2 Hz, 1 H), 4.73 (d, J = 9.8 Hz, 1 H), 4.23 (dd, J = 6.9, 11.1 Hz, 1 H), 4.15 (dd, J = 6.4, 11.3 Hz, 1 H), 4.09–4.06 (m, 1 H), 2.47 (s, 3 H), 2.26 (s, 3 H), 2.03 (s, 3 H), 1.99 (s, 3 H), 1.65 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.5, 170.4, 170.3, 169.1, 135.1, 133.5, 127.3, 121.4, 119.8, 118.5, 110.4, 107.3, 74.6, 74.4, 72.5, 69.5, 68.1, 61.8, 20.8, 20.7, 20.6, 20.4, 12.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₈NO₉ 462.1759; Found 462.1759.

3-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)- 2-phenyl-1Hindole (3q). Synthesized according to the general procedure on a 1 mmol scale to afford 3q (407 mg, yield 78%, β only); eluent, hexane– EtOAc (5:1). Colorless jelly. IR (neat): 33375, 3022, 1746, 1452, 1372, 1220, 1051, 924, 766, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.23 (s, 1 H), 7.93 (d, *J* = 7.5 Hz, 1 H), 7.63–7.61 (m, 2 H), 7.52–7.42 (m, 3 H), 7.32 (dd, *J* = 1.6, 7.2 Hz, 1 H), 7.22–7.14 (m, 2 H), 5.89 (t, *J* = 9.7 Hz, 1 H), 5.54 (d, *J* = 3.5 Hz, 1 H), 5.20 (dd, *J* = 3.3, 10.1 Hz, 1 H), 4.87 (d, *J* = 9.9 Hz, 1 H), 4.19 (dd, *J* = 7.2, 11.3 Hz, 1 H), 4.11 (dd, *J* = 6.2, 11.3 Hz, 1 H), 4.03–3.99 (m, 1 H), 2.28 (s, 3 H), 1.99 (s, 3 H), 1.98 (s, 3 H), 1.69 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.5, 170.4, 170.3, 168.6, 137.3, 135.9, 132.3, 128.9, 128.7, 128.5, 127.2, 122.8, 120.4, 111.1, 108.1, 74.7, 74.2, 72.7, 68.9, 68.1, 61.8, 20.8, 20.7, 20.6, 20.5. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₈H₃₀NO₉ 524.1915; Found 524.1910.

3-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-2-methyl-1H-indole (3r). Synthesized according to the general procedure on a 1 mmol scale to afford 3r (341 mg, yield 74%, β only); eluent, hexane– EtOAc (4:1). Colorless jelly. IR (neat): 33375, 3022, 1750, 1746, 1452, 1372, 1220, 1051, 924, 766, 669 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 7.91 (s, 1 H), 7.62–7.61 (m, 1 H), 7.22–7.21 (m, 1 H), 7.09–7.07 (m, 2 H), 5.39–5.32 (m, 3 H), 4.78–4.77 (m, 1 H), 4.29– 4.20 (m, 2 H), 3.87–3.85 (m, 1 H), 2.46 (s, 3 H), 2.09 (s, 3 H), 2.08 (s, 3 H), 2.00 (s, 3 H), 1.64 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.8, 170.5, 169.6, 168.9, 135.1, 133.4, 127.2, 121.5, 119.9, 118.6, 110.3, 106.8, 76.1, 74.5, 74.4, 72.1, 68.7, 62.4, 20.8, 20.7, 20.3, 12.4. HRMS (ESI) *m*/*z*: $[M + H]^+$ Calcd for C₂₃H₂₈NO₉ 462.1759; Found 462.1755.

3-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-2-phenyl-1H-indole (**35**). Synthesized according to the general procedure on a 1 mmol scale to afford **3s** (402 mg, yield 77%, β only); eluent, hexane–EtOAc (4:1). Colorless jelly. IR (neat): 33375, 3022, 1746, 1452, 1372, 1220, 1051, 924, 766, 669 cm⁻¹;. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (s, 1 H), 7.85 (d, *J* = 7.4 Hz, 1 H), 7.62–7.49 (m, 2 H), 7.52–7.43 (m, 3 H), 7.32–7.29 (m, 1 H), 7.22–7.14 (m, 2 H), 5.73–5.68 (m, 1 H), 5.37–5.31 (m, 2 H), 4.88 (d, *J* = 9.9 Hz, 1 H), 4.23 (dd, *J* = 4.3, 12.2 Hz, 1 H), 4.16 (dd, *J* = 2.4, 12.3 Hz, 1 H), 3.81–3.77 (m, 1 H), 2.07 (s, 3 H0, 2.05 (S, 3 H), 1.99 (S, 3 H), 1.69 (S, 3 H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.8, 170.6, 169.6, 168.6, 137.6, 135.9, 132.2, 129.1, 128.7, 128.6, 126.8, 122.9, 120.5, 111.1, 107.5, 75.7, 74.9, 74.4, 71.3, 68.7, 62.4, 20.8, 20.7, 20.6, 20.4. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₈H₃₀NO₉ 524.1915; Found 524.1902.

3-(2,3,4-Tri-O-acetyl-α/β-L-arabinopyranosyl)-2-methyl-1H-indole (**3t**). Synthesized according to the general procedure on a 1 mmol scale to afford **3t** (248 mg, yield 64%, α :β = 1:7); eluent, hexane–EtOAc (6:1). Colorless jelly. IR (neat): 3340, 1746, 1452, 1372, 1220, 1051, 924, 766, 665 cm⁻¹. ¹H NMR (400 MHz, CDCl3): δ 7.93 (s, 1 H), 7.72- 7.67 (m, 1 H), 7.22–7.19 (m, 1H), 7.10–7.05 (m, 2 H), 5.68 (t, *J* = 9.8 Hz, 1 H), 5.43- 5.40 (m, 1 H), 5.23 (dd, *J* = 3.4, 10.1 Hz, 1H), 4.62 (d, *J* = 9.7 Hz, 1 H), 4.17 (dd, *J* = 2.2, 13.2 Hz, 1 H), 3.8 (d, *J* = 13.2 Hz, 1 H), 2.46 (s, 3 H), 2.27 (s, 3 H), 2.01 (s, 3 H), 1.65 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.5, 170.4, 169.1, 135.1, 133.5, 127.3, 121.5, 121.4, 119.8, 118.9, 118.6, 110.5, 110.3, 107.5, 75.1, 72.2, 69.7, 69.4, 68.2, 21.2, 20.8, 20.4, 12.1. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₀H₂₄NO₇ 390.1547; Found 390.1550.

3-(2,3,4-Tri-O-acetyl-α/β-ι-arabinopyranosyl)-2-phenyl-1H-indole (**3u**). Synthesized according to the general procedure on a 1 mmol scale to afford **3u** (297 mg, yield 66%, α :β = 1:6); eluent, hexane–EtOAc (6:1). Colorless jelly. IR (neat): 3340, 1746, 1452, 1372, 1220, 1051, 924, 766, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, 1 H), 7.96 (d, *J* = 7.3 Hz, 1 H), 7.60–7.41 (m, 5 H), 7.33–7.28 (m, 1 H), 7.22-7.14 (m, 2 H), 5.97 (t, *J* = 9.7 Hz, 1 H), 5.41-5.37 (m, 1 H), 5.20 (dd, *J* = 3.4, 10.1 Hz, 1H), 4.08 (dd, *J* = 2.4, 13.2 Hz, 1 H), 3.7 (d, *J* = 13.2 Hz, 1 H), 2.30 (s, 3 H), 2.01 (s, 3 H), 1.71 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.5, 170.4, 168.7, 137.3, 136.2, 135.9, 132.3, 131.9, 128.9, 128.8, 128.6, 128.4,, 122.7, 120.4, 120.1, 111.1, 108.3, 75.1, 72.4, 69.4, 69.2, 67.9, 63.7, 21.2, 20.9, pubs.acs.org/joc

20.8, 20.5. HRMS (ESI) $m/z{\rm :}~[M$ + H]^+ Calcd for $C_{25}H_{26}NO_7$ 452.1704; Found 452.1704.

3-(2,3,4-Tri-O-benzyl- α/β - ι -arabinopyranosyl)-2-phenyl-1H-indole (3v). Synthesized according to the general procedure on a 1 mmol scale to afford 3v (404 mg, yield 68%, $\alpha:\beta = 1:4$); eluent, hexane-EtOAc (7:1). Colorless jelly. IR (neat): 3465, 2945, 1795, 1601, 1490, 1286, 1085, 765, 665 cm⁻¹. ¹H NMR (400 MHz, CDCl3): δ 8.13 (s, 1 H), 7.96 (d, J = 7.9 Hz, 1 H), 7.60–7.57 (m, 1H), 7.44-7.41 (m, 1 H), 7.35-7.29 (m, 9 H), 7.28-7.23 (m, 5 H), 7.14-7.10 (m, 2 H), 7.04-7.02 (m, 2 H), 5.30 (d, J = 8.1 Hz, 1 H), 4.75 (dd, J = 4.8, 8.1 Hz, 1 H), 4.64- 4.59 (m, 2 H), 4.53-4.52 (m, 2 H), 4.45 (dd, J = 5.1, 9.8 Hz, 1 H), 4.34 (brs, 1 H), 4.31 (t, J = 4.7 Hz, 1H), 4.18–4.08 (m, 1 H), 3.63 (d, J = 5.2 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.5, 138.3, 138.2, 137.9, 137.5, 136.4, 132.2, 128.9, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.1, 123.5, 122.6, 122.4, 120.9, 120.2, 119.8, 110.9, 110.7, 88.2, 86.4, 86.2, 85.3, 81.5, 80.8, 78.2, 73.4, 73.3, 72.5, 72.2, 72.1, 71.9, 70.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C40H38NO4 596.2795; Found 596.2797.

3-(2,3,4-*Tri-O-acetyl-α-L-rhamnopyranosyl)-2-phenyl-1H-indole* (**3***w*). Synthesized according to the general procedure on a 1 mmol scale to afford **3***w* (344 mg, yield 74%, *α* only); eluent, hexane–EtOAc (4:1). Colorless jelly. IR (neat): 3340, 1746, 1452, 1372, 1220, 1051, 924, 766, 669 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): *δ* 8.20 (s, 1 H), 8.05 (dd, *J* = 1.2, 7.3 Hz, 1 H), 7.49–7.39 (m, 5 H), 7.27–7.26 (m, 1 H), 7.17–7.09 (m, 2 H), 5.57 (dd, *J* = 1.3, 3.3 Hz, 1 H), 5.29–5.19 (m, 2 H), 4.99 (brs, 1 H), 3.62–3.55 (m, 1 H), 2.06 (s, 3 H), 1.98 (s, 3 H), 1.90 (s, 3 H), 1.30 (d, *J* = 6.2 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): *δ* 170.4, 170.2, 135.9, 135.3, 132.3, 128.9, 128.8, 128.5, 127.5, 122.9, 122.5, 119.8, 110.7, 109.1, 74.7, 74.5, 72.9, 72.2, 71.2, 20.9, 20.8, 20.7, 17.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₂₈NO₇ 466.1860; Found 466.1861.

3-(3-O-Benzvl-4-O-benzovl-2-O-(2-pyridinecarbonyl)- α -L-rhamnopyranoside)-2-methyl-1H-indole (3x). Synthesized according to the general procedure on a 1 mmol scale to afford 3x (443 mg, yield 77%, α only); eluent, hexane–EtOAc (7:1). Colorless jelly. IR (neat): 3390, 3018, 2924, 2403, 1724, 1590, 1456, 1357, 1268, 1217, 1178, 1084, 1026, 764, 668, 623 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.48 (dd, J = 0.8, 4.7 Hz, 1 H), 8.09 (d, J = 8.0 Hz, 1 H), 8.05 (s, 1 H),8.01 (dd, J = 1.4, 8.6 Hz, 1 H), 7.94 (d, J = 7.8 Hz, 1 H), 7.72 (td, 1 H, J = 1.7, 7.6 Hz), 7.61-7.57 (m, 1 H), 7.48-7.44 (m, 2 H), 7.18-7.09 (m, 7 H), 7.09–6.97 (m, 2 H), 5.50–5.45 (m, 2 H), 4.73 (d, J = 12.4 Hz, 1 H), 4.56 (dd, J = 2.3, 4.0 Hz,1 H), 4.51 (d, J = 12.4 Hz, 1 H), 3.91 (dd, J = 4.1, 9.6 Hz, 1 H), 3.62-3.55 (m, 1 H), 2.51 (s, 3 H), 1.18 (d, J = 6.3 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 165.7, 160.3, 148.6, 137.5, 136.5, 134.9, 133.9, 133.2, 129.9, 129.8, 128.4, 128.2, 127.8, 127.7, 127.1, 122.9, 120.9, 120.7, 120.5, 119.8, 111.8, 110.1, 97.2, 76.6, 75.7, 72.9, 71.1, 69.8, 17.6, 13.5. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{35}H_{33}N_2O_6$ 577.2333; Found 577.2332.

3-(2,3, 5-Tri-O-benzyl-β-D-ribofuranose)-2-methyl-1H-indole (**3y**). Synthesized according to the general procedure on a 1 mmol scale to afford **3y** (453 mg, yield 85%, β only); eluent, hexane–EtOAc (7:1). Colorless jelly. IR (neat): 3466, 3017, 2923, 1617, 1457, 1216, 1079, 762, 700, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1 H), 7.63 (d, *J* = 7.8 Hz, 1 H), 7.48 (dd, *J* = 1.5, 8.2 Hz, 2 H), 7.36–7.21 (m, 9 H), 7.15–6.99 (m, 5 H), 6.86–6.82 (m, 2 H), 5.00 (d, *J* = 9.7 Hz, 1 H), 4.94 (dd, *J* = 12.1 Hz, 2 H), 4.60 (q, *J* = 12.1 Hz, 2 H), 4.29–4.27 (m, 1 H), 4.06 (d, *J* = 11.8 Hz, 1 H), 3.99–3.77 (m, 2 H), 3.93 (d, *J* = 11.9 Hz, 1 H), 3.76 (d, *J* = 2.4, 9.8 Hz, 1 H), 3.73–3.69 (m, 1 H), 2.34 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 139.6, 138.5, 138.4, 135.5, 133.6, 128.5, 128.3, 128.1, 127.9, 127.8, 127.7, 127.4, 127.3, 127.2, 121.1, 119.8, 119.4, 110.3, 109.6, 78.8, 76.3, 75.2, 74.1, 71.8, 71.4, 71.1, 64.6, 12.2. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₃₃H₃₆NO₄ 534.2639; Found 534.2636.

3-(2,3,5,6-Di-O-isopropylidene- α/β -D-manofuranose)-2-methyl-1H-indole (**3z**). Synthesized according to the general procedure on a 1 mmol scale to afford **3z** (253 mg, yield 68%, $\alpha:\beta$ = 1:4); eluent, hexane-EtOAc (5:1). Colorless jelly. IR (neat): 3421, 3320, 2930, 1612, 1511, 1456, 1379, 1251, 1084, 762, 700, 669 cm⁻¹; ¹H NMR

(400 MHz, CDCl₃): δ 7.49 (d, J = 7.8 Hz, 1 H), 713- 7.07 (m, 3 H), 6.27 (brs, 1 H), 6.01 (d, J = 1.8 Hz, 1 H), 5.47 (dd, J = 1.9, 5.8 Hz, 1 H), 5.22–5.20 (m, 1 H), 4.48- 4.43 (m, 1 H), 4.35 (dd, J = 3.8, 7.5 Hz, 1 H), 4.08- 4.04 (m, 1 H), 3.97 (dd, J = 4.5, 8.7 Hz, 1 H), 2.46 (s, 3 H), 1.62 (s, 3 H), 1.41 (s, 6 H), 1.37 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 137.2, 135.7, 135.2, 133.4, 130.3, 129.3, 121.3, 120.3, 120.2, 119.7, 119.2, 119.1, 117.5, 113.7, 112.9, 109.7, 109.4, 108.2, 102.8, 99.8, 91.5, 86.7, 84.8, 84.3, 83.1, 81.4, 80.4, 80.3, 74.2, 73.5, 66.7, 65.6, 26.9, 26.7, 26.6, 26.5, 26.0, 25.3, 25.2, 24.8, 24.6, 13.7, 13.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₈NO₅ 374.1962; Found 374.1974.

3-(2,3,5,6-Di-O-isopropylidene- α/β -D-manofuranose)-2-phenyl-1H-indole (3aa). Synthesized according to the general procedure on a 1 mmol scale to afford **3aa** (308 mg, yield 71%, $\alpha:\beta = 1:3$); eluent, hexane-EtOAc (4:1). Colorless jelly. IR (neat): 3421, 3320, 2930, 1612, 1511, 1456, 1379, 1251, 1084, 762, 700, 669 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$): δ 7.75 (d, J = 7.6 Hz, 1 H), 7.57–7.54 (m, 2 H), 7.46-7.38 (m, 3 H), 7.22-7.05 (m, 3 H), 6.55 (brs, 1 H), 6.03 (d, J = 2.3 Hz, 1 H), 5.45 (dd, J = 2.4, 5.7 Hz, 1 H), 5.14 (dd, J = 3.4, 5.6 Hz, 1 H), 4.50–4.39 (m, 1 H), 4.07 (dd, J = 5.6, 8.9 Hz, 1 H), 3.90 (dd, J = 3.8, 8.5 Hz, 1 H), 1.47 (s, 3 H), 1.44 (s, 3 H), 1.37 (s, 6 H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃): δ 142.3, 138.8, 135.3, 134.2, 132.5, 132.4, 130.1, 129.3, 128.8, 128.5, 128.3, 127.8, 125.7, 122.3, 121.2, 120.7, 120.1, 119.9, 118.9, 113.7, 113.1, 110.6, 109.4, 108.4, 104.3, 99.5, 91.6, 86.9, 84.8, 83.8, 82.9, 81.4, 80.7, 80.3, 74.3, 73.6, 66.8, 65.8, 27.0, 26.6, 26.5, 26.1, 25.6, 25.3, 24.9, 24.5. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₆H₃₀NO₅ 436.2118; Found 436.2112.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c00698.

Copies of ¹H NMR spectra of 2-methylindole in the presence of and absence of $B(C_6F_5)_3$ and 1H, ¹³C{¹H}, and HRMS spectra of 1i, glycoside 3a-3z and 3aa (PDF)

FAIR data, including the primary NMR FID files, for compounds 1i, 3a-3z, and 3aa (ZIP)

AUTHOR INFORMATION

Corresponding Author

Pintu Kumar Mandal – Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; orcid.org/ 0000-0002-5813-9756; Email: pintuchem06@gmail.com, pk.mandal@cdri.res.in

Authors

- Atul Dubey Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
- Ashwani Tiwari Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.1c00698

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

A.D. thanks UGC, New Delhi and A.T. thanks DST-SERB, for providing a Research Fellowship. The author gratefully acknowledges financial support by DST-SERB (Scheme No. EMR/2017/001791), New Delhi, India, and SAIF Division of CSIR-CDRI for providing the spectroscopic and analytical data. CDRI communication no. 10252.

REFERENCES

pubs.acs.org/joc

(1) (a) Levy, D. E.; Tang, C. The Chemistry of C-Glycosides. Tetrahedron Org. Chem. Ser. **1995**, 13, 1–291. (b) Kobertz, W. R.; Bertozzi, C. R.; Bednarski, M. D. C-Glycosyl Aldehydes: Synthons for C-Linked Disaccharides. J. Org. Chem. **1996**, 61, 1894–1897. (c) Dondoni, A.; Zuurmond, H. M.; Boscarato, A. Synthesis of α -and β -D-(1–6)-C-Disaccharides by Wittig Olefination of Formyl C-Glycosides with Glycopyranose 6-Phosphoranes. J. Org. Chem. **1997**, 62, 8114–8124. (d) Nicotra, F. Synthesis of C-glycosides of biological interest. Top. Curr. Chem. **1997**, 187, 55–83. (e) Kaelin, D. E.; Lopez, O. D.; Martin, S. F. General Strategies for the Synthesis of the Major Classes of C-Aryl Glycosides. J. Am. Chem. Soc. **2001**, 123, 6937–6938.

(2) (a) Bokor, É.; Kun, S.; Goyard, D.; Tóth, M.; Praly, J. P.; Vidal, S.; Somsá, L. C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential. *Chem. Rev.* 2017, *117*, 1687–1764. (b) Yang, Y.; Yu, B. Recent Advances in the Chemical Synthesis of C-Glycosides. *Chem. Rev.* 2017, *117*, 12281–12356. (c) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Total Synthesis of Aryl C-Glycoside Natural Products: Strategies and Tactics. *Chem. Rev.* 2018, *118*, 1495–1598. (d) Liao, H.; Ma, J.; Yao, H.; Liu, X.-W. Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals. *Org. Biomol. Chem.* 2018, *16*, 1791–1806.

(3) (a) Lai, J. S.; Kool, E. T. Selective Pairing of Polyfluorinated DNA Bases. J. Am. Chem. Soc. 2004, 126, 3040–3041. (b) Matsuda, S.; Henry, A. A.; Schultz, P. G.; Romesberg, F. E. The Effect of Minor-Groove Hydrogen-Bond Acceptors and Donors on the Stability and Replication of Four Unnatural Base Pairs. J. Am. Chem. Soc. 2003, 125, 6134–6139. (c) Zhang, X.; Lee, I.; Berdis, A. J. Evaluating the contributions of desolvation and base-stacking during translesion DNA synthesis. Org. Biomol. Chem. 2004, 2, 1703–1711. (d) Barbaric, J.; Wanninger-Weiß, C.; Wagenknecht, H.-A. Indole in DNA: Comparison of a Nucleosidic with a Non-Nucleosidic DNA Base Substitution. Eur. J. Org. Chem. 2009, 3, 364–370.

(4) (a) Hofsteenge, J.; Mueller, D. R.; de Beer, T.; Loeffler, A.; Richter, W. J.; Vliegenthart, J. F. G. New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us. Biochemistry 1994, 33, 13524-13520. (b) Hofsteenge, J.; Blommers, M.; Hess, D.; Furmanek, A.; Miroshnichenko, O. The Four Terminal Components of the Complement System Are C-Mannosylated on Multiple Tryptophan Residues. J. Biol. Chem. 1999, 274, 32786-72794. (c) Doucey, M. A.; Hess, D.; Blommers, M. J. J.; Hofsteenge, J. Recombinant human interleukin-12 is the second example of a C-mannosylated protein. Glycobiology 1999, 9, 435-441. (d) Hartmann, S.; Hofsteenge, J. Properdin, the Positive Regulator of Complement, Is Highly C-Mannosylated. J. Biol. Chem. 2000, 275, 28569-28574. (e) Gonzalez de Peredo, A.; Klein, D.; Macek, M.; Hess, D.; Peter-Katalinic, J.; Hofsteenge, J. C-Mannosylation and O-Fucosylation of Thrombospondin Type 1 Repeats. Mol. Cell. Proteomics. 2002, 1, 11-18. (f) Furmanek, A.; Hess, D.; Rogniaux, H.; Hofsteenge, J. The WSAWS Motif Is C-Hexosylated in a Soluble Form of the Erythropoietin Receptor. Biochemistry 2003, 42, 8452-8458.

(5) (a) Zhang, X.; Urbanski, M.; Patel, M.; Cox, G. G.; Zeck, R. E.; Bian, H.; Conway, B. R.; Beavers, M. P.; Rybczynski, P. J.; Demarest, K. T. Indole-glucosides as novel sodium glucose co-transporter 2 (SGLT2) inhibitors. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 1696–1701. (b) Wu, Y.; Zhang, Z.-X.; Hu, H.; Li, D.; Qiu, G.; Hu, X.; He, X. Novel indole C-glycosides from Isatis indigotica and their potential cytotoxic activity. *Fitoterapia* **2011**, *82*, 288–292. (c) Yao, C.-H.; Song, J.-S.; Chen, C.-T.; Yeh, T.-K.; Hsieh, T.-C.; Wu, S.-H.; Huang, C.-Y.; Huang, Y.-L.; Wang, M.-H.; Liu, Y.-W.; Tsai, C.-H.; Kumar, C. R.; Lee, J.-C. Synthesis and biological evaluation of novel C- indolylxylosides as sodium-dependent glucose co-transporter 2 inhibitors. *Eur. J. Med. Chem.* **2012**, *55*, 32–38. (d) Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current anti-diabetic agents and their molecular targets: A review. *Eur. J. Med. Chem.* **2018**, *152*, 436–488.

(6) (a) De Clercq, E. C-Nucleosides To Be Revisited. J. Med. Chem. 2016, 59, 2301–2311. (b) Hofsteenge, J.; Müller, R. D.; de Beer, T.; Löffler, A.; Richter, W. J.; Vliegenthart, J. New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us. *Biochemistry* 1994, 33, 13524–13530. (c) de Beer, T.; Vliegenthart, J.; Löffler, A.; Hofsteenge, J. The Hexopyranosyl Residue That Is C-Glycosidically Linked to the Side Chain of Tryptophan-7 in Human RNase Us Is.alpha.-Mannopyranose. *Biochemistry* 1995, 34, 11785–11789. (d) Granier, T.; Vasella, A. Synthesis and Evaluation as Glycosidase Inhibitors of 1H-Imidazol-2-yl C-Glycopyranosides. *Helv. Chim. Acta* 1995, 78, 1738–1746. (e) Wamhoff, H.; Warnecke, H. Synthesis and cycloaddition reactions of [2-deoxy-3,5-bis[O-(ptoluoyl)]- α -Dribofuranosyl]ethyne. *ARKIVOC* 2005, 2, 95–100.

(7) (a) Furmanek, A.; Hofsteenge, J. Protein C-Mannosylation: Facts and Questions. Acta Biochim Polym. 2000, 47, 781–789.
(b) Ihara, Y.; Inai, Y.; Ikezaki, M.; Matsui, I. S.; Manabe, L. S.; Ito, Y. Glycoscience: Biology and Medicine; Springer: Tokyo, Japan, 2014.

(8) Kang, S. Y.; Song, K.-S.; Lee, J.; Lee, S.-H.; Lee, J. Synthesis of pyridazine and thiazole analogs as SGLT2 inhibitors. *Bioorg. Med. Chem.* **2010**, *18*, 6069–6079.

(9) (a) Guianvarc'h, D.; Fourrey, J.-L.; Tran Huu Dau, M.-E.; Guérineau, V.; Benhida, R. Stereocontrolled Synthesis of Heterocyclic C-Nucleosides. Protecting Group Effect and Molecular Modeling Studies. J. Org. Chem. 2002, 67, 3724–3732. (b) Liu, Y.-H.; Li, D.-L.; Li, Q.-H.; Yang, J.-F.; Lu, L.-D. Convenient synthesis of [3R- $(3\alpha,4\beta,5\alpha,6\beta)$]-2-[7-chloro-1-(4-ethylbenzyl)-5-methyl-1H-indol-3yl]-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol. *Monatsh. Chem.* 2010, 141, 913–916.

(10) (a) Manabe, S.; Ito, Y. Total Synthesis of Novel Subclass of Glyco-amino Acid Structure Motif: C2- α -l-C-Mannosylpyranosyl-l-tryptophan. J. Am. Chem. Soc. **1999**, 121, 9754–9755. (b) Manabe, S.; Marui, Y.; Ito, Y. Total Synthesis of Mannosyl Tryptophan and Its Derivatives. Chem. - Eur. J. **2003**, 9, 1435–1447.

(11) (a) Tolstikov, G. A.; Prokhorova, N. A.; Spivak, A. Y.; Khalilov, L. M.; Sultanmuratova, V. R. Zh. Org. Khim. 1991, 27, 2101-2106. (b) Mukherjee, D.; Sarkar, S. K.; Chowdhury, U. S.; Taneja, S. C. A rapid stereoselective C-glycosidation of indoles and pyrrole via indium trichloride promoted reactions of glycosyl halides. Tetrahedron Lett. 2007, 48, 663-667. (c) Wiebe, C.; de la Sotilla, S. F.; Opatz, T. Synthesis of 1,3- and 2,3-Diglycosylated Indoles as Potential Trisaccharide Mimetics. Synthesis 2012, 44, 1385-1397. (d) Lee, Y. J.; Baek, J. Y.; Lee, B.-Y.; Kang, S. S.; Park, H.-S.; Jeon, H. B.; Kim, K. S. 2'-Carboxybenzyl glycosides: glycosyl donors for C-glycosylation and conversion into other glycosyl donors. Carbohydr. Res. 2006, 341, 1708-1716. (e) Armitt, D. J.; Banwell, M. G.; Freeman, C.; Parish, C. R. C-Glycoside formation via Lewis acid promoted reaction of Oglycosylimidates with pyrroles. J. Chem. Soc., Perkin Trans. 2002, 1, 1743-1745. (f) Schmidt, R. R.; Effenberger, G. O-glycosyl imidates. 29. Reaction of O-(glucopyranosyl) imidates with electron-rich heterocycles. Synthesis of C-glucosides. Liebigs Ann. Chem. 1987, 825-831.

(12) (a) Liu, J.; Xiao, X.; Han, P.; Zhou, H.; Yin, Q.-S.; Sun, J.-S. Palladium-catalyzed C-glycosylation and annulation of o-alkynylanilines with 1-iodoglycals: convenient access to 3-indolyl-C-glycosides. *Org. Biomol. Chem.* **2020**, *18*, 8834–8838. (b) Zhang, F.; Mu, D.; Wang, L.; Du, P.; Han, F.; Zhao, Y. Synthesis of Substituted Monoand Diindole C Nucleoside Analogues from Sugar Terminal Alkynes by Sequential Sonogashira/Heteroannulation Reaction. *J. Org. Chem.* **2014**, *79*, 9490–9499. (c) Nishikawa, T.; Koide, Y.; Kanakubo, A.; Yoshimura, H.; Isobe, M. Synthesis of β -analogues of C-mannosyltryptophan, a novel C-glycosylamino acid found in proteins. *Org. Biomol. Chem.* **2006**, *4*, 1268–1277. (13) (a) Wang, Q.; An, S.; Deng, Z.; Zhu, W.; Huang, Z.; He, G.; Chen, G. Palladium-catalysed C-H glycosylation for synthesis of Caryl glycosides. *Nat. Catal.* **2019**, *2*, 793–800. (b) Wang, Q.; Fu, Y.; Zhu, W.; An, S.; Zhou, Q.; Zhu, S.-F.; He, G.; Liu, P.; Chen, G. Total Synthesis of C- α -Mannosyl Tryptophan via Palladium-Catalyzed C-H Glycosylation. *CCS. Chem.* **2020**, *2*, 1729–1736.

(14) Mishra, K. B.; Singh, A. K.; Kandasamy, J. Tris-(pentafluorophenyl)borane-Promoted Stereoselective Glycosylation with Glycosyl Trichloroacetimidates under Mild Conditions. *J. Org. Chem.* **2018**, *83*, 4204–4212.

(15) (a) Chandrasekhar, S.; Reddy, C. R.; Chandrashekar, G. Tris(pentafluorophenyl)borane catalyzed Ferrier azaglycosylation with sulfonamides and carbamates. *Tetrahedron Lett.* **2004**, *45*, 6481–6484. (b) Bender, T. A.; Dabrowski, J. A.; Zhong, H. Y.; Gagne, M. R. Diastereoselective $B(C_6F_5)_3$ -Catalyzed Reductive Carbocyclization of Unsaturated Carbohydrates. *Org. Lett.* **2016**, *18*, 4120–4123. (c) Adduci, L. L.; Bender, T. A.; Dabrowski, J. A.; Gagne, M. R. Chemoselective conversion of biologically sourced polyols into chiral synthons. *Nat. Chem.* **2015**, *7*, 576–581. (d) Adduci, L. L.; McLaughlin, M. P.; Bender, T. A.; Becker, J. J.; Gagne, M. R. Metal-Free Deoxygenation of Carbohydrates. *Angew. Chem., Int. Ed.* **2014**, *53*, 1646–1649.

(16) (a) Schmidt, R. R. Neue Methoden zur Glycosid- und Oligosaccharidsynthese-gibt es Alternativen zur Koenigs-Knorr-Methode. *Angew. Chem.* **1986**, *98*, 213–236. (b) Bucher, C.; Gilmour, R. Fluorine-Directed Glycosylation. *Angew. Chem.* **2010**, *122*, 8906–8910.

(17) (a) Karimov, R. R.; Tan, D. S.; Gin, D. Y. Rapid assembly of the doubly-branched pentasaccharide domain of the immunoadjuvant jujuboside A via convergent $B(C_6F_5)_3$ -catalyzed glycosylation of sterically-hindered precursors. *Chem. Commun.* **2017**, *53*, 5838–5841. (b) Wang, P.; Kim, Y.-J.; Navarro-Villalobos, M.; Rohde, B. D.; Gin, D. Y. Synthesis of the Potent Immunostimulatory Adjuvant QS-21A. *J. Am. Chem. Soc.* **2005**, *127*, 3256–3257.

(18) (a) Bennett, C. S.; Galan, M. C. Methods for 2-Deoxyglycoside Synthesis. *Chem. Rev.* **2018**, *118*, 7931–7985. (b) Tamura, S.; Abe, H.; Matsuda, A.; Shuto, S. Control of α/β Stereoselectivity in Lewis Acid Promoted C-Glycosidations Using a Controlling Anomeric Effect Based on the Conformational Restriction Strategy. *Angew. Chem., Int. Ed.* **2003**, *42*, 1021–1023.

(19) (a) Kumar, A.; Kumar, V.; Dere, R. T.; Schmidt, R. R. Glycoside Bond Formation via Acid-Base Catalysis. Org. Lett. 2011, 13, 3612–3615. (b) Peng, P.; Schmidt, R. R. An Alternative Reaction Course in O-Glycosidation with O-Glycosyl Trichloroacetimidates as Glycosyl Donors and Lewis Acidic Metal Salts as Catalyst: Acid-Base Catalysis with Gold Chloride-Glycosyl Acceptor Adducts. J. Am. Chem. Soc. 2015, 137, 12653–12659. (c) Peng, P.; Schmidt, R. R. Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology. Acc. Chem. Res. 2017, 50, 1171–1183.

(20) (a) Kim, S.; Song, S.; Lee, T.; Jung, S.; Kim, D. Practical Synthesis of KRN7000 from Phytosphingosine. Synthesis 2004, 847-850. (b) Cheng, H.; Cao, X.; Xian, M.; Fang, L.; Cai, T. B.; Ji, J. J.; Tunac, J. B.; Sun, D.; Wang, P. G. Synthesis and enzyme-specific activation of carbohydrate-geldanamycin conjugates with potent anticancer activity. J. Med. Chem. 2005, 48, 645-652. (c) Zhang, W.; Zheng, X.; Xia, C.; Perali, R. S.; Yao, Q.; Liu, Y.; Zheng, P.; Wang, P. G. a-Lactosylceramide as a Novel "Sugar-Capped" CD1d Ligand for Natural Killer T Cells: Biased Cytokine Profile and Therapeutic Activities. ChemBioChem 2008, 9, 1423-1430. (d) Morotti, A. L.M.; Lang, K. L.; Carvalho, I.; Schenkel, E. P.; Bernardes, L.S. C. Semi-Synthesis of new glycosidic triazole derivatives of dihydrocucurbitacin B. Tetrahedron Lett. 2015, 56, 303-307. (e) Fais, M.; Karamanska, R.; Allman, S.; Fairhurst, S. A.; Innocenti, P.; Fairbanks, A. J.; Donohoe, T. J.; Davis, B. G.; Russell, D. A.; Field, R. A. Surface Plasomon Resonance imaging of glycoarrays identifies novel carbohydrate-based ligands for potential ricin sensor development. Chem. Sci. 2011, 2, 1952-1959. (f) van Steijn, A. M. P.; Kamerling, J. P.; Vliegenthart, J. F. G. Synthesis of a spacer-containing repeating unit of the capsular

pubs.acs.org/joc

Note

polysaccharide of Streptococcus pneumoniae type 23F. *Carbohydr. Res.* **1991**, *211*, 261–277. (g) Luo, Y.; Zechel, D. L. A. concise synthesis of α -D-ribofuranosyl alkylphosphonates -Putative substrate intermediates for the carbon-phosphorous lyase system. *Can. J. Chem.* **2006**, *84*, 743–747. (h) Pirat, J. L.; Virieux, D.; Clarion, L.; Volle, J. N.; Bakalara, N.; Mersel, M.; Montbrun, J.; Cristau, H. J. New phosphorus containing heterocyclic compounds, sugar analogues, and compositions having anti-cancer activity containing the same. WO 2009004096 A1, 2009.