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ABSTRACT: Here we present a novel annulation of pyridinium
salts with BrCF2CO2Et to access the indolizine derivatives with high
efficiency. The α substitution of pyridine plays a key role in
determining the reaction pathways. Various types of indolizines can
be conveniently accessed from easily available pyridinium salts
under mild and simple reaction conditions.

N-Heterocycles are ubiquitous structural motifs in natural
products and synthetic pharmaceuticals.1 Among them,
indolizine is an important N-fused skeleton which possesses
a pyridine-type six-membered ring condensed with a pyrrole-
type five-membered ring. The indolizine derivatives are widely
spread in many bioactive and pharmaceutical compounds that
display remarkable biological activities.2 Generally, indolizines
can be accessed by the following methods: (1) Chichibabin
indolizine synthesis, which involves a base-mediated cycliza-
tion of 1-(2-oxoalkyl)-2-methylpyridinium salts for the syn-
thesis of 2-substituted indolizines (Scheme 1a);3 (2)
intermolecular cyclization which involves [3 + 2] cyclo-
additions of pyridiniums or C2-substituted pyridines with
various unsaturated substrates such as alkynes, alkenes, and
allenes (Scheme 1b);4 (3) intramolecular cyclization that
features transition metal catalyzed cycloisomerization reactions
of propargylic pyridines (Scheme 1c).5 Although there are
many efficient and useful methods for synthesis of indolizines,
there are still some unsolved issues. For example, 2-alkyloxy
indolizines have only been sporadically reported with low
yields.3b,c Therefore, development of novel and convenient
synthetic strategies toward various biologically active indoli-
zines derivatives is still in great demand.
Fluorine-containing organic compounds have received

widespread attention in recent years due to their specific
bioactivity and good biocompatibility compared with their
nonfluorinated analogues.6 Fluorine-containing indolizines
have been reported with fluorine in fluoroalkyl motifs or
directly docked on aromatic rings.7 However, 2-difluorome-
thoxy indolizines have never been reported in previous
literature.
Commercially available ethyl halodifluoroacetate

(XCF2CO2Et) has been widely used as a difluoroalkylating
reagent to synthesize various fluorinated compounds in
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Scheme 1. Synthesis of Indolizines Starting from Pyridines
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medicinal chemistry.8 Generally, XCF2CO2Et can serve as a
precursor to the ethyl difluoroacetate radical9 and difluor-
ocarbene10 species. In addition, XCF2CO2Et can also serve as a
novel C1 source, the application of which has been explored by
the Song group since 2018.11 Our group has been devoted to
development of various types of tandem reactions initiated by
difluoromethylation with BrCF2CO2Et and its derivatives.12

Herein, we disclose a novel reaction of BrCF2CO2Et with
various N-pyridinium salts leading to a series of indolizines.
Depending on the substitution mode of pyridine at α-position,
highly regioselective 1,3-diester substituted indolizines (when
α-position is unsubstituted) or indolizines with a 2-
difluoroalkoxy group (when α-position is substituted by
methyl group) can be obtained (Scheme 1d).
We initially treated 1-(2-ethoxy-2-oxoethyl)pyridin-1-ium

bromide (1a) with BrCF2CO2Et in the presence of Cs2CO3
and water in acetonitrile (CH3CN) at 80 °C for 7 h (Table 1,

entry 1). To our delight, 2a was obtained with a 94% yield.
Water is essential to the reaction since in the absence of water
a low yield of 2a resulted together with 3a as byproduct (Table
1, entry 2). Then, various reaction parameters were screened
for reaction optimization with 1a and BrCF2CO2Et as
substrates, and the results were summarized in Table 1.
Other solvents such as tetrahydrofuran (THF), dichloro-
methane (CH2Cl2), toluene (Tol), and dimethyl sulfoxide
(DMSO) were also tested, but no better results resulted
(entries 3−6). Afterward, various bases had been evaluated
with CH3CN as solvent in the presence of 5.0 equiv of water.
NaOH and K3PO4 led to lower yields in this reaction (entries
7−8). When K2CO3 was used as a base, product 2a was
obtained with 90% yield, which is similar to that of Cs2CO3
(entry 9). When organic base tetramethylethylenediamine
(TMEDA) was used, no reaction occurred (entry 10). When
the reaction time was shortened to 5 h, the yield decreased to
90%, and when the reaction time was extended to 16 h, the
yield was 95% with trace byproduct 3a (see Table S1 in the
Supporting Information (SI) for details of reaction conditions
optimization). Based on the above screening results, the

following reaction parameters were chosen as the optimized
conditions: Cs2CO3 as a base and CH3CN as solvent with 5.0
equiv of H2O at 80 °C for 7 h.
With the optimized conditions in hand, the reaction

compatibility toward various substitutions on the pyridine
ring was explored, and the results were summarized in Scheme
2. Although the model substrate 1a gave a high isolated yield of

91%, the yields drastically decreased to 55% and 44% when 1-
(2-ethoxy-2-oxoethyl)-4-methylpyridin-1-ium bromide (1b)
and 1-(2-ethoxy-2-oxoethyl)-3,5-dimethylpyridin-1-ium bro-
mide (1d) were used as substrates. When the pyridine ring
was substituted at the C3-position, 2c was obtained with a
yield of 83%, which indicates that the C2-position is more
reactive. When the C3-position was substituted with other
groups such as amino, amide, and alkoxy groups, moderate to
good yields resulted for 2e−2k (49−78%) with excellent
regioselectivities. When the pyridine was halogenated at the
C3-position, the reaction still occurred at the C2-position to
afford the corresponding products (2l−2m, 49−52% yields)
with excellent regioselectivities. When the C3-position was

Table 1. Optimization of Reaction Conditionsa

entry variation from the “standard” conditions 2a (%) 3a (%)

1 none 94 (91) 0
2 without H2O 16 10
3 THF, instead of CH3CN 10 1
4 CH2Cl2, instead of CH3CN 1 4
5 Tol, instead of CH3CN 0 0
6 DMSO, instead of CH3CN 10 8
7 NaOH, instead of Cs2CO3 4 0
8 K3PO4, instead of Cs2CO3 12 4
9 K2CO3, instead of Cs2CO3 90 (87) 0
10 TMEDA, instead of Cs2CO3 0 0

aReaction conditions: 1a (0.5 mmol), BrCF2CO2Et (0.7 equiv), base
(1.5 equiv), H2O (5.0 equiv) in solvent (2.0 mL) for 7 h under argon
atmosphere. Yields were determined by GC analysis with mesitylene
as an internal standard. The numbers in parentheses are isolated
yields.

Scheme 2. Scope with Various Pyridinium Saltsa

aReaction conditions: Unless otherwise noted, all reactions were
performed with 1 (1.0 mmol), BrCF2CO2Et (0.7 equiv), H2O (5.0
equiv), Cs2CO3 (1.5 equiv) in CH3CN (4 mL) at 80 °C under Ar for
7 h. Isolated yields. b90% yield in a 5.0 mmol scale.
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substituted by an electron-withdrawing group (e.g., m-COMe,
m-COPh, m-CO2Me), the reaction selectively occurred at the
C6-position with a low yield (2n−2p, 17−25%). Substrates
with other electron-withdrawing groups on the pyridine ring
(e.g., m-CONH2, CONHBn, m-CHO, m-F, p-CN) or other
substituents on nitrogen (e.g., N-cyanomethyl salt, N-2-oxo-2-
phenylethyl salt) have also been subjected to the current
conditions; however, the reactions are messy and no desired
products can be isolated. A detailed discussion on
regioselectivity of m-substituted pyridinium salts and reaction
of more substrates is included in the SI (see Schemes S1−S3).
When we used the collidine-derived salt (4a) instead of 1a,

the product 5a was obtained in 70% isolated yield. The
reaction conditions were optimized, and the yield can be
improved to 99% in the absence of water at 50 °C (see Table
S2 in the Supporting Information for details of reaction
conditions optimization). Next, the substrate scope of this
reaction was explored, and the results were summarized in
Scheme 3. First, the effect of the methyl position on pyridine
was investigated. When the methyl groups were present at both
C2- and C6-positions of pyridiniums, the yields were excellent
(5a, 99% and 5b, 97%). However, when there was no methyl
group at the C6-position of pyridiniums, the yields decreased
to moderate levels (5c, 61% and 5d, 45%). Quinolinium salts
were also investigated, and 1-(2-ethoxy-2-oxoethyl)-2-methyl-
quinolin-1-ium bromide (4e) and 1-(2-ethoxy-2-oxoethyl)-
5,6,7,8-tetrahydroquinolin-1-ium bromide (4f) under these
reaction conditions led to the desired products 5e and 5f in
64% and 99% yield, respectively. Therefore, the substitutions
on the C2- and C6-positions of pyridinium salts were beneficial
to this reaction. A series of pyridinium salts substituted with
methyl groups at both C2- and C6-positions were prepared
(4g−4p) and subjected to the optimized conditions. Gratify-
ingly, different ether substitutions (such as alkyl, propargyl,
allyl, benzyl, and ester groups) on the C4-position of 2,6-
dimethylpyridinium salts could be well tolerated with the
target products being obtained in moderate yields ranging from
62% to 74% (5g−5n). However, when the bromine atom was
attached to the alkyloxy group, the yields slightly decreased to
47−57% (5o−5p). When 2-(2-methoxy-2-oxoethyl)-1-meth-
ylisoquinolin-2-ium bromide was subjected to the same
conditions, the desired product 2-(difluoromethoxy)pyrrolo-
[2,1-a]isoquinoline was obtained together with ester group
substituted byproducts (see Scheme S4 in the Supporting
Information for the reaction details).
To clarify the reaction mechanism of these transformations,

a series of control experiments were carried out. For the
reaction of 1a, three additional carbons were installed, which
might come from another molecule of pyridinium salt, or
BrCF2CO2Et, or both. When we treated compound 1a under
the optimized conditions in the absence of BrCF2CO2Et, no 2a
resulted. This implied that BrCF2CO2Et was essential to
formation of 2a, and at least one carbon was derived from
BrCF2CO2Et. In order to prove the origin of the esters in
product 2a, 1a-Me with methyl ester was synthesized and
subjected to the optimized conditions except in the absence of
water (Scheme 4a). Two products were obtained with the yield
of 2a-Me being 19% and the yield of 3a-Me being 12%. The
ethyl ester of indolizine at C2 implies that the C2 originates
from BrCF2CO2Et while the other two methyl esters originate
from pyridinium salt 1a-Me. Besides, GC analysis of the
reaction indicates that pyridine was formed, which suggested
that the reaction involved the participation of another

Scheme 3. Scope with Various 2-Methylpyridinium Saltsa

aReaction conditions: Unless otherwise noted, all reactions were
performed with 4 (1.0 mmol), BrCF2CO2Et (1.1 equiv), Cs2CO3 (1.5
equiv) in CH3CN (4 mL) at 50 °C under Ar for 7 h. Isolated yields.
b92% yield in a 4.0 mmol scale.

Scheme 4. Control Experiments for Mechanistic Studies

aYield and ratio were determined by GC analysis with mesitylene as
an internal standard. bIsolated yields.
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molecule of pyridinium salt 1a with the release of a pyridine
molecule. For a detailed discussion, see Scheme S5 in the
Supporting Information.
For compounds 4 with α-substitution, the α-deprotonation

become preferred. It is possible that compound 4 can undergo
base catalyzed intramolecular cyclization to afford 8, which can
capture difluorocarbene from BrCF2CO2Et to afford 5.
However, when 4d was treated under the optimized conditions
in the absence of BrCF2CO2Et, no 8 was afforded. Considering
the lability of 8 reported in the literature,3a we attempted to
capture 8 with acetic anhydride. However, we only got 6 with
34% yield instead of the Chichibabin-like cyclization product
7. When the reaction temperature rose to 80 °C, both
compounds 6 and 7 can be isolated in 30% and 51% yields,
respectively. With BrCF2PO(OEt)2 as the CF2 carbene
precursor instead of BrCF2CO2Et, Chichibabin-like cyclization
product 5a can be isolated in 45% yield, which is lower than
that of BrCF2CO2Et. Then carbene trap experiments were
attempted, which indicated that difluoromethyl carbene is
involved in the process of generating compounds 2a and 5a
(for a detailed discussion, see Schemes S7 and S8 in the
Supporting Information).
Based on the above experimental observations and previous

reports,3,13 a plausible reaction mechanism for the synthesis of
indolizines was proposed in Scheme 5. First, in the presence of

Cs2CO3, the pyridinium salt would be deprotonated to afford
ylide A which could capture the difluorocarbene to afford B.
Then intermediate B will undergo proton exchange and
elimination of F− to afford D, which would undergo
nucleophilic addition by another molecule of A. Elimination
of F− followed by deprotonation results in G, which would
undergo intramolecular nucleophilic addition to furnish
intermediate H. Finally, removal of a molecule of pyridine in

the presence of base will lead to diester 2. In the absence of
water, 3a can be afforded which indicates that the reaction
might proceed through other pathways.
When R is CH3, the anion I’ resulted which undergoes

intramolecular cyclization to result in intermediate J. Then
tautomerization of J followed by capture of difluorocarbene
would result in 5 as a stable product. The formation of 6 in
Scheme 4b can be explained by the reaction of I’ with acetic
anhydride. A detailed mechanism for formation of 6 and other
possible mechanisms for 3 and 5 are included in Scheme S9 in
the Supporting Information.
The role of water remains unclear in the above trans-

formations. As shown in Scheme 2, water can improve the
regioselectivity toward the diester 2. However, for the
formation of 2-difluoroalkoxy indolizines 5, the reaction
proceeds more smoothly without water. This duality is due
to the different reaction mechanisms involved. For selective
synthesis of 2, the water might serve as a proton mediator that
promotes the proton transfer from B to C, thus improving the
regioselectivity and yield of 2. When D2O was used instead of
H2O, deuterated product 2a-D can be obtained (see Scheme
S6 in the Supporting Information for details). For the
formation of 5, the key step is intramolecular cyclization of
highly active and moisture-sensitive I′ to form intermediate J.
Therefore, the anhydrous condition is more favorable under
this situation.
In summary, we have developed an efficient method for

synthesis of indolizines by the annulation of pyridinium salts
with BrCF2CO2Et as a key reagent. Through the regulation of
the α substitution of pyridine, highly regioselective 1,3-
disubstituted indolizines and C2-difluoromethoxylation indo-
lizines derivatives can be afforded, thus enriching the indolizine
compound library. The current transformations not only
provide a new synthetic strategy toward biologically active
indolizine derivatives but also enrich the chemistry of
BrCF2CO2Et as a versatile precursor. Further studies to
elucidate the mechanistic details of the transformation and
apply it to the synthesis of bioactive compounds is in progress
in our laboratory.
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