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ONE-POT STEREOSELECTIVE SYNTHESIS OF
(Z)-a-ARYLTHIO-a,b-UNSATURATED KETONES
BY HYDROSTANNYLATION–STILLE TANDEM
REACTION OF ACETYLENIC SULFIDES

Shengyong You,1,2 Wenyan Hao,1 and Mingzhong Cai1
1Department of Chemistry, Jiangxi Normal University, Nanchang, China
2Institute of Applied Chemistry, Jiangxi Academy of Science,
Nanchang, China

(Z)-a-Arylthio-a,b-unsaturated ketones can be stereoselectively synthesized in one pot under

mild conditions, in good yields, by the palladium-catalyzed hydrostannylation of acetylenic

sulfides with tributyltin hydride, followed by Stille coupling with acyl chlorides.
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INTRODUCTION

a,b-Unsaturated ketones are useful synthetic intermediates, and a variety of
synthetic methods for the synthesis of a,b-unsaturated ketones have been developed.
Of these methods, the aldol condensation is one of the most powerful synthetic
tools.[1] The hydrozirconation of alkynes, followed by aluminum chloride–promoted
acylation of the resulting vinylzirconium compounds, has provided a convenient
method for stereoselective synthesis of a,b-unsaturated ketones.[2] The synthesis of
heteroatom-containing a,b-unsaturated ketones has also attracted considerable
interest in organic synthesis because many useful functional group transformations
can be achieved by introduction and removal of heteroatom functions. Sung et al.
reported that hydrozirconation of acetylenic tellurides, followed by the reaction with
acyl chlorides in the presence of CuI, gave a-organotelluro-a,b-unsaturated
ketones.[3] Zhao et al. described the synthesis of (Z)-b-selenyl-a,b-unsaturated
ketones by CuX-catalyzed selenocarbonylation addition reaction of selenoesters to
nonactivated terminal alkynes.[4] (Z)-a-Selenyl-a,b-unsaturated ketones could be
prepared by utilizing either a Wittig-type reaction of a-phenylselanyl arsonium ylides
with carbonyl compounds[5] or through palladium-catalyzed acylation of (E)-a-
selanylvinylstannanes with acyl halides.[6] a-Arylthio- or alkylthio-a,b-unsaturated
ketones are very useful synthetic intermediates.[7] For example, they have been used
in the preparation of 2,3-dihydrofurans[8] and 1,4- and 1,5-dicarbonyl compounds[9]
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as well as in the regioselective alkylation of cyclohexanones.[7c] Some methods for the
synthesis of a-arylthio- or alkylthio-a,b-unsaturated ketones have been developed,
including Pummerer rearrangement of 2-arylsulfinyl ketones,[10] the NaOH-
catalyzed thiolysis of a,b-epoxyketones,[11] and the Rh-catalyzed diazo decompo-
sition of b-thio group a-diazo ketones.[12] Despite considerable methodological
differentiation, the reported procedures usually require starting materials that are
not readily available, and thus there still exists a need for new, selective, and
convenient methods. Herein, we report that (Z)-a-arylthio-a,b-unsaturated ketones
can be stereoselectively synthesized in one pot under mild conditions, in good yields,
by the palladium-catalyzed hydrostannylation of acetylenic sulfides with tributyltin
hydride, followed by Stille coupling with acyl chlorides.

RESULTS AND DISCUSSION

Palladium-catalyzed hydrostannylation of arylthioalkynes has been reported to
be highly regio- and stereoselective, giving (E)-a-arylthiovinylstannanes in excellent
yields.[13] (E)-a-Arylthiovinylstannanes are difunctional group reagents in which two
synthetically versatile groups are linked to the same olefinic carbon atom and can be
considered both as vinylstannanes and as vinyl sulfides. Vinylstannanes can undergo
the Stille coupling with organic halides.[14] The tandem reaction has recently been of
interest for organic synthesis because it offers a convenient and economical method
with which to prepare target organic molecules.[15] The palladium-catalyzed hydro-
stannylation of alkynes and the Stille reaction are acknowledged as useful tools for
constructing complex organic molecules. However, to the best of our knowledge,
there have been no reports on palladium-catalyzed tandem hydrostannylation–Stille
coupling reaction of tributyltin hydride with acetylenic sulfides and acyl halides to
date. Considering the fact that both the hydrostannylation and Stille reaction were
catalyzed by Pd(PPh3)4, we tried to combine the two reactions, in one pot, to stereo-
selectively prepare (Z)-a-arylthio-a,b-unsaturated ketones (Scheme 1).

Initially, to determine the optimum tandem reaction conditions, after the
hydrostannylation of 1-phenylthio-1-hexyne with Bu3SnH in benzene in the presence
of 5mol% Pd(PPh3)4 at room temperature for 4 h as described by Magriotis et al.,[13]

the Stille cross-coupling reaction of the intermediate (E)-1-phenylthio-1-tributylstan-
nyl-1-hexene (2a) with benzoyl chloride (1.1 equiv) in benzene was examined under
various reaction conditions. It was found that the Stille reaction of the intermediate
2a with benzoyl chloride in benzene at room temperature did not occur in the pres-
ence of 10mol% CuI cocatalyst; however, the same reaction at reflux temperature
could proceed to give (Z)-1-benzoyl-1-phenylthio-1-hexene (4a) in 45% yield after
48 h. The amount of CuI cocatalyst affected the reaction rate of the Stille coupling.

Scheme 1. Hydrostannylation–Stille tandem reaction of acetylenic sulfides with Bu3SnH and acyl

chlorides.
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When 75mol% CuI was used, the Stille reaction of the intermediate 2a with benzoyl
chloride in benzene proceeded smoothly at reflux temperature to afford the 4a in
74% yield after 10 h. We found that hydrostannylation of acetylenic sulfides 1 with
tributyltin hydride using 5mol% Pd(PPh3)4 in benzene at room temperature for
4 h, followed by reaction with acyl chlorides 3 and 75mol% CuI at reflux, gave
the (Z)-a-arylthio-a,b-unsaturated ketones 4 in good yields. The typical results are
summarized in Table 1. As shown in Table 1, the tandem hydrostannylation–Stille
reaction of tributyltin hydride with a variety of acetylenic sulfides and aromatic acyl
chlorides proceeded smoothly, under very mild conditions, to afford the correspond-
ing (Z)-a-arylthio-a,b-unsaturated ketones 4 stereoselectively. The nature of the
substituents in aromatic acyl chlorides has no influence on the Stille reaction, and
both strongly electron-withdrawing and electron-donating substituents can be
present. However, when aliphatic acyl chlorides were used as the electrophiles, the
Stille coupling reaction of the intermediates 2 did not occur at all.

It is well documented that the Stille coupling reaction of vinylstannanes with
organic halides, in the presence of a palladium catalyst, retains configuration.[14]

In addition, the Z-configuration of compound 4c was confirmed by nuclear
Overhauser effect spectroscopy (NOESY) experiments. An enhancement of the
allylic protons was observed as the vinylic proton of 4c was irradiated. A correlation
between the allylic protons and the aromatic protons (d¼ 7.14) of the (4-methylphe-
nyl)thio group was observed. The NOE results indicate that compound 4c has the
expected Z-configuration and that the cross-coupling reaction of (E)-a-arylthiovinyl-
stannanes 2 with acyl halides 3 retains configuration.

EXPERIMENTAL

General

Benzene was distilled from sodium immediately prior to use. Infrared (IR)
spectra were obtained with a Perkin-Elmer 683 instrument as neat films. 1H NMR
spectra were recorded with a Bruker AC-400 (400-MHz) spectrometer using CDCl3

Table 1. Synthesis of (Z)-a-arylthio-a,b-unsaturated ketones 4a–k

Entry R Ar R1 Time (h)a Product Yieldb (%)

1 n-C4H9 Ph Ph 10 4a 74

2 n-C4H9 Ph 4-O2NC6H4 8 4b 75

3 n-C4H9 4-CH3C6H4 Ph 10 4c 77

4 n-C4H9 4-CH3C6H4 4-ClC6H4 9 4d 71

5 CH3OCH2 Ph Ph 10 4e 68

6 CH3OCH2 Ph 4-CH3C6H4 12 4f 73

7 CH3OCH2 Ph 4-ClC6H4 9 4g 67

8 CH3OCH2 Ph 4-O2NC6H4 8 4h 68

9 CH3OCH2 4-CH3C6H4 Ph 11 4i 70

10 Ph Ph Ph 11 4j 80

11 Ph 4-ClC6H4 4-ClC6H4 9 4k 74

aRequired for the Stille reaction.
bIsolated yield based on the acetylenic sulfide 1.
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as solvent. 13C NMR spectra were recorded with a Bruker AC-400 (100-MHz)
spectrometer using CDCl3 as solvent. Mass spectra (EI) were determined with a
Finnigan 8230 mass spectrometer. Microanalyses were measured with a Yanaco
MT-3 CHN microelemental analyzer. Pd(PPh3)4 was prepared according to a
literature procedure.[16]

General Procedure for the Synthesis of (Z)-a-Arylthio-a,b-
unsaturated Ketones 4a–k

A 25-mL, two-necked, round-bottomed flask equipped with a magnetic stirring
bar under an argon atmosphere was charged sequentially with acetylenic sulfide 1
(1mmol), benzene (4mL), Pd(PPh3)4 (0.05mmol), and Bu3SnH (1.1mmol). The mix-
ture was stirred at room temperature for 4 h, acyl chloride (1.1mmol) and CuI
(0.75mmol) were added, and the mixture was stirred at reflux for 8–12 h. The reac-
tion mixture was cooled to room temperature and diluted with light petroleum. The
supernatant was filtered through a short plug of silica gel, and the filtrate was
evaporated. The residue was purified by preparative thin-layer chromatography
(TLC) on silica gel to afford the corresponding compounds.

Data

(Z)-1-Benzoyl-1-phenylthio-1-hexene (4a). Oil. IR (film): n (cm�1) 3060,
2928, 1665, 1597, 1447, 1258, 741, 690; 1H NMR (400MHz, CDCl3): d 7.69
(d, J¼ 8.4Hz, 2H), 7.49–7.47 (m, 1H), 7.37 (t, J¼ 7.6Hz, 2H), 7.24–7.10 (m, 5H),
6.73 (t, J¼ 7.2Hz, 1H), 2.61–2.55 (m, 2H), 1.52–1.48 (m, 2H), 1.43–1.38 (m, 2H),
0.94 (t, J¼ 7.2Hz, 3H); 13C NMR (100MHz, CDCl3): d 194.11, 149.69, 137.45,
135.72, 134.40, 132.34, 129.88, 129.39, 128.93, 128.12, 126.63, 30.69, 30.33, 22.54,
13.89; MS (EI, 70 eV): m=z 296 (Mþ, 100), 105 (93), 77 (45). Anal. calc. for
C19H20OS: C, 77.00; H, 6.80. Found: C, 76.74; H, 6.61.

(Z)-1-(4-Nitrobenzoyl)-1-phenylthio-1-hexene (4b). Oil. IR (film): n (cm�1)
2928, 1670, 1592, 1519, 1345, 848, 690; 1H NMR (400MHz, CDCl3): d 8.07 (d,
J¼ 8.8Hz, 2H), 7.68 (d, J¼ 8.8Hz, 2H), 7.18–7.06 (m, 5H), 6.55 (t, J¼ 7.2Hz,
1H), 2.63–2.57 (m, 2H), 1.55–1.50 (m, 2H), 1.45–1.37 (m, 2H), 0.95 (t, J¼ 7.2Hz,
3H); 13C NMR (100MHz, CDCl3): d 194.52, 147.01, 143.50, 134.72, 132.38,
129.32, 128.93, 128.58, 128.13, 126.07, 123.53, 31.31, 30.99, 22.50, 13.97; MS (EI,
70 eV): m=z 341 (Mþ, 9.3), 109 (100), 57 (35). Anal. calc. for C19H19NO3S: C,
66.85; H, 5.61. Found: C, 66.56; H, 5.69.

(Z)-1-Benzoyl-1-(p-tolylthio)-1-hexene (4c). Oil. IR (film): n (cm�1) 2927,
1666, 1596, 1448, 1258, 1089, 806, 717; 1H NMR (400MHz, CDCl3): d 7.69 (d,
J¼ 8.4Hz, 2H), 7.51–7.49 (m, 1H), 7.38 (t, J¼ 7.6Hz, 2H), 7.14 (d, J¼ 8.0Hz,
2H), 6.98 (d, J¼ 8.0Hz, 2H), 6.64 (t, J¼ 7.6Hz, 1H), 2.59–2.54 (m, 2H), 2.24 (s,
3H), 1.51–1.44 (m, 2H), 1.42–1.35 (m, 2H), 0.94 (t, J¼ 7.2Hz, 3H); 13C NMR
(100MHz, CDCl3): d 194.15, 148.43, 137.53, 136.80, 136.36, 132.28, 130.53,
129.70, 129.42, 128.00, 127.48, 30.73, 30.21, 22.53, 21.00, 13.89; MS (EI, 70 eV):
m=z 310 (Mþ, 37), 186 (25), 105 (100), 91 (43). Anal. calc. for C20H22OS: C,
77.39; H, 7.14. Found: C, 77.15; H, 6.95.

(Z)-a-ARYLTHIO-a,b-UNSATURATED KETONES 1833
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(Z)-1-(4-Chlorobenzoyl)-1-(p-tolylthio)-1-hexene (4d). Oil. IR (film): n
(cm�1) 2926, 1667, 1588, 1492, 1253, 1091, 806, 756; 1H NMR (400MHz, CDCl3):
d 7.63 (d, J¼ 8.4Hz, 2H), 7.34 (d, J¼ 8.4Hz, 2H), 7.10 (d, J¼ 8.0Hz, 2H), 6.98
(d, J¼ 8.0Hz, 2H), 6.61 (t, J¼ 7.2Hz, 1H), 2.60–2.54 (m, 2H), 2.24 (s, 3H),
1.53–1.49 (m, 2H), 1.44–1.38 (m, 2H), 0.95 (t, J¼ 7.2Hz, 3H); 13C NMR
(100MHz, CDCl3): d 193.00, 147.82, 138.66, 137.04, 136.11, 135.74, 135.02,
130.76, 130.67, 129.76, 128.39, 30.74, 30.13, 22.53, 21.02, 13.90; MS (EI, 70 eV):
m=z 346 (Mþ, 37Cl, 16), 344 (Mþ, 35Cl, 45), 139 (100), 91 (29). Anal. calc. for
C20H21OSCl: C, 69.65; H, 6.14. Found: C, 69.38; H, 5.86.

(Z)-1-benzoyl-1-phenylthio-3-methoxypropene (4e). Oil. IR (film): n
(cm�1) 3060, 2929, 1667, 1597, 1580, 1448, 1248, 1100, 745, 690; 1H NMR
(400MHz, CDCl3): d 7.73 (d, J¼ 8.0Hz, 2H), 7.53–7.34 (m, 3H), 7.27–7.14 (m,
5H), 6.69 (t, J¼ 5.6Hz, 1H), 4.40 (d, J¼ 5.6Hz, 2H), 3.43 (s, 3H); 13C NMR
(100MHz, CDCl3): d 192.97, 143.20, 136.87, 136.73, 133.08, 132.72, 130.70,
129.46, 129.06, 128.26, 127.29, 70.08, 58.79; MS (EI, 70 eV): m=z 284 (Mþ, 41),
253 (100), 144 (36), 109 (41), 105 (87). Anal. calc. for C17H16O2S: C, 71.82; H,
5.67. Found: C, 71.55; H, 5.79.

(Z)-1-(4-Methylbenzoyl)-1-phenylthio-3-methoxypropene (4f). Oil. IR
(film): n (cm�1) 3061, 2928, 1666, 1596, 1583, 1447, 1249, 1101, 690; 1H NMR
(400MHz, CDCl3): d 7.67 (d, J¼ 8.0Hz, 2H), 7.28–7.24 (m, 3H), 7.21–7.15 (m,
4H), 6.64 (t, J¼ 5.6Hz, 1H), 4.39 (d, J¼ 5.6Hz, 2H), 3.42 (s, 3H), 2.38 (s, 3H);
13C NMR (100MHz, CDCl3): d 192.63, 143.67, 142.47, 136.87, 134.01, 133.16,
130.66, 129.72, 129.24, 128.99, 127.23, 70.03, 58.73, 21.66; MS (EI, 70 eV): m=z
298 (Mþ, 6.8), 296 (100), 282 (85), 253 (34), 239 (40), 105 (58), 91 (62). Anal. calc.
for C18H18O2S: C, 72.47; H, 6.08. Found: C, 72.19; H, 5.87.

(Z)-1-(4-Chlorobenzoyl)-1-phenylthio-3-methoxypropene (4g). Oil. IR
(film): n (cm�1) 2929, 1669, 1593, 1580, 1402, 1093, 691; 1H NMR (400MHz,
CDCl3): d 7.49 (d, J¼ 8.4Hz, 2H), 7.19 (d, J¼ 8.4Hz, 2H), 7.15–7.13 (m, 5H),
6.43 (t, J¼ 5.6Hz, 1H), 4.39 (d, J¼ 5.6Hz, 2H), 3.43 (s, 3H); 13C NMR
(100MHz, CDCl3): d 193.27, 134.93, 134.33, 130.65, 129.44, 129.01, 128.94,
128.87, 128.69, 128.42, 126.18, 70.71, 58.48; MS (EI, 70 eV): m=z 318 (Mþ, 35Cl,
1.4), 259 (26), 123 (55), 111 (64), 109 (100). Anal. calc. for C17H15O2SCl: C, 64.05;
H, 4.74. Found: C, 63.77; H, 4.49.

(Z)-1-(4-Nitrobenzoyl)-1-phenylthio-3-methoxypropene (4h). Oil. IR
(film): n (cm�1) 2928, 1672, 1595, 1521, 1404, 1346, 1093, 690; 1H NMR
(400MHz, CDCl3): d 8.08 (d, J¼ 8.8Hz, 2H), 7.70 (d, J¼ 8.8Hz, 2H), 7.16–7.07
(m, 5H), 6.56 (t, J¼ 5.6Hz, 1H), 4.43 (d, J¼ 5.6Hz, 2H), 3.46 (s, 3H); 13C NMR
(100MHz, CDCl3): d 193.41, 145.63, 137.74, 134.97, 133.47, 130.19, 129.37,
129.06, 128.46, 126.70, 123.58, 70.68, 58.68; MS (EI, 70 eV): m=z 329 (Mþ, 53),
298 (25), 115 (91), 109 (100). Anal. calc. for C17H15NO4S: C, 62.00; H, 4.59. Found:
C, 61.73; H, 4.73.

(Z)-1-Benzoyl-1-(p-tolylthio)-3-methoxypropene (4i). Oil. IR (film): n
(cm�1) 2927, 1667, 1597, 1592, 1448, 1403, 1094, 808, 716; 1H NMR (400MHz,
CDCl3): d 7.72 (d, J¼ 8.4Hz, 2H), 7.51–7.35 (m, 3H), 7.16 (d, J¼ 8.0Hz, 2H),
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6.99 (d, J¼ 8.0Hz, 2H), 6.59 (t, J¼ 5.6Hz, 1H), 4.40 (d, J¼ 5.6Hz, 2H), 3.43 (s,
3H), 2.24 (s, 3H); 13C NMR (100MHz, CDCl3): d 193.08, 141.84, 137.57, 136.79,
133.46, 132.71, 131.33, 129.83, 129.54, 129.15, 128.23, 70.01, 58.75, 21.05; MS (EI,
70 eV): m=z 298 (Mþ, 54), 267 (66), 105 (100). Anal. calc. for C18H18O2S: C,
72.47; H, 6.08. Found: C, 72.64; H, 6.25.

(Z)-1-Benzoyl-1-phenylthio-2-phenylethene (4j). White solid. Mp. 75–76 �C
(lit.[17] mp 74–75 �C). IR (KBr): n (cm�1) 3060, 1667, 1581, 1447, 1241, 745, 690; 1H
NMR (400MHz, CDCl3): d 7.80 (d, J¼ 7.6Hz, 2H), 7.73 (d, J¼ 8.4Hz, 2H),
7.50–7.34 (m, 6H), 7.27–7.11 (m, 6H); 13C NMR (100MHz, CDCl3): d 194.47,
139.87, 137.38, 135.58, 134.63, 133.08, 132.50, 131.29, 130.42, 129.45, 128.96,
128.56, 128.48, 128.12, 127.38; MS (EI, 70 eV): m=z 316 (Mþ, 8.3), 211 (17), 109
(34), 105 (100). Anal. calc. for C21H16OS: C, 79.73; H, 5.10. Found: C, 79.54;
H, 5.23%.

(Z)-1-(4-Chlorobenzoyl)-1-(4-chlorophenyl)thio-2-phenylethene (4k). White
solid. Mp 81–83 �C. IR (KBr): n (cm�1) 2925, 1665, 1587, 1475, 1092, 819, 762; 1H
NMR (400MHz, CDCl3): d 7.80–7.76 (m, 2H), 7.68 (d, J¼ 8.4Hz, 2H), 7.47–7.31
(m, 5H), 7.24–7.13 (m, 5H); 13C NMR (100MHz, CDCl3): d 192.98, 140.42,
139.09, 137.18, 135.47, 134.51, 134.23, 133.43, 132.55, 130.92, 130.74, 130.45,
129.22, 129.03, 128.57; MS (EI, 70 eV): m=z 384 (Mþ, 35Cl, 39), 139 (45), 111
(66), 109 (100). Anal. calc. for C21H14OSCl2: C, 65.63; H, 3.67. Found: C,
65.41; H, 3.85.

CONCLUSION

In conclusion, we have developed an efficient and stereoselective one-pot
method for the synthesis of (Z)-a-arylthio-a,b-unsaturated ketones. The present
method has the advantages of readily available starting materials, straightforward
and simple procedures, mild reaction conditions, and good yields.
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