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Abstract

Blue emitters are necessary for achieving full-color displaying OLEDs, however, 

most blue emitters show low efficiency, short lifetime or serious efficiency roll-off, 

hindering the development of OLED techniques. In this research, a nonpolar 

symmetric aggregation-induced emission (AIE) emitter was designed and constructed 

through facile steps, with the triphenylamine-end, anthracene-spacer and 

tetraphenylethene (TPE)-center. This emitter exhibited good thermal stability and 

aggregation-enhanced emission (AEE) characteristics, based on which non-doped 

blue OLED device was readily fabricated with the maximum external quantum 

efficiency (EQE) of 2.7% and also with no efficiency roll-off even at 1000 cd.m-2, 

indicative of high efficiency and good stability as fluorescent emitter.
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1. Introduction

Organic light-emitting devices (OLEDs) have received significant research interests both 

in academia and industry due to their applications in solid-state lighting and full-color 

displaying with the evident advantages of low energy cost, high operating voltage, active 

illumination and full-solid state.[1-4] The OLED emitters, as the core component of the 

devices, can decide both the performance and the fabricating methods of the OLED 

device.[5, 6] In order to obtain full-color displaying, the red, green and blue (RGB) 

emitters are the three primary emitters. However, compared with other two primary 

emitters, the blue emitters show low efficiency, short lifetime or serious efficiency roll-off, 

due to their larger band gap and aggregation-caused quenching (ACQ) effects, which 

strongly limited the development of OLED techniques.[7, 8] Therefore, most current blue 

OLED devices take advantages of the doping method, however, the doped systems usually 

suffer from the drawbacks of phase segregation, color aging and poor reproducibility.[9] In 

contrast to ACQ emitters, the emitters with aggregation-induced emission (AIE) properties, 

or AIEgens, such as tetraphenylethene(TPE), can overcome the quenching effects in solid 

state, which are favored to prepare the high-efficient non-doped OLED devices, with the 

advantages of simplified process and reduced cost in fabrication. [10, 11] On the other 

hand, anthracene, as a typical polycyclic aromatic hydrocarbon (PAHs), usually serves as 

building blocks for efficient blue emitters, due to high photoluminescence (PL), ready 

chemical modification and good thermal stability, but the planar structure of anthracene in 

aggregated-state tend to form close π–π stacking and further to deteriorate the emitters‘ EL 

performances.[12, 13] 

In previous research, various AIEgen were fabricated with high efficiency as OLED 

emitters, but many of them have the moieties of strong polarity, which tend to cause 

efficiency roll-off at high luminescence, due to intra-/intermolecular interactions. Herein, 

in order to design high efficient and stable blue emitters, we linked the anthraces moiety to 

the TPE core to suppress its molecular packing, and an important moiety of the 

commercial triphenylamine (TPA) as the terminal group, due to its nonplanar 
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propreller-shaped to prevent the aggregation of the anthraces and good hole-transporting 

properties.[14-16] The symmetric TPE emitter can applied in the non-doped blue OLED 

device with the maixmum external quantum efficiency (EQE) of 2.7%, and the device 

showed no efficiency roll-off even at 1000 cd.m-2.

2. Experimental section

2.1 General information

All chemicals applied into reaction were received without further purification. Only 

titanium(IV) chloride was purchased from Alfa Aesar, while all the other chemicals, 

including N,N-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (CAS 

No.: 267221-88-5), 9,10-dibromoanthracene ( CAS No. : 523-27-3) and 

9-phenyl-9H-carbazol-3-ylboronic acid (CAS No. : 854952-58-2), were supplied by 

Energy Chemicals.

2.2 Synthetic procedures

1,2-bis(4-bromophenyl)-1,2-diphenylethene (TPE-Br) 

and1,2-diphenyl-1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethene 

(TPE-BE) in this research was synthesized according to previous research.[17] The 

related data are listed as follows: 1,2-bis(4-bromophenyl)-1,2-diphenylethene 

(TPE-Br) : 1H NMR (400 MHz, CDCl3), δ (TMS, ppm): 6.87, 6.99, 7.10, 7.20. 13C 

NMR (100 MHz, CDCl3), δ (TMS, ppm): 120.6, 126.9, 127.7, 128.0, 130.8, 131.2, 

132.8, 140.2, 142.3, 142.7. ESI-TOF-MS (C26H18Br2): m/z 487.9794 (M+ calculated 

487.9775).

1,2-diphenyl-1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethene 

(TPE-BE): 1H NMR (400 MHz, CDCl3), δ (TMS, ppm): 1.32, 7.0–7.1, 7.53. 13C 

NMR (100 MHz, CDCl3), δ (TMS, ppm): 25.1, 83.4, 126.7, 127.8, 127.9, 130.9, 
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131.5, 134.2, 124.3, 141.4, 143.5, 146.9. ESI-TOF-MS (C38H42B2O4): m/z 584.3314 

(M+ calculated 584.3269).

4-(10-bromoanthracen-9-yl)-N,N-diphenylaniline (TPA-An-Br): A mixture of 

N,N-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline ( CAS : 

267221-88-5) (2.02 g, 5.39 mmol) and 9,10-dibromoanthracene ( CAS : 523-27-3) 

(2.20 g, 6.46 mmol), Pd(PPh3)4 (0.48 g, 0.42 mmol) and K2CO3 (9.60 g, 69.7 mmol), 

were added into a 250 mL two-neck bottle under nitrogen. After then, 150 mL mixed 

solvent of THF and H2O (v/v = 4:1) was injected into the bottle, and the mixture was 

refluxed for 24 h. After cooling to room temperature, the mixture was poured into 

water and extracted with dichloromethane. The combined organic layers were then 

dried over anhydrous magnesium sulfate, filtrated, evaporated and finally purifed by 

silica-gel column chromatography using hexane/dichloromethane as eluent. 2.0g of 

bright yellow solid Cz-An-Br was obtained with yield of 74.2 %. 1H NMR (400 MHz, 

CDCl3), δ (TMS, ppm): 8.60, 8.58, 7.81, 7.79, 7.60, 7.58, 7.56, 7.43, 7.41, 7.39, 7.34, 

7.32, 7.30, 7.26, 7.25, 7.24, 7.23, 7.09, 7.07, 7.05. 13C NMR (100 MHz, CDCl3), δ 

(TMS, ppm): 147.80, 147.51, 137.81, 132.06, 131.83, 131.35, 130.40, 129.54, 127.98, 

127.59, 127.04, 125.60, 124.91, 123.36, 122.93, 122.70, 77.16. ESI-TOF-MS 

(C32H22BrN): m/z 499.0944 (M+ calculated 499.0936).

4,4'-(((1,2-diphenylethene-1,2-diyl)bis(4,1-phenylene))bis(anthracene-10,9-diyl))bis 

(N,N-diphenylaniline) (TPA-An-TPE): The compound TPA-An-TPE was also 

prepared through Suzuki reaction. In this preparation, TPE-BE (1.0 g, 1.75mmol), 

TPA-An-Br (1.370 g, 5.22 mmol), Pd(PPh3)4 (329 mg, 0.285 mmol) and K2CO3 

(6.55g, 47.4 mmol) were placed into the mixed solvent of THF and water (v/v = 4:1) 

to reflux for 24 h under nitrogen, and finally 0.32 g of bright yellow solid 

TPA-An-TPE were obtained in the yield of 15.3 %. 1H NMR (400 MHz, CDCl3), δ 

(TMS, ppm): 7.86, 7.85, 7.83, 7.81, 7.79, 7.68, 7.45-7.29, 7.28-7.20, 7.10-7.04. 13C 

NMR (100 MHz, CDCl3), δ (TMS, ppm): 147.85, 147.13, 143.27, 137.43, 132.73, 

132.15, 131.51, 131.34, 130.76, 130.03,129.89, 129.40, 127.92, 126.91, 125.21, 
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124.69, 123.09, 76.70. ESI-TOF-MS (C90H62N2): m/z 1170.4915 (M+ calculated 

1170.4913).

2.3 Device fabrication and characterization 

The materials to fabricate OLED devices were purchased from Jinlin Optical and 

Electronic Materials Co. The Indium-doped tin oxide (ITO) glass sheet (1.2 mm thick, 

≤ 15 Ω/square, transmittance > 90%) was purchased from Nippon Sheet Glass 

Company, Ltd, and cleaned by a routine cleaning procedure which includes initial 

manual washed in aqueous detergent, and then sequentially sonication in acetone, 

isopropanol and ethanol for 30 minutes each. Then, the pre-cleaned ITO glass was 

moved into an ultraviolet chamber for UV-ozone treatment of 20 minutes. The 

synthesized emitting material TPA-An-TPE were further purified through 

sublimation at 220 oC under the vacuum of 1.5×10-3 Pa in the sublimation system 

(CSe solar ETS-60T-S) before fabricating the OLED devices. The organic layers were 

deposited consecutively on the pre-cleaned ITO glass substrates in a vacuum chamber 

(5×10-4 Pa). The deposition rate of all the organic materials was 0.9-1.1Å S-1, while 

that of the LiF was 0.1 Å S-1and aluminum was 5 Å S-1. The electrical characteristics 

of the devices were measured with a Keithey 2400 Source meter at the range of 0-15V. 

The electroluminescence spectra and luminance of the devices were obtained on a 

PR655 spectrometer in ambient conditions at room temperature.

3. Result and discussion

3.1 Synthesis of materials

The molecular structure of TPE-An-TPA and its synthetic route were illustrated in 

Scheme 1. To be specific, the AIEgen of TPE-En-TPA was prepared through Suzuki 

coupling between the two precursor of TPE-bearing boric acid ether TPE-BE and the 

Br-containing precursor TPA-An-Br in high yield. The precursor of TPA-An-Br was 

obtained through Suzuki coupling between the commercially available chemicals of 
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9,10-dibromoanthracene and 

N,N-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline, while The AIE 

precursor of TPE-BE was prepared through the reported methods of McMurry 

reaction of 4-bromobenzophenone and later nucleophilic substitution. Thanks to the 

non-planar structure of TPE unit, the objected AIEgen of TPA-An-TPE, despite of its 

rigid structure, exhibited good solubility in common organic solvents, such as THF 

(tetrahydrofuran), dichloromethane and chloroform, which enabled the wet-method 

for structure characterization. 

N
N

TPA-An-TPE

N B Br Br+ BrN
Pd(Ph3)4, K2CO3

THF/H2O, RefluxO

O

TPA-An-Br

O

Br

Br
Br

B
B

O

O
O

O
Zn, TiCl4

TPE-Br TPE-BE

THF, Reflux

1. n-BuLi, THF, -78oC

O

O
BO2. , -78oC

Pd(Ph3)4, K2CO3

THF/H2O, Reflux

TPE-BE

Scheme 1. The synthetic route to the AIEgen of TPA-An-TPE.

3.2 Thermal properties

High thermal stability is a perquisite condition for both fabrication and application of 

the OLED devices. Therefore, thermogravimetric analysis (TGA) and differential 

scanning calorimetry (DSC) were conducted on TPA-An-TPE. Generally, the fully 

aromatic components of anthracene, TPE and TPA endowed the compound with high 

rigidity and therefore high thermal stability. As shown in the Figure 1, this emitter 
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exhibited high glass transitional temperature (Tg) of 168.3oC, high decomposition 

temperature of 537 oC at 5% weight loss (Td) and high mass of residual char (nearly 

44%) at 800 oC, all of which indicated this compound was both thermally and 

morphologically stable for fabrication and application as the OLED emitters. 

Figure 1. Thermogravimetric analysis (TGA) (a) and differential scanning 

calorimeter (DSC) (b) curves of TPA-An-TPE, with the scanning rate at 10 k.min-1 

under N2.

3.3 Photophysical Properties

Figure 2. The absorbance and photoluminescence of TPA-An-TPE (Blue line) 

recorded in THF solution at the concentration of 1 mg.mL-1.
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The absorption and emission spectra of this emitter were also recorded in THF 

solutions are shown in Figure 2. The compound exhibited much fine absorption 

spectrum, with one peak of 398 nm quite close to the absorption peak of anthracene. 

The photoluminescence (PL) behaviors of TPA-An-TPE were also investigated in the 

solution and aggregated state. When dissolved into THF, the emitter of TPA-An-TPE 

exhibited weak emission with the peaks of 477 nm, because its singlet excitons tend 

to nonradioactive decay through vigorously intramolecular motion in good solvent as 

a result of its twisted conformation. Since the emitters is hydrophobic effect, their PL 

spectra are measured in THF/water mixtures with increasing water fractions (fw) to 

form aggregated states (Figure 3 a-c). Both the intensity and the emission peak were 

quite complexed, which only showed the increasing tendency, but not simply 

monotonic increasing. However, similar phenomena were also observed and 

mentioned in previous research. Similarly, we also attributed the complicated PL 

behaviors in the mixed solvent to the formation of various kinds of nanoparticle 

suspensions, such as, amorphous particles and crystal particles. As for this AIEgen, 

water exhibited worse solubility and higher polarity compared with THF, and 

therefore it caused red shifted emission of the AIEgen and also an increased PL 

intensity with the water fraction increasing from 0% to 30%. At higher ratio of water 

(>30%), the aggregates appeared, which could reduce the polarity of molecular 

environment and therefore induce a blue shift. To be exact, from the water fraction 

from 40% to 70%, the amorphous aggregates appeared to decrease the PL intensity, 

while at the ratio of 80-90%, the water fraction would provide crystalline aggregates 

to increased PL intensity. However at the ratio of 99% for water, most of the AIEgens 

were precipitated from the solvent, and the PL intensity of the solvent have a sharp 

decrease.[18, 19]

Meanwhile, the powder of TPA-An-TPE show blue color, which exhibited strong 

blue emission under UV 365(Figure 4a-b), with the photoluminiscence quantum 

yield (PLQY) of 25.8%. Therefore, the emitter of TPA-An-TPE, thanks to the 

AIE-active group of TPE moiety, exhibited the AEE (aggregation-enhanced emission) 
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nature which is much favored in the OLED devices, as most OLED emitters were 

applied as solid state.

Figure 3. The emission photograph (a) and PL spectra (b) of TPA-An-TPE in 

THF/water mixtures, (c) and the PL intensity as a function of the ratio water fraction 

mixtures under 365 nm UV illumination

Figure 4. The photograph of the TPA-An-TPE powder under sunlight (a) and under 

UV light (b).
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3.4 Theoretical calculations

Figure 5. The HOMO and LUMO energy levels and distributions of TPA-An-TPE.

To investigate the electronic structure, density function theory (DFT) calculation was 

performed on TPA-An-TPE using the B3LYP/6-31G (d, p) set. The highest occupied 

molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and 

optimized geometries were displayed in Figure 5. This emitter adopted a quite 

twisted conformation between the three moieties of anthracene, TPE and TPA, with 

the torsional dihedral angles of 104.1o for TPA and anthracene, and 103.9o for TPE 

and anthracene. The HOMO and LUMO energy levels were calculated to be -4.95 eV 

and -1.61 eV respectively, with relatively high energy gap of 3.34 eV. The HOMO 

electron cloud distributions was localized on both the TPA and anthracene units, 

while the LUMO level was mainly localized on the anthracene core, indicating weak 

electronic attraction between the anthracene and TPA due to their both 

electron-donating properties. And the central core of TPE moiety just served as the 

block to link the peripheral substituents through C–C bond, but with less contribution 

to the HOMO and LUMO distribution. 

3.5 Electrochemical Behaviors

In order to calculate the specific HOMO and LUMO level, the electrochemical 
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properties of the TPA-An-TPE was further measured by cyclic voltammetry (CV). 

This AIEgen displayed onset oxidation potentials (Eox) at 0.72 eV (in Figure 6). 

Further, the HOMO energy level were calculated to be -5.12 eV, based on the 

equation of HOMO = - (4.4+Eox) eV[20, 21], while the LUMO energy levels are 

-2.22 eV from the equation of LUMO = (HOMO + Eg) eV, with Eg obtained from the 

on-tail absorption wavelength of 438 nm (2.90 eV). And these energy level were in 

accordance with the value calculated through DFT method. 

-1.0 -0.5 0.0 0.5 1.0

Potential (V, vs Ag/AgCl)

C
ur

re
nt

 (
a.

u.
 )

Figure 6. Cyclic voltammogramic behavior of TPA-An-TPE.

3.6 Electroluminescence

In order to evaluate the potential application of the AIEgen in OLEDs, the multilayer 

nondoped OLED was prepared with the architecture of indium tin oxide (ITO)/ 

N,N'-bis(1-naphthalenyl)-N,N'-bisphenyl-(1,1'-biphenyl)-4,4'-diamine(NPB)(40 nm)/ 

4,4',4'' -tri-9-carbazolyltriphenylamine (TCTA) (5 nm)/ emitting layer (EML) (20 

nm)/ 2,2',2''-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) (40 nm)/ 

LiF (1 nm)/ Al (100 nm), where EML was fabricated merely by non-doped AIEgen 
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TPA-An-TPE, NPB and TCTA served as hole injection layer, while TPBi played the 

role of hole-blocking and electron transport layers, respectively. The structure and the 

energy-level diagram of the OLED devices were shown in Figure. 7a. The 

characterization of the EL properties of these devices is summarized in Figure 7b-7d 

and Table 1. It can be seen that the non-doped OLED turned on at low voltage of 3.1 

eV, and radiated electroluminescence close to their PL in solid film, suggesting the 

exciton recombination occur in the EML layer and the EL results from the radiative 

decay of singlet excitons, which showed blue emission (with Full Width at Half 

Maximum of 100 nm), ranging from 420 to 620 nm with single peak at 474 nm, and 

this EL were stable from 100 to 1000 cd m-2, confirming the emission spectrum 

showed minimal dependence on the current density. Unlike some emitters with the 

mechanism of high exciton utilization efficiency (EUE) [22-37], the OLED device 

based on this AIEgen experienced neither structural optimization nor out-coupling 

enhancement. From this angle, it is interesting to notice that the nondoped AIE 

emitter exhibited the maximum EQE of 2.7%. Moreover, this EQE did not see any 

efficiency roll-off even at 1000 cd.m-2, which can be attributed to the fact that 

nonpolar AIE emitter can largely reduce quenching of emission, such as 

singlet–triplet and triplet–triplet annihilation. 
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Figure 7. (a) Device configuration: ITO/ NPB/ TCTA/TPA-An-TPE/ TPBi/ LiF/ Al, 

(b) EL spectra, (c) changes in luminance and current density with the applied voltages, 

and (d) plots of luminance versus current efficiency and power efficiency.

Table1. The EL performance of non-doped blue OLED based on the emitter 

TPA-An-TPE.

item
CE

(cd A-1)

PE

(lm W-1)

EQE

(%)

Voltage

(V)

CIE

(x,y)

elemental data a) 7.1 6.1 2.7 3.1 -

100 cd m-2 6.7 5.9 2.7 3.6 (0.18, 0.28)

1000 cd m-2 7.1 4.9 2.7 4.5  (0.19, 0.29)

a) PE: maximum power efficiency; EQE: maximum external quantum efficiency, 

Voltage: turn-on voltage at 1 cd m-2.
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4. Conclusion

In this study, a nonpolar symmetric AIEgen TPA-An-TPE was prepared, with 

TPA-ends and anthracene spacer and TPE-core. Due to its symmetric structure, this 

molecule TPA-An-TPE was prepared through quite facile steps. Thanks to its all 

rigid structure, TPA-An-TPE exhibited high Tg of 168.3 oC and Td of 537 oC, and 

the twisted structure enabled TPA-An-TPE to have blue photoluminescence and AEE 

performance, both of which were favored as OLED emitter. The blue non-doped 

OLED devices were therefore fabricated base on the emitter of TPA-An-TPE, with 

maximum EQE of 2.7 %, which exhibited no roll-off at1000 cd.m-2. 
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Highlights

 This emitter with good thermal stability and aggregation-enhanced emission 
(AEE) characteristics

 non-doped blue OLED device was fabricated with the maximum external 
quantum efficiency (EQE) of 2.7%. 

 non-doped blue OLED device with no efficiency roll-off even at 1000 cd.m-2.
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