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Room-Temperature Synthesis of Pyrazoles,
Diazepines, b-Enaminones, and b-Enamino Esters

Using Silica-Supported Sulfuric Acid as a
Reusable Catalyst Under Solvent-Free Conditions

Xiang Chen,1 Jin She,1 Zhi-Cai Shang,1 Jun Wu,1 and Peizhi Zhang2

1Department of Chemistry, Zhejiang University, Hangzhou, China
2School of Biological and Chemical Engineering, Zhejiang University of

Science and Technology, Hangzhou, China

Abstract: Silica-supported sulfuric acid (H2SO4�SiO2) has been utilized as a
heterogeneous recyclable catalyst for a highly efficient regio- and chemoselective
condensation of hydrazines=hydrazides, diamines, and primary amines with
various b-dicarbonyl compounds at room temperature to afford pyrazoles, diaze-
pines, and b-enaminones=b-enamino esters under solvent-free conditions within
5–15 min.

Keywords: Diazepines, b-enaminones=b-enamino esters, H2SO4�SiO2, hetero-
geneous recyclable catalyst, pyrazoles, solvent-free conditions

INTRODUCTION

Pyrazoles and diazepines are valuable bio-active heterocycles, which are
shown to possess important biological and pharmaceutical activities[1]

such as antimicrobial, antiviral, antitumor, anti-inflammatory, antifungal,
antidepressant, and anticonvulsant activities. Meanwhile, b-enaminones=
b-enamino esters are useful synthones for the synthesis of various pharma-
ceuticals[2] and bioactive heterocycles.[3]
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Because of these prominent roles, the synthesis of these three kinds of
compounds (pyrazoles, diazepines, and b-enaminones=b-enamino esters)
has attracted considerable attention recently. By now, various synthetic
approaches have been reported. For preparing pyrazoles, among the
reported methods,[4] the most preferred are the reactions of 1,3-dicarbonyl
compounds with hydrazines in the presence of acid, such as polystyrene-
supported sulfonic acid (PSSA),[4a] sulfuric acid,[4b] and so on. In regard to
synthesis of diazepines, several routes have been reported, such as micro-
wave heating of diazepine-diones in boiling POCl3,[5a] hydrogen transfer
N-heterocyclization using catalyst [Cp�IrCl2]2=K2CO3,[5b] condensation
of 1,3-diketones with diamines using catalyst PSSA,[4a] and others.[5c–5e]

Moreover, preparation of b-enaminones=b-enamino esters has been
reported to proceed by condensation of b-dicarbonyl compounds with
amines utilizing SiO2=microwaves,[6a] montmorillonite K-10,[6b] NaAu-
ClO4,[6c] Bi(TFA)3,[6d] Zn(ClO4)2�6H2O,[6e] CeCl3�7H2O,[6f] SiO2=
HClO4,[6g] and so on. However, most of the methods to prepare these
three kinds of compounds suffer from certain drawbacks including long
reaction times, unsatisfactory yields, higher temperatures, employment
of organic solvents, and use of expensive nonreusable catalyst. Thus, there
is still a need to develop greener and more efficient pathways for such
synthesis.

Recently, carrying out organic reactions under solvent-free conditions
has become highly desirable.[7] Solventless organic reactions usually are
rapid, are regio- or chemoselective, occur in high yields, and have environ-
mental and economic advantages.[7a] These advantages become even more
attractive if such reactions can be performed using reusable catalysts.
Solid acid catalysts prepared by employing acid supported on oxides have
been known and used for a long time; for instance, H2SO4�SiO2,[8]

HClO4�SiO2,[6g] and NaHSO4�SiO2
[9] have been reported to efficiently cat-

alyze some reactions. As we know, H2SO4�SiO2 can easily be prepared
from readily available silica gel and H2SO4, which is much cheaper and
more stable than HClO4, and H2SO4�SiO2 was also found to be a good
protic acid source under milder and safer conditions than HClO4�SiO2

in some reaction systems.[8] For these reasons, we studied synthesis of pyr-
azoles, diazepines, b-enaminones, and b-enamino esters by the solventless
condensation of b-dicarbonyl compounds with hydrazines=hydrazides,
diamines, and primary amines at room temperature using silica-supported
sulfuric acid (H2SO4�SiO2) as a heterogeneous recyclable catalyst.

Preparation of H2SO4�SiO2: To a slurry of silica gel (10 g, 200–400
mesh) in dry diethyl ether (50 mL) was added commercially available
concd. H2SO4 (3 mL) with shaking for 5 min. The solvent was evaporated
under reduced pressure resulting in free-flowing H2SO4�SiO2, which was
then dried at 110 �C for 3 h.

948 X. Chen et al.
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RESULTS AND DISCUSSION

Initially, condensation of hydrazines=hydrazides (1.1 mmol) and
1,3-dicarbonyl compounds (1 mmol) with H2SO4�SiO2 (20 mg) under
solvent-free conditions was examined. Hydrazines=hydrazides reacted
efficiently with various b-diketones to afford the desired pyrazoles in good
to excellent yields (Table 1). All of the reactions between hydrazines=
hydrazides and symmetrical b-diketones gave single components
1a–10a (entries 1–10 in Table 1). When an unsymmetrical b-diketone,
1-phenylbutane-1,3-dione, was employed to react with PhNHNH2, two
regioisomers, 14a and 14b, were obtained in the ratio of 19:1 (entry 14
in Table 1). Moreover, the b-ketoesters can also be used as a substitute

Table 1. Room temperature solventless synthesis of pyrazoles using H2SO4�SiO2
a

Entry R1 R2 R3 Time (min) Yield (%)b

1 Me H Ph 6 93
2 Me Me Ph 7 85
3 Me H 4-MePh 5 95
4 Me Me 4-MePh 5 90
5 Me H 4-ClPh 7 89
6 Me Me 4-ClPh 8 85
7 Me H H 5 96
8 Me Me H 5 93
9 Me H CH3CO 6 92

10 Me Me CH3CO 7 89
11 OEt H Ph 8 87c

12 OEt H 4-MePh 8 90c

13 OEt H 4-ClPh 8 82c

14 Ph H Ph 8 94

aReactions performed with 1.0 mmol of b-dicarbonyl compound, 1.1 mmol of
hydrazine=hydrazide, and 20 mg of H2SO4�SiO2 mixed for 5–8 min under
solvent-free condition, at room temperature.

bIsolated yields after column chromatography.
cYields of reactions performed in 50�C.

Synthesis Catalyzed by Reusable H2SO4�SiO2 949
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for diketones in this synthesis (entries 11–13 in Table 1). In such case,
only single components were afforded, in low yields at room temperature
and in high yields at 50 �C.

Next, reactions of diamines with b-dicarbonyl compounds were
investigated (Table 2). 1,2-Diaminobenzene reacted efficiently with
pentane-2,4-diketone and 3-methylpentane-2,4-diketone to yield diaze-
pines in a single step (entries 1 and 2 in Table 2). The reaction proceeded
at room temperature, delivering excellent yields. The reaction of 1,2-
diaminobenzene with b-ketoesters, however, failed to give the desired
products (entries 3 and 4 in Table 2).

Finally, this protocol was also extended to the synthesis of various
b-enaminones and b-enamino esters by the condensation of primary
amines with various b-diketones and b-ketoesters at room temperature
under solvent-free conditions, and the results are summarized in
Table 3. All of the reactions between primary amines and symmetrical
b-diketones and b-ketoesters gave single components in good to high
yields (entries 1–13 in Table 3). In the case of the reaction of unsymme-
trical diketone 1-phenylbutane-1,3-dione with PhNH2, two regioisomers
(14a and 14b) were obtained in the ratio of 27:1 (entry 14 in Table 3).

The method was found to be highly chemo- and regioselective.
Groups –NH2 in RNH2 and RNHNH2 attack only at the ketone carbo-
nyl for b-ketoesters (entries 11–13 in Table 1, entries 12 and 13 in Table 3)
and in priority at the certain ketone carbonyl connecting with a relatively

Table 2. Room-temperature solventless synthesis of diazepines using H2SO4�SiO2
a

Entry R1 R2 Yield (%)b

1 Me H 93
2 Me Me 90
3 OMe H NR
4 OEt H NR

aReactions performed with 1.0 mmol of b-dicarbonyl compound, 1.1 mmol of
diamine, and 20 mg of H2SO4�SiO2 mixed for 15 min under solvent-free condi-
tions at room temperature.

bIsolated yields after column chromatography.

950 X. Chen et al.
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weaker electron-donating group when using unsymmetrical diketone
(entry 14 in Table 1, entry 14 in Table 3). Moreover, the (Z)-selectivity
in the products b-enaminones=b-enamino esters (entries 1–14 in
Table 3) derived from b-dicarbonyl compounds with primary amines
was secured by intramolecular hydrogen bonding. In the 1H NMR spec-
tra the proton of the –NH– group appeared in the region of d 8.5–13.5.

The possibility of recycling the catalyst was examined. For this
reason, the reaction of pentane-2,4-diketone and aniline at room
temperature in the presence of H2SO4�SiO2 was studied (Table 4). After

Table 3. Room-temperature solventless synthesis of b-enaminone=b-enamino
ester using H2SO4�SiO2

a

Entry R1 R2 R3 Time (min) Yield (%)b

1 Me H 4-OMePh 6 97
2 Me Me 4-OMePh 6 94
3 Me H 4-MePh 6 95
4 Me Me 4-MePh 6 90
5 Me H Ph 7 94
6 Me Me Ph 8 88
7 Me H 4-ClPh 9 87
8 Me Me 4-ClPh 9 82
9 Me H 2-MePh 8 90

10 Me H Benzyl 6 94
11c Me H NH2CH2CH2 6 95
12 OEt H 4-OMePh 10 95
13 OEt H Benzyl 12 95
14 Ph H Ph 10 91

aReactions performed with 1.0 mmol of b-dicarbonyl compound, 1.1 mmol of
primary amines, and 20 mg of H2SO4�SiO2 mixed for 6–12 min under solvent-free
conditions at room temperature.

bIsolated yields after column chromatography.
cReactions performed with 2.0 mmol of b-dicarbonyl compound, 1.1 mmol of

primary amines, and 20 mg of H2SO4�SiO2 mixed for 6–12 min under solvent-free
conditions at room temperature.

Synthesis Catalyzed by Reusable H2SO4�SiO2 951
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completion of the reaction, the catalyst was recovered by simple filtration
and reused in subsequent reactions with consistent activity.

CONCLUSION

In conclusion, we have developed a green and efficient approach
for room-temperature solventless synthesis of pyrazoles, diazepines,
b-enaminones, and b-enamino esters by condensation of hydrazines=
hydrazides, diamines, and primary amines with various b-dicarbonyl
compounds in the presence of H2SO4�SiO2 as a heterogeneous catalyst,
which may provide a useful route for drug discovery. The solvent-free
conditions, simple experimental procedure, mildness of the conversion,
clear reaction profiles, high yields and chemo- and regioselectivities, short
reaction times, and low cost, stability, and reusability of the catalyst are
the noteworthy advantages of the protocol.

EXPERIMENTAL

General Considerations

Silica-supported sulfuric acid was prepared by a reported method.[8] All the
reagents were obtained from commercial sources. 1H NMR spectra were
recorded on a Bruker Avance DMX 500-MHz spectrometer in CDCl3

Table 4. Recycle experiment of H2SO4�SiO2
a

Run Yield (%)b

1 94
2 95
3 94
4 92
5 94
6 94

aReactions performed with 1.0 mmol of pentane-2,4-diketone, 1.1 mmol of ani-
line, and 20 mg of H2SO4�SiO2 mixed for 7 min under solvent-free condition at
room temperature.

bIsolated yields after column chromatography.

952 X. Chen et al.
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solution. Low-resolution MS analyses were measured on a Bruke Esquire
3000 spectrometer using the ESI (electrospray ionization) technique.

General Procedure for the Synthesis of Pyrazoles, Diazepines, and

b-Enaminones/b-Enamino Esters

To a mixture of a dicarbonyl compound (1 mmol) and a hydrazine=
hydrazide (a diamine, a primary amine) (1.2 mmol), H2SO4�SiO2 (20 mg)
was added. The mixture was stirred for 5–8 min (15 min, 6–12 min) at room
temperature. After completion of the reaction, the reaction mixture was
diluted with ethyl acetate (2 ml) and filtered. The catalyst was recovered
from the residue. The filtrate was concentrated. The residue, on purifica-
tion by column chromatography (silica gel, petroleum ether-ethyl acetate)
afforded pure pyrazole (diazepine, b-enaminone=b-enamino ester).

Condensation of b-enamino esters (1 mmol) with hydrazine
(1.2 mmol) was conducted at both room temperature and 50 �C.

When ethanediamine (1.2 mmol) was used as an amine, a dicarbonyl
compound (2 mmol) was required.

Selected Data

5-Ethoxy-3-methyl-1-phenyl-1H-pyrazole (Table 1, Entry 12)

1H NMR (CDCl3): d 1.42–1.45 (t, J¼ 7.0 Hz, 3H, CH3), 2.28 (s, 3H,
CH3), 4.11–4.16 (q, J¼ 7.1 Hz, 2H, CH2), 5.48 (s, 1H, CH), 7.21–7.72
(m, 5H, Ph). 13C NMR (CDCl3): d 14.77, 14.86, 68.01, 86.49, 121.97,
125.94, 128.96, 139.03, 148.94, 155.07. MS (ESI) m=z 203 ([MþH]þ).

3-Methyl-1,5-diphenyl-1H-pyrazole (Table 1, Entry 14a)

1H NMR (CDCl3): d 2.39 (s, 3H, CH3), 6.55 (s, 1H, CH), 7.32–7.91 (m,
10H, Ph). 13C NMR (CDCl3): d 13.76, 107.97, 125.41, 127.40, 128.34,
128.63, 128.87, 129.09, 130.89, 140.27, 143.37, 149.70. MS (ESI) m=z
235 ([MþH]þ).

5-Methyl-1,3-diphenyl-1H-pyrazole (Table 1, Entry 14b)

1H NMR (CDCl3): d 2.40 (s, 3H, CH3), 6.33 (s, 1H, CH), 7.22–7.32 (m, 10H,
Ph). 13C NMR (CDCl3): d 12.75, 104.57, 125.16, 125.90, 127.79, 127.94,
128.75, 129.27, 133.52, 140.10, 140.36, 151.67. MS (ESI) m=z 235
([MþH]þ).

Synthesis Catalyzed by Reusable H2SO4�SiO2 953
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(1Z,4Z)-2,4-Dimethyl-3H-benzo[b][1,4]diazepine (Table 2, Entry 1)

1H NMR (CDCl3): d 2.34 (s, 6H, CH3), 2.81 (s, 2H, CH2), 7.20–7.22
(m, 2H, Ph), 7.35–7.38 (m, 2H, Ph). 13C NMR (CDCl3): d 27.87, 43.38,
125.09, 127.68, 140.43, 157.99. MS (ESI) m=z 173 ([MþH]þ).

(Z)-Ethyl-3-(benzylamino)but-2-enoate (Table 3, Entry 13)

1H NMR (CDCl3): d 1.25–1.28 (t, J¼ 7.0 Hz, 3H, CH3), 1.92 (s, 3H,
CH3), 4.09–4.13 (q, J¼ 7.1 Hz, 2H, CH2), 4.43–4.44 (d, J¼ 6.4 Hz, 2H,
CH2), 4.55 (s, 1H, CH), 7.26–7.36 (m, 5H, Ph), 8.96 (s, 1H, NH).
13C NMR (CDCl3): d 14.83, 19.54, 47.00, 58.57, 83.45, 126.92, 127.54,
128.98, 138.98, 161.97, 170.79. MS (ESI) m=z 220 ([MþH]þ).

(Z)-1-Phenyl-3-(phenylamino)but-2-en-1-one (Table 3, Entry 14a)

1H NMR (CDCl3): d 2.16 (s, 3H, CH3), 5.92 (s, 1H, CH), 7.19–7.95
(m, 10H, Ph), 13.13 (s, 1H, NH). 13C NMR (CDCl3): d 20.66, 94.48,
124.98, 125.99, 127.28, 128.50, 129.38, 131.12, 138.85, 140.23, 162.44,
188.88. MS (ESI) m=z 238 ([MþH]þ).

(Z)-4-Phenyl-4-(phenylamino)but-3-en-2-one (Table 3, Entry 14b)

1H NMR (CDCl3): d 2.24 (s, 3H, CH3), 5.44 (s, 1H, CH), 6.77–7.35
(m, 10H, Ph), 9.71 (s, 1H, NH). 13C NMR (CDCl3): d 29.62, 100.33,
122.98, 123.79, 127.64, 128.20, 128.59, 129.18, 135.40, 139.60, 159.50,
197.36. MS (ESI) m=z 238 ([MþH]þ).
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