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ABSTRACT: Most organic piezochromic materials exhibit 
red-shifted and quenched emission as pressure increases. 
However, an abnormal phenomenon of pressure-induced 
blue-shifted and enhanced emission is observed in a 9-(3-
(1,2,2-triphenylvinyl)phenyl)anthracene crystal, which is 
based on discrete π-π anthracene (AN) dimer stacking with 
tetraphenyl ethylene (TPE) as a spacer. A blue-shifted 
emission appears and strengthens when pressure is more 
than 1.23 GPa, and it reaches the maximum when pressure is 
4.28 GPa. This phenomenon is ascribed to the cooperative 
effect between the aggregation-induced emission of TPE 
units and energy-transfer suppression from TPE to an AN 
excimer. This work reports a new concept in the 
piezochromic field and provides a novel strategy to achieve 
luminescence from a high-lying excited state.

Piezochromic luminescent materials exhibit remarkable 
emission color changes in response to external mechanical 
stimuli (e.g., grinding, pressing, and stretching), and such 
materials have been widely explored because of their 
potential for applications in optical data storage, pressure 
sensors, and optoelectronic devices.1-20 Their mechanism 
mainly involves the changes in chemical structures (i.e., 
breaking and reforming chemical bonds),21-23 phase transition 
(e.g., crystal-to-crystal24,25 and crystal-to-amorphous26-29), 
conformational transformation,30-32 and excited-state 
transformation (e.g., locally excited state to charge-transfer 
state,33,34 triplet state to singlet state35,36, and monomer state 
to excimer/exciplex state).37,38 However, more universal and 
innovative strategies are required to design novel materials 
for the specific applications of piezochromic luminescence 
because current mechanisms usually cannot be integrated 
from one system to another.

Figure 1. Molecular design for discrete AN dimer formation. 
Molecular conformation and crystal packing were obtained 
through single-crystal XRD experiment. 

Among mechanical forces, isotropic hydrostatic pressure 
from a diamond anvil cell (DAC) is a useful tool to 
investigate structure–property relationships.39 Most 
luminescent materials show a gradual red-shifted and 
quenched emission as pressure increases as a result of the 
formation of a low-energy emission species and a 
nonradiative “dark” state (e.g., narrow-bandgap excimer).40-45 
Although few cases have been reported with pressure-
induced blue-shifted emission,46-49 simultaneous pressure-
induced blue-shifted and enhanced emission has not been 
reported in π-conjugated organic materials.6-20
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Tetraphenyl ethylene (TPE), a typical aggregation-induced 
emission (AIE) luminogen,50,51 exhibits a pressure-induced 
emission enhancement44,45 because of the inhibition of 
intramolecular motions under pressure. By contrast, the 
enhanced π-π interaction in an anthracene (AN) dimer 
during compression usually leads to the gradual redshift and 
quenching of excimer fluorescence.52-54 In our work, we 
combined TPE and AN into one molecule to design a new 
compound, namely, 9-(3-(1,2,2-
triphenylvinyl)phenyl)anthracene (mTPE-AN), which 
demonstrated a rare piezochromic luminescent behavior 
upon the application of pressure in crystals: pressure-
induced emission blue-shift and enhancement by the 
cooperation between AIE and suppressed energy transfer 
(ET) from TPE to an AN excimer.

A design strategy was proposed on the basis of molecular 
structure, conformation, and packing. The meta-linkage of 
mTPE-AN between an AN core and a one-sided TPE 
substituent was designed for the possible formation of the 
target dimer (Figure 1 and S7). The TPE substituent is 
asymmetrically oriented along one side of the AN plane in 
molecular conformation, which favors AN dimer formation 
with antiparallel π-π stacking.55-58 For comparison, a 
counterpart of 9-(4-(1,2,2-triphenylvinyl)phenyl)anthracene 
(pTPE-AN)59 was designed with a para-linkage between the 
AN core and the one-sided TPE substituent. The TPE 
substituent in the molecular conformation of pTPE-AN was 
divided equally by the AN plane, resulting in a complete 
deviation of π-π AN dimer stacking in crystals. mTPE-AN 
was synthesized via a boride reaction followed by two-step 
Suzuki coupling reactions, and pTPE-AN was produced via a 
one-step Suzuki coupling reaction (Supporting Information). 
Single crystals of mTPE-AN and pTPE-AN were cultivated 
through slow solvent evaporation from their 
dichloromethane/methanol solutions. mTPE-AN crystals 
showed a largely red-shifted, structureless, and broadened 
emission spectrum (λmax = 518 nm) and prolonged lifetime (τ 
= 191.70 ns; Figure S8-10) compared with those from single-
molecule emission. These findings agreed with the 
characteristic of an AN excimer.52-54,60-62 mTPE-AN crystals 
exhibited a high photoluminescence quantum yield (PLQY) 
of 82.20% as a result of the excimer-induced emission 
enhancement mechanism (Figure S11 in Supporting 
Information).8,55-58 By comparison, pTPE-AN crystals 
displayed a monomer-like blue emission with λmax = 432 nm, 
short lifetime of τ = 8.05 ns, and PLQY of 68.24%.

A single-crystal X-ray diffraction (XRD) experiment under 
ambient conditions was performed to confirm the feasibility 
of the molecular design strategy as mentioned above (Figure 
1). In mTPE-AN crystals, TPE units acted as spacers to isolate 
the π-π AN dimer from one another. No interaction existed 
between one dimer and adjacent dimers, that is, isolated and 
discrete π-π dimer stacking in mTPE-AN crystals.55-58,61,62 The 
interplanar π-π distance between two AN units in a dimer is 
3.527 Å, and the overlapped area is approximately 32%, 
indicating a strong π-π interaction (Figure S12).63 According 
to density functional theory calculations, the natural 
transition orbitals of the dimer indicate that the high PLQY 
of mTPE-AN crystals can be ascribed to the hybridized local 
and charge-transfer state (Figures S13–S16, see Supporting 
Information for details).64-66 By contrast, pTPE-AN crystals 
showed the nondimer stacking of AN (Figures S17 and S18).

Figure 2. (a) Emission spectra, (b) fluorescent images, (c) 
absorption spectra and (d) visible images of mTPE-AN 
crystals under pressure from 1 atm to 10.26 GPa.

Here, shearing force was applied to a crystalline sample of 
mTPE-AN by grinding for 60 min, but no change was 
observed in the emission and XRD pattern (Figure S19). This 
result indicated that the crystalline mTPE-AN sample was 
stable enough and thus remained undisturbed by 
grinding.8,57 As an alternative, the isotropic hydrostatic 
pressure was directly exerted via a DAC on mTPE-AN crystal 
(for experimental details, see Supporting Information), and 
obvious three-step variations were observed (Figures 2, S20, 
and S21). As pressure increased from 1 atm to 1.23 GPa, 
mTPE-AN crystal showed the gradual red-shifted emission of 
the AN excimer from green to yellow (herein called low-
energy emission band for clarity) and the decreased 
intensity, together with the slightly red-shifted absorption 
onsets. Once pressure increased above 1.23 GPa, the emission 
band of approximately 438 nm (called high-energy emission 
band) suddenly appeared and then gradually increased. 
Moreover, the high-energy emission band reached its 
maximum intensity at 4.28 GPa; the intensity of low-energy 
emission band kept decreasing, giving rise to pure blue 
emission. The absorption onset also kept the blue-shifted 
trend until 4.28 GPa. With further compression of over 4.28 
GPa, high- and low-energy emission bands demonstrated a 
redshift and an intensity decline. The absorption onset was 
unceasingly red-shifted. In compression, the blue-shift and 
enhancement of the emission spectra resulted in a 
discontinuous change in emission color from green and 
yellow to blue, which was opposite of the majority of 
observations in the piezochromic luminescent field. 
However, after a high pressure of up to 12.48 GPa was exerted 
on pTPE-AN crystal (Figure S22), continuous red-shifted and 
quenched emission was observed from 432 nm to 532 nm. 
This observation was different from that of mTPE-AN crystal 
under pressure. Although blue-shifted emission has been 
reported for carbon dots under hydrostatic pressure,47-49 
carbon dots have no clear structural information at a 
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molecular level. Consequently, studying the structure–
property relationship is difficult. In this experiment, mTPE-
AN crystal had a definite molecular structure and packing 
arrangement, which was highly desired to establish a 
structure–property relationship. 

Two possibilities were responsible for the emergence of 
the high-energy emission band of mTPE-AN crystal under 
pressure: phase transition from dimer to monomer and 
chemical reaction. On the one hand, the high-pressure 
angle-dispersive XRD experiment showed that all 
representative diffraction peaks during compression shifted 
to high angles. No disappeared peaks as well as no sudden 
new peaks were observed (Figure S23), excluding the 
occurrence of phase transition. Moreover, all three axes of a 
unit cell were shortened, and volume was reduced as 
pressure increased. Thus, dissociating one AN dimer into two 
AN monomers was impossible because mTPE-AN crystal 
became much more closely packed throughout compression. 
Actually, the low-energy emission band from the AN excimer 
existed throughout compression and just accompanied with 
a continuous redshift and a decreasing intensity. On the 
other hand, after the crystalline mTPE-AN powder was 
irradiated with UV light for 32 h, its 1H NMR spectrum 
remained the same as the one before irradiation (Figure 
S24), excluding the photodimerization of the AN dimer.67,68 
Moreover, the mass spectrum (MS) of mTPE-AN crystals 
under 2.00 GPa was identical to the MS of a pristine sample 
(Figure S25). This result indicated no chemical reaction in 
mTPE-AN crystals.

Figure 3. Normalized absorption and emission spectra of 
TPE crystals at 1 atm and mTPE-AN crystals at 1 atm ~ 4.28 
GPa. Dotted curve depicts the quenched emission spectrum 
of TPE to estimate the spectral overlap for ET process from 
TPE to AN dimer.

Pressure-dependent structural simulation in mTPE-AN 
crystal showed the decreasing π-π distance of the AN dimer 
and the TPE dimer, corresponding to the enhancement of 
intermolecular interactions with increasing pressure through 
Hirshfeld surface analysis (Figures S26-S29, Table S2, and 
Table S3). As pressure further increased, more interactions 
were combined, and intramolecular vibrations and rotations 
of the TPE units could be effectively restricted for the 

decreased nonradiation, resulting in the AIE behavior of TPE. 
In Figure 3, almost the same emission and absorption bands 
were observed between TPE crystal at 1 atm and mTPE-AN 
crystal at 4.28 GPa, indicating that the blue-shifted emission 
band in mTPE-AN crystal under pressure might originate 
from the TPE units.

The time-resolved spectrum and the excitation wavelength 
dependence were obtained at room and low temperature to 
understand the mechanism of pressure-induced emission 
blue-shift and enhancement in mTPE-AN crystals. To some 
extent, the effect of low temperature on the decrease in π-π 
distance was the same as that of high pressure (Figure 
S30).42 At room temperature (RT), mTPE-AN crystals showed 
single-exponential fluorescence decay from the time-resolved 
spectrum (Figure S31a), corresponding to a single pure 
excited state of the AN excimer. Moreover, the excitation-
independent emission wavelength at RT suggested a rapid 
internal conversion (IC) process, i.e., a complete ET from 
TPE to an AN excimer (Figure S31b). However, mTPE-AN 
crystals exhibited two-exponential fluorescence decay at 80 K 
(Figure S31c). This result indicated a suppressed ET from 
TPE (donor) to the AN excimer (acceptor).69 The excitation-
dependent emission spectra at 80 K revealed two emission 
bands from TPE and the AN excimer and confirmed the 
suppressed ET from TPE to the AN excimer (Figure S31d). 

Figure 4. Schematic diagram of pressure-induced emission 
blue-shift and enhancement in mTPE-AN crystals. 

Pressure-induced emission blue-shift and enhancement 
during mTPE-AN crystal compression can be explained as 
follows. From 1 atm to 1.23 GPa, the complete ET from TPE to 
the AN excimer produces the only emission band of the AN 
excimer because of the gradually increasing spectral overlap 
between TPE emission and AN dimer absorption (Figure 3). 
When pressure exceeds 1.23 GPa, the absorption of the AN 
dimer weakens because of the forbidden transition (Figure 
S32) and the disappearance of AN monomer absorption, 
while the emission spectra of TPE remain almost unchanged. 
Thus, the continuously reducing overlap between TPE 
emission and AN dimer absorption leads to the suppressed 
ET,[70] which is responsible for the emerging high-energy 
emission band of TPE. TPE units aggregate into a tighter 
packing as pressure increases, thereby triggering the AIE 
mechanism of the enhancement of the high-energy emission 
band (Figure 4). Once pressure exceeds 4.28 GPa, the high-
energy emission band is gradually quenched probably 
because a stronger π-π interaction between TPE units leads 
to the formation of the energy-trapping “dark” state. For the 
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redshift and quenching of the low-energy emission band 
with increasing pressure, the energy gap dramatically 
narrows between the potential energy curves of the excimer 
at an excited state and the dimer at a ground state because of 
the decreased π-π distance. Consequently, the nonradiative 
IC rate is aggravated according to the energy gap law. When 
the released pressure is 1 atm, the emission band of the AN 
excimer becomes reversible, but a small spectral residue of 
the high-energy emission band is observed (Figures S33 and 
S34). This spectral residue might result from the hysteresis 
effect that TPE units experience difficulty in promptly 
restoring their geometries to the original state because of the 
large structural deformation at pressures above 1.23 GPa.

In conclusion, mTPE-AN, a new piezochromic compound, 
was designed and synthesized, and it consisted of two 
functional moieties with a meta-linkage: an AIE-featured 
TPE and an excimer-forming AN. The discrete π-π dimer 
stacking of the AN was obtained in crystal with TPE unit as a 
spacer. An abnormal phenomenon of pressure-induced 
emission blue-shift and enhancement of mTPE-AN crystal 
was discovered. This phenomenon was an extremely rare 
case in the field of piezochromic luminescence. Theoretical 
and experimental investigations demonstrated that the blue-
shifted emission band originates from the TPE units in the 
mTPE-AN crystal. The suppressed ET from TPE to AN dimer 
induces the appearance of a blue-shifted band from 1.23 GPa 
to 4.28 GPa, and the AIE mechanism of TPE units 
contributes to the enhancement of the blue-shifted emission 
band, which is cooperatively responsible for pressure-
induced emission blue-shift and enhancement. This work 
reports a novel principle for a new class of blue-shifted and 
enhanced piezochromic luminescent materials by using the 
combination between ET suppression and AIE activation. 
This study also presents an ideal model to improve the 
understanding of high-lying excited-state emission in 
fundamental photophysics.
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