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Tungstophosphoric Acid–Catalyzed
Imino-Diels–Alder Reaction: An Efficient

One-Pot Synthesis of Pyrano- and
Furanoquinoline Derivatives

Biswanath Das, P. Balasubramanyam,

Maddeboina Krishnaiah, and Boyapati Veeranjaneyulu
Organic Chemistry Division I, Indian Institute of Chemical Technology,

Hyderabad, Andhra Pradesh, India

Abstract: Tungstophosphoric acid has been found to be an efficient catalyst for
the synthesis of pyranos- and furanoquinolines through the Imino-Diels–Alder
reaction involving one-pot coupling of benzaldehydes, anilines, and 3,4-dihydro-
2H-pyran or 2,3-dihydrofuran. The products are formed at room temperature in
excellent yields in a short period of time.

Keywords: Imino-Diels–Alder reaction, pyrano- and furanoquinolines,
tungstophosphoric acid

INTRODUCTION

Pyrano- and furanoquinolines have attracted much attention because of
their broad spectra of biological properties[1–4] and occurrence in several
bioactive natural alkaloids.[5] These compounds are generally prepared[6–12]

by aza-Diels–Alder reaction of imines (derived from aldehydes and amines)
with 3,4-dihydro-2H-pyran or 2,3-dihydrofuran employing Lewis acids as
catalysts. However, the use of expensive catalysts, formation of mixtures of
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products, unsatisfactory yields, and long reaction times are the drawbacks
in several of these methods. Many of the imines are also hygroscopic,
unstable, and difficult to purify, and thus the preparation of these com-
pounds separately is not advantageous. Another problem is that several
Lewis acids cannot be employed for one-pot coupling of aldehydes,
amines, and enol ethers because they will be decomposed or deactivated
by the amines and water formed in the intermediate imine-formation step.
Thus, few methods for single-step coupling of these three components have
been developed. Here we report the catalytic activity of a heteropoly acid
for such a reaction for the preparation of pyrano- and furanoquinolines.

RESULTS AND DISCUSSION

In continuation of our work[13–15] on the discovery of useful and
improved synthetic methodologies, we have observed that the one-pot
coupling of benzaldehydes 1, anilines 2, and 3,4-dihydro-2H-pyran or
2,3-dihydrofuran 3 can efficiently be carried out using tungstophosphoric
acid (TPA) as a catalyst (Scheme 1).

Initially the conversion was conducted with benzaldehyde, aniline,
and 3,4-dihydro-2H-pyran in the presence of different amounts of TPA
in MeCN at room temperature (Table 1). Considering the yields and
reaction times, 5mol% of the catalyst was considered to be suitable to
carry out the reaction. Different solvents such as MeCN, tetrahydrofuran
(THF), CH2Cl2, and toluene were utilized for this reaction, but MeCN
was preferred because the yield of the corresponding quinoline was
greatest.

A series of pyrano- and furanoquinolines were prepared from various
benzaldehydes and anilines (Table 2). The conversion was complete
within 30–50min, and the quinoline derivatives were formed in excellent
yields. The products were the mixtures of trans- and cis- isomers, which
were separated by column chromatograph over silica gel. The trans-
isomer 4 was the major isomer, whereas the cis-isomer 5 was the minor
one in each case. The ratio of these two isomers was determined by 1H

Scheme 1. Synthesis of pyrano- and furanoquinolines using TPA.
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NMR spectra of the crude products, and their structures were established
from the spectral (1H NMR andMS) and analytical data of the pure com-
pounds. The four isomeric products (two sets of trans- and cis- isomers)
from the reaction of benzaldehyde, m-methyl aniline, and 3,4-dihydro-
2H-pyran (Scheme 2) were successfully isolated and characterized.

Table 2. Synthesis of pyrano- and furanoquinolines using TPA

Benzaldehyde (1) Aniline (2)
Olefin
(3)

Time
(min)

Isolated
yield (%)

Product
ratio (4:5)aEntry R1 R2 R3 R4 R5

a H H H H H 2 30 92 62:38
b H H H H Cl 2 40 91 61:39
c H H H H F 2 45 89 63:37
d H H OMe H H 2 40 87 60:40
e H Cl H H H 2 40 93 62:38
f H Ome H H H 2 50 86 59:41
g H H H H Me 2 40 94 60:40
h H H Me H H 2 40 89 61:39
i H H H H H 1 30 90 59:41
j H H Ome H H 1 45 89 62:38
k H H H H Cl 1 40 88 61:39
l H Cl H H F 1 50 86 59:41
m H H H H OMe 1 45 90 63:37
n H H H H Me 1 45 88 64:36

aThe ratio of 4 and 5 was determined by 1H NMR spectra of the crude
products, and their structures were determined from the spectra (1H NMR and
MS) and analytical data of the pure compounds.

Table 1. Optimization of catalyst loadinga

Entry
Catalyst

loading (mol%)
Time
(min)

Isolated
yield (%)

a 1 40 55
b 5 40 92
c 10 40 93
d 15 40 93
e 20 40 94
f 0 180 0

aThe reaction of benzaldehyde, aniline, and 3,4-dyhydro-
2H-pyran was conducted using different amounts of PTA
in MeCN at room temperature.
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The conversion can be explained by in situ formation of imines (by
condensation of benzaldehydes and anilines), which act as heterodienes
to undergo aza-Diels–Alder reactions with 3,4-dihydro-2H-pyran or
2,3-dihydrofuran in the presence of tungstophosphoric acid (TPA) to
produce the corresponding pyrano- or furnaoquinolines.

The catalyst, TPA, is a commercially available important heteropoly
acid. In recent years, several heteropoly acids have gained much impor-
tance as catalysts for the synthesis of fine chemicals, flavones, and
pharmaceuticals.[16] They are also frequently employed to conduct
various useful industrial processes.[17,18] Among the heteropolyacids,
polytungstic acids are most widely used as catalysts. In the present
conversion, tungstophosphoric acid has been found to be a highly
effective catalyst for the preparation of pyrano- and furanoquinolines.
In the absence of TPA, no products were formed under the present
experimental conditions.

In conclusion, we have applied heteropoly acid, TPA, at room
temperature for the convenient and efficient one-pot preparation of
pyrano- and furanoquinolines in excellent yields. The mild reaction
conditions, operational simplicity, and short reaction times are the
advantages of the present method.

CONCLUSION

In conclusion, we have developed a convenient and efficient method for
the synthesis of pyrano- and furanoquinolines using TPA as a heteroge-
neous catalyst. The method provides simple access for the preparation
of various pyrano- and furanoquinoline derivatives of biological
importance.

Scheme 2. Synthesis of pyranoquinolines using TPA.
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EXPERIMENTAL

General Procedure for the Synthesis of Pyrano- and Furanoquinolines

TPA (5mol %) was added to a mixture of benzaldehyde (1mmol) and
aniline (1.1mmol) in MeCN (5mL). The mixture was stirred at room
temperature for 10min followed by addition of dihydropyran or dihydro-
furan (1.2mmol). The stirring was continued, and the reaction was
monitored by thin-layer chromatography (TLC). After completion, the
reaction was quenched with water (5ml), and the mixture was extracted
with CH2Cl2 (3� 5ml). The combined organic layer was washed with
water (2� 10ml), dried, and concentrated. The residue was purified by
column chromatography to obtain pure pyrano- or furanoquinoline.

Spectral Data for Selected Compounds

The spectral (1H NMR and MS) and analytical data of the unknown
products are given here.

Product 4d (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.49–7.21 (5H, m), 6.82 (1H, dd, J¼ 8.0,
2.0Hz), 6.71–6.60 (2H, m), 4.65 (1H, d, J¼ 10.0Hz), 4.45 (1H, brs), 4.36
(1H, d, J¼ 2.0Hz), 4.06 (1H, m), 3.78 (3H, s), 3.69 (1H, m), 2.02 (1H,
m), 1.92–1.28 (4H, m). FABMS m=z: 296 (Mþþ 1). Anal. calcd. for
C19H21NO2:C, 77.29;H, 7.12;N, 4.75%.Found:C, 77.34;H, 7.24;N, 4.78%.

Product 5d (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.46–7.21 (5H, m), 7.01 (1H, dd, J¼ 8.0,
2.0Hz), 6.72–6.60 (2H, m), 5.30 (1H, d, J¼ 3.0Hz), 4.66 (1H, d,
J¼ 2.0Hz), 4.25 (1H, brs), 3.84 (3H, s), 3.52 (1H, m), 3.41 (1H, m),
2.13 (1H, m), 1.60–1.38 (4H, m). FABMS m=z: 296 (Mþþ 1). Anal.
calcd. for C19H21NO2: C, 77.29; H, 7.12; N, 4.75%. Found: C, 77.23;
H, 7.18; N 4.82%.

Product 4j (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.54–7.21 (5H, m), 6.97 (1H, dd, J¼ 8.0,
2.0Hz), 6.75–6.61 (2H, m), 5.25 (1H, d, J¼ 10.0Hz), 4.64 (1H, d,

Pyrano- and Furanoquinoline Derivatives 3829
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J¼ 2.5Hz), 4.32 (1H, brs), 3.82 (3H, s), 3.80–3.62 (2H, m), 2.74 (1H,
m), 2.21 (1H, m), 1.52 (1H, m). FABMS m=z: 282 (Mþþ 1). Anal. calcd.
for C18H19NO2: C, 76.87; H, 6.76; N, 4.98%. Found: C, 76.73; H, 6.84; N,
4.89%.

Product 5j (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.50–7.29 (5H, m), 6.99 (1H, dd, J¼ 8.0,
2.0Hz), 6.74–6.62 (2H, m), 4.60 (1H, d, J¼ 2.0Hz), 4.58 (1H, d,
J¼ 3.0Hz), 3.98 (1H, m), 3.81 (3H, s), 3.80–3.66 (2H, m), 2.42 (1H,
m), 2.01 (1H, m), 1.72 (1H, m). FABMS m=z: 282 (Mþþ 1). Anal. calcd.
for C18H19NO2: C, 76.87; H, 6.76; N, 4.98%. Found: C, 76.92; H, 6.79; N,
5.06%.

Product 4l (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.42–7.27 (4H, m), 6.83–6.74 (2H,
m), 6.42 (1H, m), 4.62 (1H, d, J¼ 10.0Hz), 4.30 (1H, d, J¼ 2.0Hz),
4.01 (1H, brs), 3.66 (1H, m), 3.18 (1H, m), 2.01 (1H, m), 1.48–1.10
(2H, m). FABMS m=z: 304 306 (Mþþ 1). Anal. calcd. for
C17H15ClFNO: C, 67.33; H, 4.95; N, 4.62%. Found: C, 67.28; H,
4.87; N, 4.71%.

Product 5l (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.40–7.28 (4H, m), 7.11 (1H, dd,
J¼ 8.0, 2.0Hz), 6.76 (1H, m), 6.48 (1H, m), 5.21 (1H, d, J¼ 3.0Hz),
4.61 (1H, d, J¼ 2.0Hz), 3.58 (1H, m), 3.37 (1H, m), 2.07 (1H, m),
1.53–1.41 (2H, m). FABMS m=z: 304 306 (Mþþ 1). Anal. calcd. for
C17H15ClFNO: C, 67.33; H, 4.95; N, 4.62%. Found: C, 67.42; H,
4.84; N, 4.68%.

Product 4n (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.45–7.23 (5H, m), 6.91 (1H, t,
J¼ 8.0Hz), 6.51 (1H, d, J¼ 8.0Hz), 6.32 (1H, d, J¼ 8.0Hz), 4.65
(1H, d, J¼ 10.0Hz), 4.42 (1H, d, J¼ 2.0Hz), 4.10 (1H, m), 3.94 (1H,
brs), 3.64 (1H, m), 2.32 (3H, s), 2.0 (1H, m), 1.91–1.25 (4H, m). FABMS
m=z: 280 (Mþþ 1). Anal. calcd. for C19H21NO: C, 81.72; H, 7.53; N,
5.02%. Found: C, 81.95; H, 7.44; N, 5.11%.

3830 B. Das et al.
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Product 5n (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.49–7.21 (5H, m), 6.99 (1H, t,
J¼ 8.0Hz), 6.58 (1H, d, J¼ 8.0Hz), 6.43 (1H, d, J¼ 8.0Hz), 5.28
(1H, d, J¼ 3.0Hz), 4.55 (1H, d, J¼ 2.0Hz), 3.90 (1H, brs), 3.52 (1H,
m), 3.30 (1H, m), 2.38 (3H, s), 2.24 (1H, m), 1.81 (1H, m), 1.52–1.23
(3H, m). FABMS m=z: 280 (Mþþ 1). Anal. calcd. for C19H21NO: C,
81.72; H, 7.53; N, 5.02%. Found: C, 81.85; H, 7.64; N, 5.14%.

Product 4n1 (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.43–7.25 (5H, m), 7.02 (1H, d,
J¼ 8.0Hz), 6.49 (1H, d, J¼ 8.0Hz), 6.25 (1H, s), 4.63 (1H, d,
J¼ 10.0Hz), 4.30 (1H, d, J¼ 2.0Hz), 4.03 (1H, m), 3.91 (1H, brs),
3.63 (1H, m), 2.22 (3H, s), 2.01 (1H, m), 1.88–123 (4H, m). FABMS
m=z: 280 (Mþþ 1). Anal. calcd. for C19H21NO: C, 81.72; H, 7.53; N,
5.02%. Found: C, 81.82; H, 7.61; N, 5.09%.

Product 5n1 (Table 2)

1H NMR (CDCl3, 200MHz) d: 7.42–7.28 (5H, m), 7.25 (1H, d,
J¼ 8.0Hz), 6.60 (1H, d, J¼ 8.0Hz), 6.39 (1H, s), 5.27 (1H, d,
J¼ 3.0Hz), 4.65 (1H, d, J¼ 2.0Hz), 3.73 (1H, brs), 3.55 (1H, m), 3.41
(1H, m), 2.28 (3H, s), 2.12 (1H, m), 1.62–1.21 (4H, m). FABMS m=z:
280 (Mþþ 1). Anal. calcd. for C19H21NO: C, 81.72; H, 7.53; N, 5.02%.
Found: C, 81.68; H, 7.59; N, 5.07%.
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