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Solid-Solid Phase and Solvent-Free
Oxidative Removal of N-(4-Alkoxyphenyl)
Groups ofMonocyclic b-Lactams with Ceric
Ammonium Nitrate as a Cheap, Simple, and

Efficient Method

Aliasghar Jarrahpour and M. Zarei

Department of Chemistry, College of Sciences, Shiraz University,

Shiraz, Iran

Abstract: Five N-(4-methoxyphenyl)- and five N-(4-ethoxyphenyl)-b-lactams were

prepared by ketene-imine [2þ 2] cycloaddition (Staudinger reaction). Then these

2-azetidinones were N-dearylated by grinding together with ceric ammonium nitrate

without hazardous solvents in good to excellent yields. The solid-solid phase N-dear-

ylation is easier, simpler, and more efficient than the general method in solution. The

pure N-unsubstituted b-lactams obtained by a nontedious workup and without further

purification.

Keywords: 2-Azetidinones, ceric ammonium nitrate, solvent-free, solid-solid phase,

N-unsubstituted b-lactam

INTRODUCTION

It is remarkable that chemists still carry out their reactions in solution.

Recently chemists have found that many reactions proceed efficiently in the

solid state or solvent-free conditions.[1] The solid-state reactions[2] or

solvent-free[3] reactions have many advantages: reduced pollution, low

costs, and simplicity in process and handling. These factors are especially
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important in industry. Furthermore, in many cases, solid-state reactions

proceed much faster than the solution reaction, probably because the solid-

state reaction is a very high concentration reaction.[4] b-Lactam compounds

really are “evergreen” bioactive molecules.[5] N-Unsubstituted b-lactams

are intermediates in the synthesis of monocyclic and bicyclic b-lactam anti-

biotics.[6] Monocyclic b-lactams such as nocardicins 1 and monobactams 2

are of interest as they have been found to exhibit antibiotic properties.[7]

These compounds can be synthesized by various routes, though the prep-

aration of an N-unsubstituted b-lactam is a common feature.[8]

The importance of N-unsubstituted b-lactams for the semisynthesis of the

novel anticancer agents Taxol and Taxotere is also well documented.[9]

Several protecting groups are often used for N1-protection of b-lactams and

can be deproteced by different methods to give N-unsubstituted b-lactams.[10]

Generally, the selection of Nl-protective groups in b-lactam synthesis is based

on the ease of selective removal of these groups at the appropriate stage.[11] In

solution-phase syntheses, ceric ammonium nitrate (CAN) has been utilized to

remove the 4-methoxyphenyl,[12] 4-methoxybenzyl,[13] 4-(methoxymethoxy)-

phenyl,[14] and benzloxy-aniline linker[15] group from the amide nitrogen of

b-lactams to generate their N-unsubstituted analogs. Generally aqueous aceto-

nitrile is used as solvent in these deprotection reactions.[16] However, these

methods have some drawbacks that limit their applications: toxicity, high cost,

and tedious workup. Acetonitrile is a toxic and expensive solvent. Because of

the low partition coefficient between ethyl acetate and water, a large amount

of the former is used repeatedly for workup.[17]

Our aimwas to develop a simple and efficient synthetic strategy for the prep-

aration ofN-unsubstituted 2-azetidinones. In this study, we report the conversion

of N-(4-alkoxyphenyl)-2-azetidinones to N-unsubstituted 2-azetidinones with

ceric ammonium nitrate (CAN) in solid-solid phase and solvent-free medium.

RESULTS AND DISCUSSION

3,4-Disubstituted-2-azetidinones 3a– j were prepared as described in

Scheme 1. [2þ 2]-Ketene-imine cycloaddition reaction (Staudinger

reaction) of corresponding acylchlorides and Schiff bases in the presence of

triethylamine at 210 8C resulted in cis and trans 2-azetidinones 3a– j in

excellent yields. Subsequent treatment with ceric ammonium nitrate (CAN)

converted b-lactams 3a– j into the N-unsubstituted b-lactams 4a– j

(Scheme 1 and Table 1). The powdered b-lactams 3a– j and CAN were

mixed in a mortar. Then 2–3 drops of distilled cold water were added and

ground into the mixture for 1 min at room temperature.

The reaction usually starts immediately with formation of the colored

p-benzoquinone. The change of the color was a good indicator of its

formation. The presence of water is necessary, and the reported mechanism[18]

confirms it. After 15 min, the mortar was fully colored. Ethyl acetate was
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added to the reaction mixture, shaken well, and then filtered. The resulted

solution was washed with 10% NaHSO3 and brine. The released quinone was

removed by forming the bisulfite adduct, which can bewashed outwithwater.[19]

Removal of water by Na2SO4 and evaporation of the solvent in vacuo

resulted in pure N-unsubstituted b-lactams 4a–j in good to excellent yields.

Both N-(4-methoxyphenyl)-2-azetidinones 3a–e and N-(4-ethoxyphenyl)-2-

azetidinones 3f– j were dearylated rapidly and selectively with satisfactory

purity without need for column chromatography or recrystallization.

The structures of the NH-b-lactams 4a– j were confirmed by spectro-

scopic data and elemental analyses. The carbonyl function of these dearylated

b-lactams was shifted to higher wave numbers in IR spectra. 1H NMR spectra

definitely showed the NH signals and H-4 as a doublet of doublets peak. The

mass spectra showed the molecular ion for all synthesized molecules. This

method is more convenient, more efficient, cheaper, and safer than the

general reported methods.

In summary, we have developed a simple and green procedure for the

synthesis of N-unsubstituted b-lactams. For the first time, a solvent-free

method for N-dearylation of 2-azetidinones in solid-solid phase by grinding

with CAN has been reported by us. Cleavage of the electron-rich aryl

groups with CAN occurs rapidly in mild and green conditions.

EXPERIMENTAL

Typical Experimental Procedure for the Solid-Solid Phase

N-Dearylation of b-Lactams 3a–j

All solid–solid reactions were performed by grinding together 1.0 mmol of the

pure 2-azetidinones 3a–j with 3.5 mmol of CAN in the presence of 2–3 drops

of cold water in a mortar for 1 min and keeping the mixture at room temperature

for 15 min. Then the reaction mixture was poured into EtOAc, shaken well, and

Scheme 1. N-Dearylation of 2-azetidinones 3a– j in solid-solid phase.
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Table 1. Comparison of the yields by use of CAN in solution with solvent-free

N-dearylation of 2-azetidinones 3a– j

Substrate Products

Yield (%) by isolation

Solution phasea Solid phaseb

83 88

81 80

77 85

75 76

79 82

80 83

(continued )
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filtered. The colored resulted solutionwaswashedwith 10%sodiumbisulfite (until

the aqueous layer remained colorless) and brine and then dried over dry sodium

sulfate. After filtration and evaporation of solvent under reduced pressure, the

N-unsubstituted b-lactams 4a–j were obtained.

Data

4-(3,4-Dimethoxyphenyl)-3-phenoxyazetidin-2-one (4a). Yield: 88%. Mp:

140–142 8C. IR (KBr) cm21: 1777.7 (CO), 3418.9 (NH). 1H NMR

Table 1. Continued

Substrate Products

Yield (%) by isolation

Solution phasea Solid phaseb

76 79

84 85

78 83

74 78

aCH3CN/H2O (3:1) for 30–45 min.
b15 min.
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(250 MHz, DMSO-d6) d 3.58, 3.66 (2MeO, 2s, 6H), 5.03 (H-3, d, 1H,

J ¼ 4.0), 5.58 (H-4, dd, 1H, J ¼ 2.2, 4.0), 6.64–7.26 (ArH, m, 8H), 8.83

(NH, brs, 1H). 13C NMR (62.9 MHz, DMSO-d6) d 55.23, 55.25 (2OMe),

56.40 (C-4), 81.13 (C-3), 111.02–156.59 (aromatic carbons), 165.98 (CO,

b-lactam). GC-MS m/z ¼ 299 [Mþ]. Anal. calcd. for C17H17NO4: C,

68.21; H, 5.72; N, 4.68. Found: C, 68.31; H, 5.79; N, 4.73.

4-(4-Chlorophenyl)-3-phenoxyazetidin-2-one (4b). Yield: 80%. Mp: 188–

190 8C. IR (KBr) cm21: 1773.5 (CO), 3420.0 (NH). 1H NMR (250 MHz,

DMSO-d6) d 5.09 (H-3, d, 1H, J ¼ 4.5), 5.61 (H-4, dd, 1H, J ¼ 2.1, 4.5),

6.77–7.32 (ArH, m, 9H), 8.89 (NH, brs, 1H). 13C NMR (62.9 MHz,

DMSO-d6) d 56.91 (C-4), 82.26 (C-3), 114.98–156.34 (aromatic carbons),

165.90 (CO, b-lactam). GC-MS m/z ¼ 275 [Mþ, 37Cl], 273 [Mþ, 35Cl].

Anal. calcd. for C15H12ClNO2: C, 65.82; H, 4.42; N, 5.12. Found: C, 65.78;

H, 4.46; N, 5.08.

4-(4-Methoxyphenyl)-3-phenoxyazetidin-2-one (4c). Yield: 85%. Mp:

157–159 8C. IR (CHCl3) cm21: 1776.3 (CO), 3409.9 (NH). 1H NMR

(250 MHz, DMSO-d6) d 3.66 (MeO, s, 3H), 5.02 (H-3, d, 1H, J ¼ 4.3),

5.52 (H-4, dd, 1H, J ¼ 1.8, 4.3), 6.55–7.35 (ArH, m, 9H), 9.08 (NH, brs,

1H). 13C NMR (62.9 MHz, DMSO-d6) d 54.83 (OMe), 56.45 (C-4), 81.76

(C-3), 113.19–158.68 (aromatic carbons), 166.84 (CO, b-lactam). GC-MS

m/z ¼ 269 [Mþ]. Anal. calcd. for C16H15NO3: C, 71.36; H, 5.61; N, 5.20.

Found: C, 71.42; H, 5.66; N, 5.24.

2-(2-Oxo-4-styrylazetidin-3-yl)-isoindoline-1,3-dione (4d). Yield: 76%.

Mp: 168–170 8C. IR (CHCl3) cm21: 1726.2, 1768.6 (CO, phth), 1784.0

(CO, b-lactam), 3417.0 (NH). 1H NMR (250 MHz, DMSO-d6) d 4.72

(H-4, m, 1H), 5.60 (H-3, d, 1H, J ¼ 5.2), 6.25 (H-5, dd, 1H, J ¼ 7.6,

16.0), 6.70 (H-6, d, 1H, J ¼ 16.0), 7.22–7.92 (ArH, m, 9H), 8.85 (NH,

brs, 1H). 13C NMR (62.9 MHz, DMSO-d6) d 55.38 (C-4), 58.69 (C-3),

123.42–135.69 (C55C, aromatic carbons), 164.06 (CO, phth), 166.93

(CO, b-lactam). GC-MS m/z ¼ 318 [Mþ]. Anal. calcd. for

C19H14N2O3: C, 71.69; H, 4.43; N, 8.80. Found: C, 71.74; H, 4.49; N,

8.78.

2-[2-(3,4-Dimethoxyphenyl)-4-oxo-azetidin-3-yl]-4-nitroisoindole-1,3-dione

(4e). Yield: 82%. Mp. 117–119 8C. IR (KBr, cm21) 1735.0, 1770.2 (phth.,

CO), 1785.0 (CO, b-lactam), 3380.5 (NH). 1H NMR (250 MHz, DMSO-d6)

d 3.61, 3.75 (2 OMe, 2 s, 6H), 5.04 (H-4, dd, 1H, J ¼ 12.2, 3.5), 5.53 (H-3,

d, 1H, J ¼ 5.5), 6.55 (NH, br s, 1H), 6.97–8.63 (ArH, m, 6H). 13C NMR

(62.9 MHz, DMSO-d6) d 55.44, 55.85 (OMe), 60.81 (C-4), 63.16 (C-3),

110.08–150.07 (aromatic carbons), 163.36 (CO), 164.49 (CO, b-lactam).

GC-MS m/z ¼ 397 [Mþ]. Anal. calcd. for C19H15N3O7: C, 57.43; H, 3.81;

N, 10.58. Found: C, 57.37; H, 3.88; N, 10.55.
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4-(4-Nitrophenyl)-3-phenoxyazetidin-2-one (4f). Yield: 83%. Mp: 160–

162 8C. IR (KBr) cm21: 1774.4 (CO), 3247.9 (NH). 1H NMR (250 MHz,

DMSO-d6) d 5.33 (H-3, d, 1H, J ¼ 4.8), 5.77 (H-4, dd, 1H, J ¼ 2.2, 4.8),

6.77–8.20 (ArH, m, 9H), 9.10 (NH, brs, 1H). 13C NMR (62.9 MHz,

DMSO-d6) d 56.01 (C-4), 82.71 (C-3), 115.04–156.24 (aromatic carbons),

165.78 (CO, b-lactam). GC-MS m/z ¼ 284 [Mþ]. Anal. calcd. for

C15H12N2O4: C, 63.38; H, 4.25; N, 9.85. Found: C, 63.44; H, 4.30; N, 9.87.

3-Phenoxy-4-styrylazetidin-2-one (4g). Yield: 79%. Mp: 190–192 8C. IR
(KBr) cm21: 1775.7 (CO), 3310.0 (NH). 1H NMR (250 MHz, DMSO-d6) d

4.64 (H-4, m, 1H,), 5.51 (H-3, d, 1H, J ¼ 4.3), 6.18 (H-5, dd, 1H, J ¼ 7.4,

15.9), 6.65 (H-6, d, 1H, J ¼ 15.9), 6.90–7.33 (ArH, m, 9H), 8.96 (NH, brs,

1H). 13C NMR (62.9 MHz, DMSO-d6) d 60.67 (C-4), 87.47 (C-3), 120.30–

162.15 (C55C, aromatic carbons), 170.78 (CO, b-lactam). GC-MS

m/z ¼ 265 [Mþ]. Anal. calcd. for C17H15NO2: C, 76.96; H, 5.70; N, 5.28.

Found: C, 76.92; H, 5.77; N, 5.24.

3-Phenoxy-4-p-tolylazetidin-2-one (4h). Yield: 85%. Mp: 180–182 8C. IR
(KBr) cm21: 1773.9 (CO), 3300.0 (NH). 1H NMR (250 MHz, DMSO-d6) d

1.95 (Me, s, 3H), 4.81 (H-3, d, 1H, J ¼ 4.4), 5.32 (H-4, dd, 1H, J ¼ 2.2,

4.4), 6.54–6.98 (ArH, m, 9H), 8.60 (NH, brs, 1H). 13C NMR (62.9 MHz,

DMSO-d6) d 20.62 (Me), 56.52 (C-4), 82.34 (C-3), 115.07–156.66

(aromatic carbons), 166.14 (CO, b-lactam). GC-MS m/z ¼ 253 [Mþ].

Anal. calcd. for C16H15NO2: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.84;

H, 6.03; N, 5.48.

2-(2-Oxo-4-p-tolylazetidin-3-yl)isoindoline-1,3-dione (4i). Yield: 83%. Mp:

197–199 8C. IR (CHCl3) cm21: 1740.0, 1775.0 (CO, phth), 1785.0 (CO,

b-lactam), 3480.5 (NH). 1H NMR (250 MHz, DMSO-d6) d 2.35 (Me, s,

3H), 4.94 (H-4, dd, 1H, J ¼ 2.5, 3.5), 5.04 (H-3, d, 1H, J ¼ 2.5), 7.23–8.03

(ArH, m, 8H), 9.02 (NH, brs, 1H). 13C NMR (62.9 MHz, DMSO-d6) d

20.68 (Me), 55.43 (C-4), 62.63 (C-3), 123.39–137.27 (aromatic carbons),

164.56 (CO, phth), 166.71 (CO, b-lactam). GC-MS m/z ¼ 306 [Mþ]. Anal.

calcd. for C18H14N2O3: C, 70.58; H, 4.61; N, 9.15. Found: C, 70.62; H,

4.58; N, 9.21.

2-(2-(4-Chlorophenyl)-4-oxoazetidin-3-yl)-isoindoline-1,3-dione (4j). Yield:

78%. Mp: 196–198 8C. IR (CHCl3) cm
21: 1733.9, 1777.0 (CO, phth), 1785.0

(CO, b-lactam), 3373.5 (NH). 1H NMR (250 MHz, DMSO-d6) d 4.92 (H-3, d,

1H, J ¼ 2.5), 5.04 (H-4, dd, 1H, J ¼ 2.5, 3.2), 7.41–7.92 (ArH, m, 8H),

9.01 (NH, brs, 1H). 13C NMR (62.9 MHz, DMSO-d6) d 54.96 (C-4), 62.53

(C-3), 123.37–138.08 (aromatic carbons), 164.48 (CO, phth), 166.70

(CO, b-lactam). GC-MS m/z ¼ 328 [Mþ, 37Cl], 326 [Mþ, 35Cl]. Anal.

calcd. for C17H11ClN2O3: C, 62.49; H, 3.39; N, 8.57. Found: C, 62.55; H,

3.43; N, 8.54.
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