Tetrahedron Letters 52 (2011) 1070-1073

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Arylation of [6,6]-spiroacetal enol ethers: reactivity and rearrangement

Kylee M. Aumann, Peter C. Healy, Mark J. Coster*

Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan 4111, Queensland, Australia

ARTICLE INFO

ABSTRACT

Article history: Received 22 October 2010 Revised 9 December 2010 Accepted 17 December 2010 Available online 23 December 2010

Keywords: Spiroacetal Enol ether Tetrahydrochroman Rearrangement Hexahydrochroman

Spiroacetals¹ are a common structural motif found in many natural products derived from marine organisms, insects, plants, and fungi.² These natural products vary greatly in structural complexity and biological activity, acting as insect pheromones, and displaying antibacterial, antifungal, and anti-proliferative properties, among others.³ Interestingly, of the more than 2500 spiroacetalcontaining natural products identified to date, only one, integramycin (**1**, Fig. 1), incorporates a 2-aryl substituent.⁴ Integramycin was first isolated from the fermentation extracts of Actinoplanes sp. in 2002, and has been shown to inhibit strand transfer reactions mediated by the viral enzyme HIV-1 integrase, with an IC₅₀ value of 4 µM.^{3b} Additionally, integramycin exhibits no activity in DNAase assays at 100 µM, implying that it selectively inhibits HIV-1 integrase over other DNA interactive enzymes.

Integramycin poses a challenging synthetic target, comprising thirteen stereocenters and three chemically disparate regions: the aryl spiroacetal, cis-decalin, and tetramic acid subunits. To date, there have been no reported total syntheses of integramycin, although the aryl spiroacetal subunit and the cis-decalin fragments have been synthesized by the groups of Floreancig⁵ and Roush,⁶ respectively. Floreancig and coworkers employed a rutheniummediated hydroesterification and a C,O-dianionic addition to a lactone to afford the spiroacetal in their stereoselective synthesis of the aryl spiroacetal subunit.⁵ We sought to develop an alternative methodology to access 2-arylspiroacetals, initially focusing on a model system.

We now report our investigation of two strategies for the synthesis of the desired 2-arylspiroacetal motif 2, via a common spiroacetal enol ether **3**: (i) a Heck reaction⁷ and subsequent hydrogenation, and (ii) the addition of benzenesulfinic acid across the enol ether double bond, followed by displacement of phenylsulfinate using an appropriate arylzinc reagent.⁸ Spiroacetal enol ether **3** could, in turn, be derived from appropriately substituted exo-methylene tetrahydropyran 4 and an acrolein derivative 5,

Scheme 1. Strategies for 2-arylspiroacetal synthesis.

Attempts to selectively arylate [6,6]-spiroacetal enol ethers at the 2-position delivered unexpected results. Palladium-mediated arylation conditions afforded the double-Heck product, whereas reaction with benzenesulfinic acid resulted in a facile rearrangement into the corresponding 5-phenylsulfonyl-3,4,5,6-tetrahydrochromans, providing access to 5-aryl-3,4,5,6-tetrahydrochroman and hexahydrochroman derivatives. © 2011 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +61 7 3735 6037; fax: +61 7 3735 6001. E-mail address: m.coster@griffith.edu.au (M.J. Coster).

^{0040-4039/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.12.076

Scheme 2. Synthesis of spiroacetal enol ethers.

Scheme 3. Heck-hydrogenation approach to 2-arylspiroacetals.

Scheme 4. 'Double-Heck' reaction of spiroacetal enol ether 8b.

via an inverse electron demand hetero-Diels–Alder (HDA) reaction (Scheme 1). The use of an HDA reaction provides a convergent, stereoselective strategy for the synthesis of doubly anomerically-stabilized spiroacetal enol ethers.⁹

Accordingly, spiroacetal enol ethers **8a** and **8b** were synthesized from tetrahydropyran-2-methanol (**6**) by chlorination,¹⁰ elimination,¹¹ and HDA reaction with acrolein¹² or methacrolein,¹¹ respectively (Scheme 2). Initially considering the Heckhydrogenation strategy, we predicted that attack of the arylpalladium species should occur from the less hindered β -face, as should subsequent hydrogenation, resulting in the desired equatorial–equatorial stereochemistry (Scheme 3).¹³ To investigate this stereochemical hypothesis, the 3-methyl substituted spiroacetal enol ether **8b** was used in our investigation of the key Heck reaction.

Heck reactions of acyclic¹⁴ and cyclic enol ethers¹⁵ have been reported, however, Heck reactions with cyclic olefin substrates have typically resulted in unpredictable isomerization of the resultant product double bond.¹⁶ Larock et al. demonstrated that the use of silver carbonate as base and triphenylphosphine as an additive, in conjunction with palladium(II) acetate, almost entirely overcomes unwanted isomerization.¹⁶ With this precedent in mind, we initially sought to exploit these conditions for Heck coupling using spiroacetal enol ether **8b** (Scheme 4).

Unfortunately, despite attempts to optimize this chemistry for our system, and surveying numerous alternative Heck reaction conditions,¹⁷ the desired product was never obtained. Intriguingly, using iodobenzene with catalytic Pd(OAc)₂, Ag₂CO₃ and PPh₃ in 1,4-dioxane afforded spiroacetal **11**,¹⁸ presumably resulting from a second Heck coupling on intermediate *exo*-methylene compound

Scheme 5. Reaction of benzenesulfinic acid with 8b.

Scheme 6. Proposed mechanism for the formation of 13.

Scheme 7. Reaction of benzenesulfinic acid with 8a.

9a. Despite significant attempts to curb this undesired reactivity, no desired product was forthcoming, and therefore the alternative arylation strategy was investigated.

Ley et al. have demonstrated that the addition of benzenesulfinic acid to cyclic enol ethers affords the corresponding 2-benzenesulfonyl cyclic ethers.¹⁹ Further reaction with an arylzinc reagent generates the analogous 2-arylcyclic ether.²⁰ We sought to apply this methodology to our spiroacetal enol ethers (Scheme 5). Reaction of **8b** with benzenesulfinic acid afforded an unexpected product. Instead of the anticipated 2-phenylsulfonylspiroacetal **12b**, 5-phenylsulfonyltetrahydrochroman **13b** was obtained in quantitative yield, solely as the *trans*-diastereomer. The structure of this product was confirmed by X-ray crystallographic analysis,²¹ see Supplementary data for further details.

A mechanistic rationale for the formation of **13b** is illustrated in Scheme 6. Protonation of enol ether **8** and subsequent ring opening of **14** to give **15** would provide aldehyde **16** after loss of a proton. Formation of **17** by intramolecular attack of the enol ether on the aldehyde group and loss of water from **18** would provide conjugated oxocarbenium ion **19** which is trapped by benzenesulfinate to give the sulfone **13**.

Curiously, subjecting spiroacetal **8a** to the same reaction conditions produced varying results. Initial attempts provided an inseparable mixture of the equatorial¹⁸ 2-phenylsulfonylspiroacetal **12a** and 5-phenylsulfonyl-5,6,7,8-tetrahydrochroman (**13a**) (Scheme 7). This reaction proved particularly capricious, affording highly variable product ratios, ranging from exclusively spiroacetal **12a**

Scheme 8. Attempted arylation of 12a.

Table 1

Synthesis of tetrahydro- and hexahydro-chroman derivatives

\int_{0}	$H = BF_3 \cdot OI \\ F_3 = CH_2 C \\ H = 20 \qquad (R = N)$	Et ₂ , H, H ₂	SO ₂ Ph ArMgBr, 5, ^{NR} ZnBr ₂ , THF	Ar 5 0 21
Entry	Substrate	R	Ar	Product (yield) ^a
1	13a	Н	Ph	21a (80%)
2	13a	Н	4-MeOC ₆ H ₄	21b (74%)
3	13b	Me	Ph	21c (78%)
4	13b	Me	4-MeOC ₆ H ₄	21d (82%)
5	13b	Me	-	20 (62%) ^b

^a Isolated yields.

^b Separable mix of *cis*- and *trans*-isomers (55:45).

to exclusively tetrahydrochroman **13a**. Separate exposure of either **12a** or **13a** to benzenesulfinic acid did not result in interconversion, suggesting that the formation of each of these products is irreversible under the reaction conditions employed. In contrast, treatment of **8b** with benzenesulfinic acid under a variety of conditions, reproducibly provided **13b**, with no evidence for the formation of **12b** in any experiment to date.

Attempts to direct product formation by varying reaction concentration, temperature, stoichiometry, reaction time, etc. proved unsuccessful. Sulfinic acids are prone to disproportionation and autoxidation to sulfonic acid and thiosulfonate.²² For this reason, we sought to purify the sulfinic acid immediately prior to use, through complexation/decomplexation with iron(III).²³ Alas, purification of the benzenesulfinic acid had no discernible effect on reaction outcome, using either spiroacetal enol ether 8a or 8b. Likewise, substitution of the benzenesulfinic acid with *p*-toluenesulfinic acid did not alter the product outcomes. Other attempts to alter the reaction course by, for example, the addition of water, the in situ generation of the benzenesulfinic acid from the sodium salt, or buffering the reaction mixture with pyridine failed to significantly alter the reaction outcomes. Attempts to convert enol ethers 8a and 8b into 2-phenylthio spiroacetals, which could subsequently be oxidized to the desired sulfones, via a ceric ammonium nitrate mediated addition of thiophenol²⁴ were also unsuccessful, leading to decomposition of starting materials in all cases.

Taking the small amount of 2-phenylsulfonylspiroacetal **12a** available to us, we set about reacting it with phenylmagnesium bromide and zinc bromide (Scheme 8).¹³ The desired substitution product **10a** was not obtained, and in all attempts at this reaction, a gelatinous precipitate was observed, possibly indicating that 2-phenylsulfonylspiroacetal **12a** binds strongly to the divalent metal ions and is removed from solution.

Conversely, reaction of the rearrangement products **13a** and **13b** with aryl Grignard reagents in the presence of zinc bromide afforded excellent yields of the corresponding 5-aryl-5,6,7,8-tetra-hydrochromans **21a–d** (Table 1, entries 1–4). Disubstituted tetra-hydrochromans **21c** and **21d** were each isolated as a single diastereomer, and were tentatively assigned as the *cis*-isomers based on the coupling constant of H-5 (doublet, J = 8.0 Hz), com-

parison with the absence of H-5 coupling in **13b** (singlet), and the expected inversion of configuration. Reduction of **13b** with triethylsilane–BF₃·OEt₂ was equally successful, affording the fully reduced 6-methylhexahydrochroman **20** in good yield (Table 1, entry 5). The same complexation with magnesium or zinc proposed for **12a** cannot be achieved in this instance, thus allowing the desired reactions to occur. These arylations and the reduction reaction demonstrate high yielding and unprecedented access to several novel chroman derivatives.

In conclusion, spiroacetal enol ethers **8a** and **8b** were synthesized in excellent yields by HDA reactions under thermal conditions. Attempts to selectively arylate the 2-position of the spiroacetal enol ethers failed to deliver the desired substituted spiroacetals, providing unprecedented alternative products instead. Heck reaction conditions produced the over-arylated double-Heck product **11**, while attempted anomeric sulfonylation resulted in a facile rearrangement to 5-phenylsulfonyl-5,6,7,8-tetrahydrochromans **13a** and **13b**. Conversion of these chroman building blocks into a variety of substituted chroman derivatives was demonstrated.

3-Methyl-1,7-dioxaspiro[5.5]undec-2-ene (8b)

A mixture of freshly distilled methacrolein (11.0 mL, 133 mmol), enol ether **7** (14.0 mL, 133 mmol), and K₂CO₃ (20.06 g, 133 mmol) was heated in a base-washed (NaOH) sealed tube at 100 °C for 10 d. The mixture was diluted with Et₂O (200 mL), then washed with dilute HCl (5% aq, 80 mL), H₂O (50 mL), satd NaHCO3 (50 mL) and satd NaCl (50 mL), and dried (MgSO₄). The solvent was removed in vacuo and purified via flash chromatography (0-5% Et₂O in Pet. Spirits) to afford the title compound **8b** as a colorless oil (18.81 g, 112 mmol, 84%); R_f 0.52 (5% EtOAc in Pet. Spirits); IR (thin film) 2940, 2877, 1680, 1441, 1153, 1100 cm⁻¹; ¹H NMR (500 MHz, C_6D_6) δ 6.17 (s, 1H), 3.79 (app. dt, /=10.0, 2.0 Hz, 1H), 3.54 (dd, /=11.3, 4.7 Hz, 1H), 2.29 (m, 1H), 1.93 (m, 1H), 1.72 (m, 1H), 1.64 (m, 1H), 1.44 (m, 8H), 1.24 (m, 1H); 13 C NMR (126 MHz, C₆D₆) δ 135.4, 109.2, 94.7, 61.4, 35.0, 32.7, 25.8, 22.7, 19.0, 18.5; MS (EI) m/z 168 [M]⁺; HRMS (EI) calcd for $C_{10}H_{16}O_2$ [M]⁺ 168.1150, found 168.1150.

(E)-3-Benzylidene-2-phenyl-1,7-dioxaspiro[5.5]undecane (11)

Pd(OAc)₂ (4.5 mg, 20 µmol), Ag₂CO₃ (60.6 mg, 0.22 mmol) and PPh₃ (10.5 mg, 0.04 mmol) were added to a solution of spiroacetal enol ether 8b (32 µL, 0.20 mmol) and iodobenzene (23 µL, 0.20 mmol) in 1,4-dioxane (5 mL), and the suspension refluxed under an argon atmosphere for 18 h. The mixture was cooled and diluted with Et₂O (30 mL), then filtered through a pad of Celite to remove inorganic salts. The brown solution was washed with H_2O (10 mL), satd NaHCO₃ (10 mL) and satd NaCl (10 mL), dried (MgSO₄) and the solvent was removed in vacuo to afford a red/ brown oil. Purification by flash chromatography (5% Et₂O in Pet. Spirits) afforded the title compound **11** as a yellow oil (30 mg, 0.092 mmol, 49%); Rf 0.32 (5% EtOAc in Pet. Spirits); IR (thin film) 2946, 2881, 1684, 1436, 1153, 1108 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (m, 2H), 7.47 (m, 2H), 7.40 (m, 1H), 7.33 (m, 2H), 7.23 (m, 1H), 7.16 (m, 2H), 5.75 (s, 1H), 5.46 (s, 1H), 3.83 (m, 1H), 3.76 (m, 1H), 2.91 (m, 1H), 2.76 (m, 1H), 1.90-2.04 (m, 2H), 1.76–1.88 (m, 2H), 1.51–1.70 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 141.9, 140.0, 137.7, 129.1, 128.5, 128.3 (2C), 127.8, 126.6, 125.6, 96.5, 74.8, 61.3, 37.4, 35.7, 25.6, 23.6, 18.9; MS (ESI) m/z 321.2 [M+H]⁺; HRMS (EI) calcd for C₂₂H₂₄O₂ [M]⁺ 320.1776, found 320.1779.

Representative procedure for the sulfonylation of spiroacetal enol ethers: 5-(phenylsulfonyl)-5,6,7,8-tetra hydrochroman (13a)

Benzenesulfinic acid was prepared by stirring sodium benzenesulfinate (2.05 g, 12.5 mmol) with HCl (10% ag, 40 mL), then extracting with CH_2Cl_2 (3 × 40 mL), drying (MgSO₄), and concentrating under reduced pressure. Benzenesulfinic acid (1.779 g, 12.5 mmol) was added to a solution of spiroacetal enol ether 8a (1.54 g, 10.0 mmol) in CH₂Cl₂ (40 mL) and the solution was stirred for 45 min. Satd NaHCO₃ (50 mL) was added and the mixture extracted with CH_2Cl_2 (3 × 80 mL). The combined organic phases were washed with satd NaCl (40 mL), dried (MgSO₄), and the solvent was removed in vacuo to afford a white solid, which was recrystallised (Et₂O/Pet. Spirits) to yield the title compound 13a as white prisms (2.25 g, 8.1 mmol, 81%), requiring no further purification. Rf 0.18 (20% EtOAc in Pet. Spirits); IR (thin film) 2944, 2875, 1665, 1446, 1302, 1138 cm⁻¹; mp 104 °C (decomp.); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 7.5 Hz, 2H), 7.63 (app. t, J = 7.4 Hz, 1H), 7.55 (app. t, J = 7.7 Hz, 2H), 4.06 (m, 1H), 3.97 (m, 1H), 3.67 (m, 1H), 2.64 (m, 1H), 1.89 (m, 7H), 1.70 (m, 1H), 1.49 (m, 1H); 13 C NMR (126 MHz, CDCl₃) δ 155.2, 139.1, 133.5, 129.1, 128.9, 97.2, 67.4, 66.1, 27.0, 25.8, 24.4, 22.8, 18.2; MS (EI) m/z 278 [M]⁺; HRMS (EI) calcd for C₁₅H₁₈O₃S [M]⁺ 278.0977, found 278.0926.

Representative procedure for the arylation of 5-(phenylsulfonyl)-5,6,7,8-tetrahydrochromans: 5-phenyl-5, 6,7,8-tetrahydrochroman (21a)

Anhydrous zinc bromide (1.0 M in THF, 510 µL, 0.51 mmol) was added to a stirred solution of phenylmagnesium bromide (1.0 M in THF, 1.6 mL, 1.36 mmol) in THF (7 mL) and the resulting suspension was stirred for 30 min. Phenylsulfone 13a (91 mg, 0.34 mmol) was added and the cloudy mixture was stirred for 18 h. Satd NH₄Cl (50 mL) was added and the biphasic mixture extracted with Et₂O (3×40 mL). The combined organic phases were washed with satd NaCl (20 mL), dried (MgSO₄), and the solvent was removed in vacuo to afford the crude product, which was purified by flash chromatography (1% Et₂O in Pet. Spirits) to give the title compound 21a as a colorless oil (57 mg, 0.27 mmol, 80%); Rf 0.40 (20% EtOAc in Pet. Spirits); IR (thin film) 2930, 2858, 1449, 1173 cm⁻¹; ¹H NMR (500 MHz, C_6D_6) δ 6.91 (m, 4H), 6.81 (app. t, J = 7.0 Hz, 1H), 3.50 (m, 1H), 3.45 (m, 1H), 2.90 (app. t, J = 5.7 Hz, 1H), 1.89 (m, 2H), 1.55 (m, 1H), 1.37 (m, 1H), 1.25 (m, 5H), 1.11 (m, 1H); ¹³C NMR $(126 \text{ MHz}, C_6 D_6) \delta$ 150.3, 146.6, 129.0 $(2 \times C)$, 126.6, 105.9, 66.0, 46.4, 33.8, 28.5, 24.6, 23.9, 20.5; MS (EI) m/z 214 [M]⁺⁺; HRMS (EI) calcd for C₁₅H₁₈O [M]⁺ 214.1358, found 214.1351.

Acknowledgments

We thank the Australian Research Council for funding (DP556187) and Dr. Natasha Hungerford for NMR assistance.

Supplementary data

Supplementary data (experimental procedures and characterization data for compounds not included in the experimental section; X-ray crystallographic data (CIF) for **13b**; ¹H and ¹³C NMR spectra for all new compounds) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.12.076.

References and notes

- Spiroacetals are often referred to as a spiroketals. In accordance with IUPAC nomenclature guidelines, this structural motif will be referred to exclusively as a spiroacetal throughout this article.
- For reviews on spiroacetal-containing natural products, see: (a) Franke, W.; Kitching, W. Curr. Org. Chem. 2001, 5, 233–251; (b) Jacobs, M. F.; Kitching, W. Curr. Org. Chem. 1998, 2, 395–436; (c) Fletcher, M. T.; Kitching, W. Chem. Rev. 1995, 95, 789–828; (d) Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89, 1617– 1661; (e) Boivin, T. L. B. Tetrahedron 1987, 43, 3309–3362.
- For selected examples, see: (a) William, D. E.; Roberge, M.; Soest, V. R.; Anderson, R. J. Am. Chem. Soc. 2003, 125, 5296–5297; (b) Singh, S. B.; Zink, D. L.; Heimbach, B.; Genilloud, O.; Teran, A.; Silverman, K. C.; Lingham, R. B.; Felock, P.; Hazuda, D. J. Org. Lett. 2002, 4, 1123–1126; (c) Landini, P.; Corti, E.; Goldstein, B. P.; Denaro, M. Biochem, J. 1992, 284, 47–52; (d) Osada, H.; Koshino, H.; Isono, K.; Takahashi, H.; Kawanishi, G. J. Antibiot. 1991, 44, 259–261.
- Dictionary of Natural Products on DVD, Chapman & Hall/CRC Press, 2009, Version 17:2, July 2008–June 2009.
- 5. Wang, L.; Floreancig, P. E. Org. Lett. 2004, 6, 569-572.
- 6. Dineen, T. A.; Roush, W. R. Org. Lett. 2005, 7, 1355-1358.
- For reviews on the Heck reaction, see: (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2005, 61, 11771–11835; (b) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945–2963; (c) Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371–7393; (d) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379–2411.
- (a) Charreau, P.; Ley, S. V.; Vettiger, T. M.; Vile, S. Synlett **1991**, 415–417; (b) Brown, D. S.; Bruno, M.; Davenport, R. J.; Ley, S. V. Tetrahedron **1989**, 45, 4293– 4308.
- For a review on the HDA approach to spiroacetals, see: Rizzacasa, M. A.; Pollex, A. Org. Biomol. Chem. 2009, 7, 1053–1059.
- Neokosmidi, A.; Ragoussis, V.; Zikos, C.; Paravatou-Petsotas, M.; Livaniou, E.; Ragoussis, N.; Evangelatos, G. J. Agric. Food. Chem. 2004, 52, 4368–4374.
- Cuzzupe, A. N.; Hutton, C. A.; Lilly, M. J.; Mann, R. K.; McRae, K. J.; Zammit, S. C.; Rizzacasa, M. A. J. Org. Chem. 2001, 66, 2382–2393.
- 12. Ireland, R. E.; Häbich, D. Tetrahedron Lett. 1980, 21, 1389-1392.
- (a) Loiseleur, O.; Hayashi, M.; Schmees, N.; Pfaltz, A. Synthesis **1997**, 1338– 1345; (b) Kwok, D. I.; Farr, R. N.; Daves, G. D., Jr. J. Org. Chem. **1991**, 56, 3711– 3713.
- (a) Shi, G.-Q.; Huang, X.-H.; Hong, F. J. Chem. Soc., Perkin Trans. 1 1996, 8, 763–765;
 (b) Sakamoto, T.; Kondo, Y.; Kashiwagi, Y.; Yamanaka, H. Heterocycles 1988, 27, 257–260;
 (c) Andersson, C. M.; Hallberg, A.; Daves, G. D., Jr. J. Org. Chem. 1987, 52, 3529–3536.
- (a) Jarusiewicz, J.; Yoo, K. S.; Jung, K. W. Synlett 2009, 482–486; (b) Holzapfel, C. W.; Williams, D. B. G. Synth. Commun. 1994, 24, 2139–2146; (c) Ozawa, F.; Kubo, F.; Matsumoto, Y.; Hayashi, T.; Nishioka, E.; Yanagi, K.; Moriguchi, K. Organometallics 1993, 12, 4188–4196.
- (a) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2–7; (b) Larock, R. C.; Gong, W. H.; Baker, B. E. Tetrahedron Lett. 1989, 20, 2603–2606.
- A range of conditions were explored. Palladium sources include Pd(OAc)₂, Pd(PPh₃)₄, Pd₂(dba)₃; arylating agents include PhI, PhBr, PhOTf, 3,5-(OMe)₂C₆H₃Br; bases include Ag₂CO₃, NEt₃, Cy₂NMe, K₂CO₃, Cs₂CO₃; phosphines include PPh₃, 'Bu₃P, 'Bu₃PH.BF₄; solvents include 1,4-dioxane, CH₃CN, DMF, THF. For selected references, see: (a) Netherton, M. R.; Fu, G. C. *Org. Lett.* **2001**, *3*, 4295-4298; (b) Littke, A. F.; Fu, G. C. *J. Am. Chem. Soc.* **2001**, 123, 6989–7000; (c) Mo, J.; Xiao, J. Angew. Chem., Int. Ed. **2006**, 45, 4152–4157; (d) Littke, A. F.; Fu, G. C. *Org. Synth.* **2004**, 81, 63–70; (e) Abelman, M. M.; Oh, T.; Overman, L. E. *J. Org. Chem.* **1987**, 52, 4133–4135; (f) Sakamoto, T.; Kondo, Y.; Uchiyama, M.; Yamanaka, H. *J. Chem. Soc., Perkin Trans.* 1 **1993**, 1941–1942; (g) Littke, A. F.; Fu, G. C. *J. Org. Chem.* **1999**, 64, 10–11; (h) Overman, L. E. *Pure Appl. Chem.* **1994**, 66, 1423–1430; (i) Trost, B. M.; Dumas, J.; Villa, M. *J. Am. Chem. Soc.* **1992**, *114*, 9836–9845.
- The relative configuration was assigned on the basis of NOESY correlations, see Supplementary data.
- (a) Ley, S. V.; Lygo, B.; Wonnacott, A. Tetrahedron 1986, 42, 4333–4342; (b) Ley, S. V.; Lygo, B.; Wonnacott, A. Tetrahedron Lett. 1985, 26, 535–538.
- 20. Brown, D. S.; Ley, S. V. Tetrahedron Lett. 1988, 29, 4869–4872.
- Crystallographic data (excluding structure factors) for structure 13b have been deposited with the Cambridge Crystallographic Data Centre, CCDC 782586. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk).
- 22. Horner, L.; Basedow, O. H. Liebigs Ann. 1958, 612, 108-131.
- Amarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 5th ed.; Butterworth Heinemann Press, Elsevier Science, 2003. pp 120–121.
- (a) Bai, Y.; Lin, S.-J.; Qi, G.; Palcic, M. M.; Lowary, T. L. Carbohydr. Res. 2006, 341, 1702–1707; (b) Paul, S.; Jayaraman, N. Carbohydr. Res. 2004, 339, 2197–2204.