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ABSTRACT 

Nalfurafine, a κ-selective opioid receptor agonist, unexpectedly showed a selective antagonist 

activity toward the orexin 1 receptor (OX1R) (Ki = 250 nM). Modification of the 17-amino side 

chain of the opioid ligand to an arylsulfonyl group and the 6-furan acrylamide chain to 2-pyridyl 

acryl amide led to compound 71 with improvement of the antagonist activity (OX1R: Ki = 1.36 

nM, OX2R: Not active) without any detectable affinity for the opioid receptor. The 

dihydrosulfate salt of 71, freely soluble in water, attenuated the physical dependence of 

morphine. Furthermore, all of the active nalfurafine derivatives in this study had almost no 

activity for OX2R, which led to high OX1R selectivity. These results suggest that nalfurafine 

derivatives could be a useful series of lead compounds to develop highly selective OX1R 

antagonists. 

 

INTRODUCTION 

Orexin (orexin-A and -B,1 also known as hypocretin-1 and -22) are a pair of lateral hypothalamic 

neuropeptides originally identified as the endogenous ligands for two previously orphan G 

protein-coupled receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). An essential 

role of the orexin system in regulation of sleep and wakefulness was initially demonstrated by 

the discoveries that OX2R-deficient dogs3a and prepro-orexin knockout mice3b both exhibited 

symptoms highly similar to the sleep disorder narcolepsy/cataplexy. Whereas OX1R/OX2R 

double null mice exhibit a severe narcoleptic phenotype indistinguishable from that seen in 

prepro-orexin knockout mice, OX2R-null mice show a somewhat milder narcolepsy phenotype. 

Moreover, OX1R-null mice exhibit no appreciable sleep/wakefulness-related phenotype, 
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suggesting that OX2R, rather than OX1R, plays a predominant role in sleep/wake regulation, and 

an intact OX2R-mediated signaling is sufficient to prevent the symptoms of 

narcolepsy/cataplexy.4  

Many researchers have attempted to develop non-peptide orexin antagonists to evaluate the role 

of orexin receptors (OXRs), especially focused on sleep indications.5 Many selective OX1R 

antagonists (1-SORAs); 4 (SB-334867),6 5 (SB-408124),7 6 (SB-674042),7 7 (GSK-1059865),8 

and selective OX2R antagonists (2-SORAs); 8 (TCS-OX2-29),9 9 (MK-3697)10, as well as dual 

OX1R/OX2R antagonists (DORAs); suvorexant (1)11, almorexant (2)12, 3 (SB-649868)13, have 

been reported (Figure 1). 

Quite recently, Merck released suvorexant (1) (DORA) in Japan and the United States for 

treatment of insomnia.11 However, no orexin agonist had been reported until recently. In 2015, 

we reported the design and synthesis of the first non-peptide OX2R agonists; one of the agonists, 

compound 10, showed potent and selective agonistic activity for OX2R (OX1R: EC50 = 2,750 

nM; OX2R: EC50 = 28 nM, Emax = 94%) (Figure 1).14 Central injection of dihydrochloride of 

compound 10 (260 nmol) in mice increased wake time to a similar degree achieved with 3 nmol 

orexin-A.  

Orexins have been reported to be also involved in regulation of a wide range of behaviors other 

than sleep/wake, e.g., hedonic feeding behavior and reward seeking.15,16 Especially, OX1R was 

reported to contribute to regulating reward-related behaviors. An increasing body of work shows 

that orexin neurons play a part in the behavioral presentation of addiction to morphine,17a,18 

cocaine,17b,17c amphetamine,19 heroin,20 nicotine,21 ethanol,22 and cannabinoids.23 Generally, 

orexin seems to be involved in the modulation of highly motivated reward seeking, especially 

when the seeking is triggered by external cues. 1-SORAs, 424 and 78 were reported to attenuate 
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the expression of conditioned place preference induced by cocaine and amphetamine in rats. 

Orexin might also be involved in opioid addiction; for example, orexin knockout mice, as well as 

wild type mice treated with the 1-SORA, 4, reduced morphine withdrawal.25 

 

Figure 1. The structures of the dual orexin receptor antagonists 1–3, selective OX1R antagonists 

4–7, selective OX2R antagonists 8–9, and selective OX2R agonist 10. 

We have been interested in the interaction of the OX1R with opioid receptors on the basis of our 

long history in the opioid research field,26 and also intrigued by the biological relevance for the 

coexpression of excitatory orexin and inhibitory dynorphin (11, endogenous κ opioid agonist) 

and the coexistence of their opposing effects within the same vesicle in the orexin neuron.27 To 

obtain specific ligands for clarifying the potential role for their coexistence, we attempted to 

design and synthesize OX1R antagonists derived from κ opioid receptor (KOR) ligands. 
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Quite recently, the heterodimerization of the OX1R and KOR has been reported,28 shedding 

further light on the potential function for the colocalization of the corresponding two peptides 

with opposite effects,27,29 which were shown in not only the endogenous peptide, but also with 

exogenous alkaloids. For example, as we mentioned above, OX1R antagonist 4 attenuated drug 

addiction17b,21b,30 and most KOR agonists represented by 16 (U-50488H)31 induced severe 

aversion (like the psychotomimetic effect) and dysphoria,32 which was ample reason to eliminate 

the derivatives of 16 at the early stage of the clinical trials. Intriguingly, only nalfurafine (12) 

among all of the KOR  agonists showed neither addiction nor drug aversion and was released as 

an antipruritic agent for kidney dialysis patients in Japan in 2009.26a‒e Even now, many 

researchers have been interested in and are investigating why only nalfurafine (12) caused no 

aversion. We postulated that nalfurafine (12) might bind with the OX1R-KOR dimer to prevent 

aversion, but 16 binds with pure KOR to afford an intrinsic aversive effect. Furthermore, we 

expected that nalfurafine (12) would also bind with OX1R in addition to binding with KOR, if 

the nalfurafine could show affinity for the receptor heterodimer. Based on these considerations, 

we evaluated nalfurafine (12) with a calcium transient assay in CHO cells expressing human 

OX1R or OX2R, to examine the possible activity of nalfurafine for orexin receptors. As we 

expected, nalfurafine (12) showed antagonistic activity for OX1R (OX1R: Ki = 250 nM, OX2R: 

Not active) (Figure 2).33  

Interestingly, only nalfurafine (12) showed activity for the OX1R, but no effect was noted with 

the µ opioid receptor (MOR) antagonist β-funaltrexamine (β-FNA),34 the δ opioid receptor 

(DOR) selective agonist (6R,6aS,14aR)-17-methyl-5,6,7,14-tetrahydro-6aH-6,14a-

(epiminoethano)naphtho[2,1-b]acridine-2,6a-diol (KNT-127),35 the antagonist naltrindole 

(NTI),36 and the KOR selective antagonist nor-binaltorphimine (nor-BNI).37 Furthermore, the 
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Upjohn-type KOR agonist 1638 showed no activity for OX1R. The structure of nalfurafine (12) 

contains a tyrosine moiety as the N-terminal structure of dynorphin (11), while 16 does not. The 

fact that only nalfurafine (12), with the partial structure of dynorphin (11), showed activity for 

OX1R in our opioid chemical library, might be a clue for clarifying the role of the 

aforementioned coexistence of dynorphin and orexin. 

 

Figure 2. The structures of dynorphin (11), nalfurafine (12), nalfurafine derivatives 13‒15, and 

16. 

The above described antagonists in Figure 1 have rather simple flexible structures which consist 

of aromatic or alicyclic rings connected to each other with amide or urea bonds. In contrast, 

nalfurafine (12) has a characteristic rigid morphinan skeleton with a tyrosine moiety which is a 

partial structure of dynorphin (11) (Figure 2). So, we expected that the antagonistic activity and 

selectivity of nalfurafine for OX1R could be easily improved by using our modification 

techniques developed over the long course of our opioid research. 

To the best of our knowledge, no OXR ligand with a morphinan skeleton has been reported. First 

results of testing nalfurafine derivatives for OX1R antagonism showed that the 6-α-amide isomer 

15 of nalfurafine had almost no activity for OXRs.39 Therefore, we focused our modification on 
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the 6-β-amide isomers. Herein, we report the results of the modification of nalfurafine (12) and 

the pharmacological effects of the resulting selective and potent antagonists of OX1R. 

 

RESULTS AND DISCUSSIONS 

We started with the methylation of 3-OH in nalfurafine (12) to afford 3-methyl ether 13 which 

showed 11 times more potent antagonistic activity for OX1R than nalfurafine (Figure 2). We also 

synthesized 3-dehydroxynalfurafine 1440 which showed very weak activity for OXRs. These 

facts led us to use the 3-methyl ether as a lead compound for succeeding modifications of the 

nalfurafine derivatives. 

Next the 3-furylacryl group of the 6-amide side chain in nalfurafine methyl ether 1326b,41 was 

converted to benzyl, phenylacryl and 2-furylacryl amide groups. These derivatives 17–19 gave 

no improved activities (Table 1). Then we decided to hold the 6-amide side chain on the 3-

furylacryloyl group in the following modification. 

Table 1. Assay results of the 6-substituted nalfurafine derivatives for orexin receptor antagonism 

 

  Ki (nM) 

Compound R OX1R OX2R 

5
a
 – 18.9 ± 0.688 2070 ± 482 

nalfurafine (12)a
 

 
250 ± 37.1 –b 

17
a  –b –b 
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18
a 

 
389 ± 88.8 –b 

19
a 

 
751 ± 178 –b 

Ki values represented the mean ± SEM. These values were calculated using IC50 values of 

nalfurafine derivatives at least three independent calcium assays performed in triplicate (Cheng-

Prusoff equation). aIts HCl salt was assayed. b
Ki value was not calculated, IC50 value was over 

than 10,000 nM (cut off value) or was not obtain from concentration-response curve. 

We then replaced the 17-cyclopropylmethyl (CPM) group in nalfurafine methyl ether 13 by 

various acyl substituents to improve the activity for OX1R (Scheme 1). The phenolic hydroxyl 

group in naltrexone hydrochloride (20) was methylated and the 6-ketone group was protected as 

1,3-dioxolane, followed by acetylation of the 14-OH under refluxing in Ac2O. The CPM group 

of the resulting acetate was exchanged for a Troc group at 140 °C with an excess amount of 

TrocCl to afford carbamate 21. The carbamate and the acetate group in 21 were hydrolyzed with 

aqueous KOH at 110 °C. After removing the 1,3-dioxolane group in amine 22, the secondary 

amine was protected with Boc to give ketone 23 in good yield. The imine formation of 23 with 

N-benzylmethylamine, followed by reduction with NaBH3CN afforded β-amine 24. 

Hydrogenation of 24 and amidation of the resulting amine with (E)-3-(furan-3-yl)acryloyl 

chloride afforded 17-Boc nalfurafine derivative 26.42 Deprotection of the Boc group in 

compound 26 gave key intermediate 27, which was converted to 17-amide nalfurafine 

derivatives 28–31. The antagonistic activities for OXRs of the obtained 17-Boc and amide 

derivatives were estimated in the Ca2+ assays. 

Scheme 1. Synthesis of 17-carbonyloxy compounds 28–31 from naltrexone hydrochloride (20). 
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Reagents and conditions: a) MeI, K2CO3, DMF, rt; b) ethylene glycol, p-TsOH·H2O, toluene, 

reflux; c) Ac2O, reflux; d) TrocCl, K2CO3, 1,1,2,2-tetrachloroethane, 140 °C, 82% (4 steps); e) 

KOH aq., DMSO, 110 °C, 98%; f) HCl aq., 80 °C; g) (Boc)2O, (i-Pr)2NEt, CH2Cl2, rt, 91%; h) 

BnNHMe, PhCO2H, p-TsOH·H2O, PhH, reflux; evap.; NaBH3CN, MS4A, EtOH, 0 °C to rt, 

84%; i) H2, Pd/C, MeOH, rt, quant; j) (E)-3-(furan-3-yl)acryloyl chloride, Et3N, CH2Cl2, rt, 79%; 

k) HCl–MeOH, rt, 82%; l) Ac2O, pyridine, rt, 97% for 28; cyclopropanecarbonyl chloride, 

pyridine, rt, 82% for 29; p-toluoyl chloride, Et3N, CH2Cl2, rt, 85% for 30; cinnamoyl chloride, 

Et3N, CH2Cl2, rt, 77% for 31. 

Unexpectedly, the 17-Boc nalfurafine derivative 26 showed the strongest antagonist activity 

(OX1R: Ki = 4.15 nM) among the resulting amide derivatives shown in Table 2. However, the 

OX1R selectivity over OX2R was not as high as those of the acetamide and cyclopropylamide 

derivatives (28 and 29) (Table 2). 

 

Table 2. Assay results of the 17-Boc and amide derivatives for orexin receptor antagonism 
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  Ki (nM) 

Compound R OX1R OX2R 

26  4.15 ± 0.235 –a 

28  541 ± 59.9 –a 

29 
 

12.0 ± 0.715 –a 

30 

 
14.0 ± 1.98 725 ± 41.5 

31 
 

14.0 ± 2.20 –a 

Ki values represented the mean ± SEM. These values were calculated using IC50 values of 

nalfurafine derivatives at least three independent calcium assays performed in triplicate (Cheng-

Prusoff equation). a
Ki value was not calculated, IC50 value was over than 10,000 nM (cut off 

value) or was not obtain from concentration-response curve. 

The key functional group in the aforementioned first selective OX2R agonists reported in 2015 

were sulfonamides,14a which led us to synthesize 17-sulfonamide nalfurafine derivatives. The 

synthetic route for the 17-sulfonamide derivatives are shown in Scheme 2. The syntheses of the 

alkyl- and arylsulfoamide derivatives 32–58 were attained by sulfoamidation of the amine 27. 

Dimethylaminobenzenesulfonamide derivatives 59–61 were synthesized from the corresponding 

nitrobenzenesulfonamide derivatives 50–52 by reduction of the nitro group and reductive 

amination of the resulting amine. Deprotection of the Boc group in 24 and sulfonamidation with 

O

OMe

N
Me

O

OH
NR

O

O
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5-bromo-2-methoxybenzensulfonyl chloride afforded sulfonamide 63. The benzyl group and 

bromine atom were removed by hydrogenation, followed by amidation with (E)-3-(furan-3-

yl)acyloyl chloride to give the o-MeO derivative 64 in good yield. 

 

Scheme 2. Synthesis of the 17-sulfonamide derivatives 

  

Reagents and Conditions: a) RSO2Cl, Et3N, CH2Cl2, rt, 66–99%; b) SnCl2, HCl, CH2Cl2, 40 

°C; c) paraformaldehyde, NaBH3CN, AcOH, 40 °C, 73–90% (2 steps); d) HCl–MeOH, rt, 99%; 
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e) 5-bromo-2-methoxybenzensulfonyl chloride, Et3N, CH2Cl2, rt, 84%; f) H2, Pd/C, MeOH, rt; g) 

(E)-3-(furan-3-yl)acyloyl chloride, Et3N, CH2Cl2, rt, 77% (2 steps). 

 

Table 3. Assay results of the 17-sulfonamide derivatives for orexin receptor antagonism 

 

  Ki (nM) 

Compound R OX1R OX2R 

32 
 

12.1 ± 1.14 –b 

33  5.94 ± 0.237 –b 

34 
 

8.14 ± 0.606 –b 

35 

 
2.07 ± 0.222 –b 

36 

 

7.60 ± 0.570 –b 

37 

 
4.05 ± 0.471 –b 

38 

 
1.93 ± 0.138 –b 
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39 

 

3.47 ± 0.274 –b 

40 

 
5.13 ±1.02 –b 

41 

 
2.10 ± 0.184 –b 

42 

 

2.27 ± 0.204 –b 

43 
 

6.21 ± 0.655 –b 

44 

 
2.05 ± 0.209 –b 

45 

 

6.19 ± 0.934 –b 

46 

 
12.6 ± 0.790 –b 

47 

 
1.96 ± 0.359 –b 

48 

 

7.30 ± 0.748 –b 

49 

 
13.9 ± 0.451 –b 

50 

 
1.81 ± 0.142 –b 
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51 

 

5.05 ± 0.343 –b 

52 

 
12.5 ± 1.26 –b 

59
a
 

 
1.92 ± 0.190 –b 

60
a
 

 

7.25 ± 0.557 –b 

61
a
 

 
12.9 ± 1.26 –b 

64 

 
6.37 ±0.921 –b 

53 

 

2.44 ± 0.388 –b 

54 
 

8.99 ± 1.22 –b 

55 

 
1.70 ± 0.194 –b 

56 

 

2.98 ± 0.364 –b 

57 
 

5.85 ± 0.794 –b 

58 

 

4.16 ± 0.696 –b 
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Ki values represented the mean ± SEM. These values were calculated using IC50 values of 

nalfurafine derivatives at least three independent calcium assays performed in triplicate (Cheng-

Prusoff equation). aIts HCl salt was assayed. b
Ki value was not calculated, IC50 value was over 

than 10,000 nM (cut off value) or was not obtain from concentration-response curve. 

The activities of the sulfonamides are shown in Table 3. The activities of the two alkyl 

sulfonamide derivatives 32 and 33 were lower than that of the 17-Boc derivative 26. Almost all 

the substituted sulfonamide derivatives showed high activities in the single digit nM range and 

high selectivities for OX1R, with only minor differences among the respective o-, m-, p-

substitutions. We observed only small differences in activities and selectivities between the 

substituted derivatives, independent of the electron donating (Me, NMe2, except for OMe) or 

electron withdrawing (CF3, CN, NO2) character of the substitutents. 

The observed tendency for the highest potency for the o-substituted derivatives suggests that the 

o-substituent group might induce a rotation around the Ar–SO2NR2 single bond by steric 

hindrance with the o-substituents or by dipole-dipole interaction between the F group and the 

sulfonamide group forcing the phenyl ring into an adequate fitting position at the receptor site, 

thus increasing the activity. 

We carried out conformational analyses of 50 (o-nitrobenzenesulfonamide) and 52 (p-

nitrobenzenesulfonamide) to compare their most stable conformations. As shown in Figure 3, we 

found that the spatial dispositions of o-nitro- and p-nitrobenzenesulfonamides were quite 

different between the most stable conformers of 50 and 52. Further, from the superimpositions of 

lower energy conformers of 50 and 52, we found that the o-nitrobenzenesulfonamide of 50 could 

be widely spread out, but the p-nitrobenzenesulfonamide of 52 was spatially restricted. These 

results again suggested the o-substituent group might facilitate the rotation around Ar-SO2NR2. 
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Figure 3. The most stable conformations and the superimpositions of the low-energy conformers 

of 50 and 52. 

Page 16 of 90

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

The activities of p-substituted sulfonamide derivatives with electron donating groups (including 

halogen) were slightly higher than those of the electron deficient group (the NHMe2
+ group 

resulted from protonation under physiological condition and would become an electron 

withdrawing group), quite a different observation from o-substituted derivatives. As the p-

substituted derivatives would provide neither steric nor dipole-dipole interaction to the 

sulfonamide group, the activity may directly be affected by the electron effect of the substituent 

on the aromatic ring. 

 

Scheme 3. Demethylation of the 3-OMe group in compound 61 

 

Reagents and Conditions: a) BBr3, CH2Cl2, –78 °C to rt, 51%. 

 

Scheme 4. Synthesis of the compounds with pyridyl moiety 
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Reagents and Conditions: a) o-nitrobenzenesulfonyl chloride, Et3N, CH2Cl2, rt, 99%; b) Fe, 

NH4Cl, EtOH, H2O, 90 °C; c) (CH2O)n, NaBH3CN, AcOH, 40 °C, 97% (2 steps); d) HCl aq., 

THF, 90 °C, 90%; e) BnNHMe, PhCO2H, PhH, reflux; evap.; NaBH3CN, MeOH, THF, 0 °C, 

80%; f) H2, Pd/C, MeOH, rt, 96%; g) RCH=CHCO2H, HATU, (i-Pr)2NEt, DMF, rt, 95–97%. 

 

Table 4. Assay results of the 65, 71–73 for orexin receptor antagonism 

 Ki (nM) 

Compound OX1R OX2R 

65 320 ± 72.1 –a 

a
22

66

O

OMe

OH
N

S
O

O
NO2

O

O

O

OMe

OH
N

S
O

O
NMe2

O

O

b, c

d

67

O

OMe

OH
N

S
O

O

NMeR

NMe2

O

OMe

OH
N

S
O

O

N
Me

O

R

NMe2
g

71: R = 2-pyridyl

72: R = 3-pyridyl

73: R = 4-pyridyl

69: R = Bn

70: R = H

O

OMe

OH
N

S
O

O

O

NMe2

68

e

f

Page 18 of 90

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

71 1.36 ± 0.174 –a 

72 42.3 ± 2.25 –a 

73 –a –a 

Ki values represented the mean ± SEM. These values were calculated using IC50 values of 

nalfurafine derivatives at least three independent calcium assays performed in triplicate (Cheng-

Prusoff equation). a
Ki value was not calculated, IC50 value was over than 10,000 nM (cut off 

value) or was not obtain from concentration-response curve. 

 

Table 5. Assay results for opioid receptors 

 Ki (nM) 

Compound 
µ 

([3H]DAMGO) 

δ 

([3H]DPDPE) 

κ 

([3H]U-69593) 

5 >1,000 >1,000 >1,000 

nalfurafine (12)a 
5.99 

(3.4–10.6) 

693 

(223–2154) 

0.238 

(0.147–0.385) 

26 >1,000 >1,000 
184 

(130–261) 

29 >1,000 >1,000 >1,000 

31 >1,000 >1,000 >1,000 

34 >1,000 >1,000 >1,000 

61 >1,000 >1,000 >1,000 

65
b
 971 >1,000 200 
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(654–1441) (35–295) 

71
c
 >1,000 >1,000 >1,000 

Ki values with 95% confidential intervals were obtained from radioligand-based competitive 

receptor binding assay. aIts HCl salt was assayed. bIts MeSO3H salt was assayed. cIts 2H2SO4 salt 

was assayed. 

The activity of 2,4,6-trimethylbenzenesulfonamide derivative 58 was almost equivalent with that 

of o-Me-substituted derivative 55. These results also support the idea that steric hindrance on the 

aromatic ring could induce a favorable rotation around the SO2–Ar bond. 

The 6-NH carboxyamide derivatives of the o-dimethylaminosulfonamide-6-pyridylacrylamide 

derivatives showed markedly lower activity (about 100 times lower) for OXRs than the 

corresponding 6-NMe amide derivative. 

Intriguingly, the above obtained 17-carboxyamide and sulfonamide derivatives with a 3-methoxy 

group showed extremely lower affinity for opioid receptors (MOR, DOR, and KOR: Ki = >1,000 

nM) compared with that of nalfurafine (MOR: Ki = 5.99 nM, DOR: Ki = 693 nM, KOR: Ki = 

0.238 nM) (Table 5). Even the p-dimethylaminobenzenesulfonamide derivative with a 3-hydroxy 

group 65 showed very low affinity for the opioid receptor (MOR: Ki = 971 nM, DOR: Ki = 

>1,000 nM, KOR: Ki = 200 nM). The only 17-Boc derivative 26 had a rather higher affinity for 

the KOR (Ki = 184 nM) despite containing the 3-methoxy group. These data from the binding 

assays suggest that the above obtained 3-methoxy-sulfonamide derivatives could remove the 

serious side effects derived from the opioid receptors (addiction, constipation, respiratory 

depression from MOR, and catalepsy from DOR and especially, sedation and aversion from 

KOR) although the structures of these OX1R antagonists were derived from the potent KOR 

agonist, nalfurafine (12).26 

Page 20 of 90

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

The opioid ligands bind with opioid receptors with three main types of pharmacophore bonds: 

ionic attraction, π–π interaction, and hydrogen bonding, termed the message site.26 The above 

obtained potent OX1R antagonists were hardly bound with the opioid receptors because of the 

absence of the basic nitrogen and the phenolic hydroxy group.26a,26b,43 The ion formed by the 

protonation on the basic 17-nitrogen and the acidic hydrogen derived from the 3-phenolic 

hydroxyl group seemed to disrupt the fitting to the orexin receptor. This information could be an 

important clue for designing OX1R ligands with a morphinan skeleton without affinity for opioid 

receptors. Quite recently, Perrey et al. reported improved antagonists for OX1R and the most 

potent and selective compound in their paper showed promising Ke values for OX1R (Ke ＝ 8.50 

± 1.0 nM) and for OX2R (Ke = >10,000 nM).44 On the other hand, one of our antagonists, 

compound 50 showed almost equivalent activity and selectivity for OX1R (OX1R: Ke = 3.69 ± 

0.0376 nM, OX2R: Not active).45  

Although the above antagonists were sufficiently potent and selective for OX1R, even the salts 

were not soluble in water or saline. Therefore, we tried to introduce an additional basic moiety to 

the antagonists to obtain di-protonated salts. The obtained di-hydrosulfate of 17-o-

dimethylaminosulfonamide-6-(2-pyridyl)-acrylamide derivative 71 could be easily dissolved in 

water (solubility: 10 mg in 50 µL saline).  

 

Table 6. Effect of compound 71 on naloxone-precipitated withdrawal signs in morphine-

dependent mice 

 Positive animals / Total animals 

Withdrawal signals Saline Compound 71 

Jumping 9 / 13 2 / 13** 
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Body shakes 9 / 13 7 / 13 

Ptosis 6 / 13 3 / 13 

Forepaw tremor 12 / 13 11 / 13 

Rearing 12 / 13 11 / 13 

The morphine dose was increased progressively from 8 to 45 mg/kg, subcutaneously (s.c.) over a 

period of 5 days. Saline or compound 71 was intraperitoneally injected 30 min before naloxone 

treatment. Withdrawal signs were induced by injecting naloxone (3 mg/kg, s.c.) 2 hr after the 

final morphine treatment and then were observed for 60 min. ** p<0.01 vs. Saline. 

 

 

Figure 4. Morphine withdrawal is suppressed by compound 71. Naloxone-precipitated diarrhea 

(a) and body weight loss (b) were suppressed by i.p. pretreatment with compound 71 (10 mg/kg) 

at 30 min before naloxone challenge injection. Compound 71 was dissolved in saline. Each point 

represents the mean body weight loss of 13 mice with SEM. *p<0.05: saline vs compound 71. 
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We evaluated the effect of compound 71 on morphine withdrawal. As shown Table 6 and Figure 

4, naloxone-precipitated withdrawal in mice with chronic morphine injection induced several 

classic behavioral signs of morphine withdrawal. Of these several signs, naloxone-precipitated 

body weight loss, diarrhea, and jumping behavior were significantly suppressed by i.p. 

pretreatment with compound 71 before naloxone challenge injection, indicating that the OX1R 

antagonist attenuated the expression of naloxone-precipitated morphine withdrawal. Therefore, 

the newly synthesized selective OX1R antagonist would be a useful tool for understanding the 

physiological significance of the orexinergic system, and may be useful as a medicine to treat 

drug dependence. 

Finally, we found that all antagonists derived from nalfurafine showed high selectivity for OX1R 

(as OX2R/OX1R selectivity from IC50 value; at least 88.4-fold) as shown in Tables 1–3, although 

many extremely low selective derivatives for OX1R (some derivatives showed rather selective 

for OX2R) were observed in the course of structure-activity relationship study of the other known 

antagonists shown in Scheme 1. This result indicates that nalfurafine derivatives with the 

morphinan skeleton would be specific lead compounds for developing selective OX1R 

antagonists, which would provide important information for many researchers in the field of 

orexin research. 

Recently, two X-ray crystal structures of the human OX1R bound to suvorexant (1) (PDB: 4ZJ8) 

and 6 (PDB: 4ZJC) were reported.46 Using these X-ray structures, the binding mode of 71 with 

OX1R was investigated by molecular-docking calculations. The resulting binding mode of 71 is 

shown in Figure 5. The morphinan skeleton of 71 was suggested to be located in the middle of 

the ligand-binding site of OX1R (Figure 5A). The 17-o-dimethylaminobenzene group of 71 was 

oriented toward transmembrane helixes 2 and 3 (TM2 and TM3) to form hydrophobic 
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interactions with A102 (TM2), V106 (TM2), W112 (loop between TM2 and TM3), I122 (TM3), 

and P123 (TM3) of OX1R (Figure 5B). On the other hand, the 2-pyridyl group of 71 was 

oriented in the opposite direction, and made hydrophobic interactions with F219 (TM5), F220 

(TM5), I314 (TM6), and I319 (TM6). Compound 71 also used an ether oxygen of the morphinan 

skeleton and a nitrogen atom of the 2-pyridyl group to form two hydrogen bonds with N318 

(TM6) of OX1R (Figure 5B). This configuration might indicate the importance of the nitrogen 

atom on the pyridyl group for interactions with OX1R.  

Figure 6 compares the binding modes of 71, suvorexant (1) (DORA), and 6 (1-SORA 

representing a 117-fold selectivity7). The position of the morphinan skeleton of 71 corresponds 

to the 7-membered ring of 1 and the 2-pyrrolidyl methylene part of 6, which were proposed to 

inhibit inward movements of TM5 and TM6 relative to the rest of the TM bundle (Figures 6B 

and C). The 17-o-dimethylaminobenzene group of 71 corresponds to the 5-chloro-1,3-

benzoxazol-2-yl group of 1 and the 5-phenyl-1,3,4-oxadiazol-2-yl group of 6. Recently, the 

selective OX1R antagonist activity of 6 was examined from the structural point of view.46 

Comparing the binding sites of OX1R and OX2R, there are only two substitutions. S103 (TM2) 

and A127 (TM3) of OX1R were mutated to T111 (TM2) and T135 (TM3) of OX2R. As both 

residues of OX2R are larger than those of OX1R, the volume of the pocket of OX2R is somewhat 

smaller than OX1R. In the literature, when the experimentally-observed pose of 6 in complex 

with OX1R was placed into the OX2R structure by superimposition of the pockets, some clashes 

with T111 (TM2) and T135 (TM3) of OX2R were observed,46 suggesting that the volume of the 

pocket of OX1R was a much better fit to 6 than that of OX2R. When we also placed 71 bound to 

OX1R into the pocket of OX2R, a clash between the 17-o-dimethylaminobenzene group of 71 

and T111 (TM2) of OX2R was observed. This observation might be a source of the selective 
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OX1R antagonist activity of 71 and may well explain our experimental results that the 17-

sulfonamide motif is a key pharmacophore to afford selective OX1R antagonist activity. 

 

 

Figure 5. The binding mode of 71 with the OX1R determined by our docking procedure. 

Hydrogen-bonding interactions are indicated by dashed lines. 
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Figure 6. (A) Chemical structures of 71, suvorexant (1), and 6. (B) Superimposition of 71 

(purple) and 1 (green) in the ligand-binding site of OX1R. (C) Superimposition of 71 (purple) 

and 6 (orange) in the ligand-binding site of OX1R. 

 

CONCLUSIONS 

The antagonistic activity of nalfurafine (12) for OX1R was discovered and improved from Ki 

value: 250 to 1.36 nM by modification of the 17-nitrogen substituent and the 3-hydroxy group, 

and the selectivities of the obtained derivatives were not active for OX2R. The o-substituted 

benzenesulfonamide derivatives showed tendency for more potent antagonistic activities than m- 

and p-substituted benzenesulfonamide derivatives. The most stable conformations of 50 and 52 
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and the superimpositions of the low-energy conformers of 50 and 52 were performed. 

Interestingly, thus obtained 17-sulfonamide derivatives shown in Table 5 showed almost no 

affinity to opioid receptors which means that the OX1R antagonists would be expected to have 

few side effects derived from opioid receptors. One of the most potent OX1R antagonists 

attenuated the physical dependence of morphine via i.p. injection and would be expected to 

clarify the pharmacological activities of OX1R. Furthermore, the antagonists could be applied to 

the treatment of opioid addiction. 

 

Finally, the nalfurafine derivatives with the morphinan skeleton could serve as specific lead 

compounds to develop OX1R selective antagonists, which would provide important information 

for many researchers in the field of orexin research. 

 

EXPERIMENTAL SECTION 

Chemistry. 

General. All melting points were determined on a Yanaco MP melting point apparatus and are 

uncorrected. Infrared spectra were recorded with a JASCO FT/IR 4100 spectrophotometer. 1H 

and 13C NMR spectral data were obtained with JEOL JNM-ECS 400 instruments. Chemical 

shifts are quoted in ppm using tetramethylsilane (δ = 0 ppm) as the reference for 1H NMR 

spectroscopy, CDCl3 (δ = 77.0 ppm) and pyridine-d5 (δ = 135.5 ppm) for 13C NMR 

spectroscopy. Mass spectra were measured with a JEOL JMS-T100LP spectrometer. The purity 

(≥95%) of the assayed compounds was determined by analytical HPLC or elemental analysis. 

Analytical HPLC were performed on a Shimadzu LC-2040C 3D instrument, equipped with 

Xbridge-C18 3.5 µm, 4.6 x 150 mm column, with PDA detection at 254 nm, at column 
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temperature of 40 °C. Elemental analyses were performed with a J-SCIENCE LAB micro corder 

JM10. Column chromatography was carried out on silica gel (spherical, neutral, 40–50 µm, 

Kanto Chemical Co. or packed column, 40 µm, Yamazen Co.), NH-silica gel (40–75 µm, Fuji 

Silysia Chemical Ltd.) and DIOL-silica gel (40–75 µm, Fuji Silysia Chemical Ltd.). 

2,2,2-Trichloroethyl (4'R,4a'S,7a'R,12b'S)-4a'-acetoxy-9'-methoxy-1',2',4',4a',5',6'-

hexahydro-3'H,7a'H-spiro[[1,3]dioxolane-2,7'-[4,12]methanobenzofuro[3,2-e]isoquinoline]-

3'-carboxylate (21) 

To a suspension of naltrexone hydrochloride (20) (20 g, 52.9 mmol) in DMF (150 mL) were 

added K2CO3 (18.3 g, 132 mmol) and MeI (3.65 mL, 58.5 mmol) and stirred at room 

temperature for 11 h under an argon atmosphere. The reaction was quenched with H2O (200 mL) 

and the mixture was extracted with Et2O (300 mL × 2, 200 mL). The organic layer was washed 

with H2O (200 mL) and brine, dried over Na2SO4, and concentrated under reduced pressure to 

afford a crude product as a colorless solid. To a solution of the crude product in toluene (150 

mL) were added p-TsOH·H2O (14.3 g, 75.2 mmol) and ethylene glycol (16.7 mL, 299 mmol), 

and the mixture was refluxed with a Dean-Stark apparatus for 17 h under an argon atmosphere. 

After cooling to room temperature, the reaction mixture was basified with K2CO3 (12 g) and 

saturated aqueous NaHCO3 solution (80 mL), and extracted with CHCl3 (300, 200, 100 mL). The 

organic layer was washed with brine, dried over Na2SO4, and concentrated under reduced 

pressure to afford a crude product as a colorless solid. The crude product was suspended in Ac2O 

(200 mL) and the mixture was refluxed for 1 h under an argon atmosphere. After cooling to room 

temperature, the reaction mixture was concentrated under reduced pressure and azeotropically 

dried with toluene three times, then CHCl3 three times to afford a crude product as a brown 

amorphous. To a solution of the crude product in 1,1,2,2-tetrachloroethane (200 mL) were added 
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K2CO3 (46 g, 333 mmol) and 2,2,2-trichloroethyl chloroformate (45.8 mL, 333 mmol), and the 

mixture was stirred at 140 °C for 14 h under an argon atmosphere. The reaction mixture was 

cooled to room temperature and H2O (200mL) was added. The mixture was extracted with 

CHCl3 (200 mL, 100 mL × 2). The organic layer was washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. The crude residue was purified by column chromatography 

on silica gel (EtOAc : n-hexane = 3 : 1 to 1 : 3) to afford compound 21 (24.3 g, 82% in 4 steps) 

as a yellow amorphous. 

IR (film) 1744, 1713 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.46–1.59 (m, 3H), 1.76–1.87 (m, 

1H), 2.05 (s, 1.5H), 2.07 (s, 1.5H), 2.33–2.45 (m, 1H), 2.73–3.00 (m, 3H), 3.10 (ddd, J = 18.4, 

5.6, 5.6 Hz, 1H), 3.77–3.84 (m, 1H), 3.87–3.95 (m, 1H), 3.89 (s, 3H), 3.97–4.08 (m, 2H), 4.17–

4.24 (m, 1H), 4.60 (s, 1H), 4.66 (d, J = 12.0 Hz, 0.5H), 4.68 (d, J = 12.0 Hz, 0.5H), 4.87 (d, J = 

12.0 Hz, 0.5H), 4.91 (d, J = 12.0 Hz, 0.5 H), 5.60–5.66 (m, 1H), 6.65 (d, J = 8.4 Hz, 0.5H), 6.67 

(d, J = 8.4 Hz, 0.5H), 6.80 (d, J = 8.4 Hz, 1H).; 13C NMR (100 MHz, CDCl3) δ = 21.95, 22.0, 

12.5, 23.5, 28.5, 28.6, 29.0, 31.5, 31.9, 37.6, 37.9, 48.0, 18.2, 51.7, 51.8, 56.5, 74.9, 75.0, 81.0, 

81.2, 93.2, 95.5, 95.8, 108.0, 114.3, 118.9, 123.5, 123.7, 128.6, 128.7, 142.77, 142.8, 146.2, 

146.2, 153.8, 154.0, 169.3, 169.5.; HRMS–ESI (m/z): [M + Na]+ calcd for C24H26Cl3NO8Na, 

584.0622; found, 584.0638. 

(4'R,4a'S,7a'R,12b'S)-9'-Methoxy-1',2',3',4',5',6'-hexahydro-4a'H,7a'H-

spiro[[1,3]dioxolane-2,7'-[4,12]methanobenzofuro[3,2-e]isoquinolin]-4a'-ol (22) 

To a suspension of compound 21 (10 g, 17.8 mmol) in DMSO (100 mL) was added 12 M 

aqueous KOH solution (50 mL) and the mixture was stirred for 6 h at 110 °C under an argon 

atmosphere. After cooling to room temperature, the reaction mixture was adjusted to pH 10 with 

saturated aqueous NH4Cl solution (100 mL) and extracted with a mixed solution, i-PrOH : 
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CHCl3 = 1 : 3 (150, 125, 100 mL). The organic layer was washed with brine, dried over Na2SO4, 

and concentrated under reduced pressure. The crude residue was purified by chromatography on 

silica gel (5–15% (28% NH3 aq. : MeOH = 1 : 9) in CHCl3) to afford compound 22 (6.0 g, 98%) 

as a colorless solid. 

The spectral data of compound 22 were as reported47. 

tert-Butyl (4R,4aS,7aR,12bS)-4a-hydroxy-9-methoxy-7-oxo-1,2,4,4a,5,6,7,7a-octahydro-3H-

4,12-methanobenzofuro[3,2-e]isoquinoline-3-carboxylate (23) 

Compound 23 was synthesized by the modified procedure of the reported method.42 The spectral 

data were also as reported. 

A mixture of compound 22 (5.59 g, 16.2 mmol) in 1 M HCl (50 mL) was stirred for 15 h at 80 

°C under an argon atmosphere. After cooling to room temperature, the reaction mixture was 

basified with K2CO3 (5 g) and extracted with a mixed solution, i-PrOH : CHCl3 = 1 : 3 (50, 40 

mL, 30 mL×2). The organic layer was washed with brine, dried over Na2SO4, and concentrated 

under reduced pressure. The crude residue was purified by column chromatography on silica gel 

(5–15% (28% NH3 aq. : MeOH = 1 : 9) in CHCl3) to afford a colorless amorphous (4.88 g) with 

inseparable impurities. To a stirred solution of the obtained amorphous in CH2Cl2 (80 mL) were 

added (i-Pr) 2NEt (5.6 mL, 32.2 mmol) and (Boc)2O (4.5 mL, 19.6 mmol) at 0 °C under an argon 

atmosphere. After stirring for 3 h at room temperature, the reaction mixture was washed with 

saturated aqueous NaHCO3 solution (80 mL). The organic layer was washed with brine, dried 

over Na2SO4, and concentrated under reduced pressure. The crude residue was purified by 

column chromatography on silica gel (40–60% EtOAc in n-hexane) to afford compound 23 (5.93 

g, 91%) as a colorless amorphous. 
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tert-Butyl (4R,4aS,7R,7aR,12bS)-7-[benzyl(methyl)amino]-4a-hydroxy-9-methoxy-

1,2,4,4a,5,6,7,7a-octahydro-3H-4,12-methanobenzofuro[3,2-e]isoquinoline-3-carboxylate 

(24) 

Compound 24 was synthesized by the modified procedure of the reported method.42 The spectral 

data were also as reported. 

To a solution of compound 23 (875 mg, 2.18 mmol) in benzene (22 mL) were added 

benzylmethylamine (580 µL, 4.49 mmol), PhCO2H (426 mg, 3.49 mmol), and p-TsOH·H2O (32 

mg, 0.168 mmol), and the mixture was refluxed for 18 h with a Dean-Stark apparatus under an 

argon atmosphere. After cooling to room temperature, the reaction mixture was concentrated 

under reduced pressure and MS4A (1.3 g) was added. The mixture was dissolved in absolute 

EtOH (26 mL) under an argon atmosphere, cooled with an ice-salt (NaCl) bath and a solution of 

NaBH3CN (247 mg, 3.92 mmol) in THF (4.0 mL) was added. After 0.5 h, the ice-salt (NaCl) 

bath was removed. The reaction mixture was stirred for 2 h at room temperature, and then MeOH 

(20 mL) and saturated aqueous NaHCO3 solution (30 mL) were added. The mixture was filtered 

through a pad of Celite, and the filtrate was concentrated under reduced pressure and extracted 

with CHCl3 (30, 20, 10 mL). The organic layer was washed with brine, dried over Na2SO4 and 

concentrated under reduced pressure. The crude residue was purified by column chromatography 

on silica gel (0–5% MeOH in CHCl3) to afford compound 24 (927 mg, 84%) as a colorless 

amorphous. 

tert-Butyl (4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-7-(methylamino)-1,2,4,4a,5,6,7,7a-

octahydro-3H-4,12-methanobenzofuro[3,2-e]isoquinoline-3-carboxylate (25) 

Compound 25 was synthesized by the modified procedure of the reported method.42 
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To a solution of compound 24 (285 mg, 0.563 mmol) in MeOH (3 mL) was added 5% Pd/C, 

Degussa type (95 mg) and the mixture was stirred for 13 h at room temperature under a hydrogen 

atmosphere. The reaction mixture was filtered through a pad of Celite and the filtrate was 

concentrated under reduced pressure. The crude residue was purified by column chromatography 

on silica gel (5–15% (28% NH3 aq. : MeOH = 1 : 9) in CHCl3) to afford compound 25 (240 mg, 

quant) as a colorless amorphous. 

IR (film) 3372, 1681 cm-1; 1H NMR (400 MHz, pyridine-d5) δ = 1.30–1.57 (m, 2H), 1.49 (s, 

5.4H), 1.51 (s, 3.6H), 1.62–1.89 (m, 1H), 2.08–2.22 (m, 1H), 2.53–2.92 (m, 3H), 2.86 (s, 1.2H), 

2.87 (s, 1.8H), 2.94–3.16 (m, 3H), 3.85 (s, 3H), 4.08 (dd, J = 12.8, 4.0 Hz, 0.6H), 4.34 (dd, J = 

12.8, 4.0 Hz, 0.4H), 4.63 (d, J = 4.0 Hz, 0.4H), 4.90 (d, J = 4.0 Hz, 0.6H), 5.25 (d, J = 6.8 Hz, 

0.4H), 5.27 (d, J = 6.8Hz, 0.6H), 6.78 (d, J = 8.4 Hz, 0.6H), 6.82 (d, J = 8.4 Hz, 0.4H), 6.97 (d, J 

= 8.4 Hz, 1H). Two protons (NH, OH) were not observed.; 13C NMR (100 MHz, pyridine-d5) δ = 

22.0, 28.4, 28.7, 29.0, 30.5, 32.0, 32.1, 32.3, 37.5, 38.4, 47.9, 56.8, 58.2, 60.9, 70.0, 79.1, 79.8, 

91.3, 91.4, 115.5, 120.1, 125.6, 131.8, 144.0, 144.5, 155.8, 155.9.; HRMS–ESI (m/z): [M + H]+ 

calcd for C23H33N2O5, 417.2390; found, 417.2381. 

tert-Butyl (4R,4aS,7R,7aR,12bS)-7-[(E)-3-(furan-3-yl)-N-methylacrylamido]-4a-hydroxy-9-

methoxy-1,2,4,4a,5,6,7,7a-octahydro-3H-4,12-methanobenzofuro[3,2-e]isoquinoline-3-

carboxylate (26) 

Compound 26 was synthesized by the modified procedureof the reported method.42 The spectral 

data were also as reported. 

To a stirred solution of compound 25 (240 mg, 0.576 mmol) in CH2Cl2 (5.8 mL) were added 

Et3N (240 µL, 1.72 mmol) and (E)-3-(furan-3-yl) acryloyl chloride (108 mg, 0.690 mmol) at 0 

°C under an argon atmosphere. After stirring for 2 h at room temperature, the reaction mixture 
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was diluted with CH2Cl2 (10 mL) and washed with saturated aqueous NaHCO3 solution (20 mL). 

The organic layer was washed with brine, dried over Na2SO4, and concentrated under reduced 

pressure. The crude residue was purified by column chromatography on silica gel (80–100% 

EtOAc in n-hexane) to afford compound 26 (245 mg, 79%) as a colorless amorphous.; The 

purity was >99% as assessed by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-[(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-2,3,4,4a,5,6,7,7a-

octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-N-methylacrylamide (27)  

A mixture of compound 26 (64 mg, 0.119 mmol) in 10% hydrogen chloride methanol solution 

(3.0 mL) was stirred for 14 h at room temperature under an argon atmosphere. The reaction 

mixture was concentrated under reduced pressure. The residue was basified with saturated 

aqueous NaHCO3 solution (20 mL) and extracted with a mixed solution, i-PrOH : CHCl3 = 1 : 3 

(10 mL × 4). The organic layer was washed with brine, dried over Na2SO4, and concentrated 

under reduced pressure. The crude residue was purified by PLC (28% NH3 aq. : MeOH : CHCl3 

= 1 : 9 : 200) to afford compound 27 (42.8 mg, 82%) as a colorless amorphous.  

IR (film) 3323, 1651 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.38–1.73 (m, 4H), 2.12–2.36 (m, 

2H), 2.65–2.78 (m, 2H), 2.94–3.20 (m, 3.6H), 3.02 (s, 2.4H), 3.70–3.90 (m, 0.8H), 3.81 (s, 

2.4H), 3.85 (s, 0.6H), 4.25–4.45 (m, 0.2H), 4.61 (d, J = 7.6 Hz, 0.8H), 4.74 (d, J = 7.6 Hz, 0.2H), 

6.42–6.66 (m, 2.2H), 6.69 (d, J = 8.4 Hz, 0.8H), 6.74 (d, J = 8.4 Hz, 0.2H), 6.81 (d, J = 8.4 Hz, 

0.8H), 7.33–7.63 (m, 3H). Two protons (NH and OH) were not observed.; 13C NMR (100 MHz, 

CDCl3) δ = 21.6, 23.2, 29.9, 30.4, 30.7, 32.8, 32.9, 37.5, 37.6, 47.9, 56.8, 57.3, 57.5, 58.4, 69.8, 

70.1, 89.2, 89.9, 107.4, 107.7, 115.0, 115.4, 118.1, 118.4, 118.6, 119.2, 123.1, 123.4, 125.6, 

125.9, 131.6, 131.9, 132.5, 143.0, 143.5, 143.6, 143.8, 143.9, 144.1, 166.8, 167.6.; HRMS–ESI 

(m/z): [M + H]+ calcd for C25H29N2O5, 437.2077; found, 437.2068. 
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(E)-N-[(4R,4aS,7R,7aR,12bS)-3-Acetyl-4a-hydroxy-9-methoxy-2,3,4,4a,5,6,7,7a-octahydro-

1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-3-(furan-3-yl)-N-methylacrylamide (28) 

A mixture of compound 27 (30 mg, 0.0687 mmol) in Ac2O (0.5 mL) and pyridine (0.25 mL) was 

allowed to stand for 3 h at room temperature under an argon atmosphere. The reaction mixture 

was concentrated under reduced pressure and azeotropically dried with toluene (1 mL × 3) then 

CHCl3 (2 mL × 2). The crude product was purified by PLC (MeOH : CHCl3 = 1 : 10) to afford 

compound 28 (32 mg, 97%) as a colorless amorphous. 

IR (film) 3365, 1651cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.38–1.82 (m, 4H), 1.93–2.58 (m, 

3H), 2.14 (s, 2.1H), 2.21 (s, 0.9H), 2.79–3.26 (m, 5.7H), 3.37 (brs, 0.3H), 3.53–3.67 (m, 0.7H), 

3.71–4.36 (m, 4.3H), 4.45 (dd, J = 14.0, 4.8 Hz, 0.3H), 4.65 (d, J = 8.0 Hz, 0.7H), 4.75–4.87 (m, 

0.3H), 4.91–5.03 (m, 0.7H), 6.39–6.52 (m, 1.4H), 6.54–6.62 (m, 0.6H), 6.65 (d, J = 8.0 Hz, 

0.3H), 6.72 (d, J = 8.0 Hz, 0.7H), 6.77 (d, J = 8.0 Hz, 0.3H), 6.81–6.89 (m, 0.7H), 7.35–7.66 (m, 

3H).; 13C NMR (100 MHz, CDCl3) δ = 21.2, 22.1, 22.8, 28.2, 28.5, 28.8, 29.0, 30.3, 30.7, 31.0, 

31.2, 31.4, 32.1, 34.9, 40.3, 47.3, 53.8, 53.9, 56.8, 57.1, 57.2, 58.1, 59.95, 60.0, 70.4, 70.6, 70.7, 

88.8, 89.1, 89.4, 107.4, 107.7, 115.3, 115.5, 115.7, 117.8, 117.9, 118.1, 119.3, 119.9, 123.1, 

123.3, 123.8, 124.4, 124.6, 130.8, 131.1, 132.1, 132.6, 132.8, 143.1, 143.6, 143.9, 144.1, 144.2, 

144.3, 166.8, 167.6, 170.9, 171.0, 171.1.; HRMS–ESI (m/z): [M + Na]+ calcd for C27H30N2O6Na, 

501.2002; found, 501.1989.; The purity was >98% as assessed by HPLC (254 nm). 

(E)-N-[(4R,4aS,7R,7aR,12bS)-3-(Cyclopropanecarbonyl)-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-3-(furan-3-

yl)-N-methylacrylamide (29) 

To a stirred solution of compound 27 (30 mg, 0.0687 mmol) in pyridine (0.5 mL) was added 

cyclopropanecarbonyl chloride (7.5 µL, 0.0827 mmol) at 0 °C, and the reaction mixture was 
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stirred for 21 h at room temperature under an argon atmosphere. The reaction was quenched with 

saturated aqueous NaHCO3 solution (5 mL) and the mixture was extracted with CHCl3 (10, 7, 5 

mL). The organic layer was washed with brine, dried over Na2SO4, and concentrated under 

reduced pressure. The crude residue was purified by PLC (MeOH : CHCl3 = 1 : 10) to afford 

compound 29 (28.6 mg, 82%) as a colorless amorphous. 

IR (film) 3375, 1651 cm-1; 1H NMR (400 MHz, CDCl3) δ = 0.72–0.92 (m, 2H), 0.93–1.18 (m, 

2H), 1.38–2.01 (m, 5H), 2.10–2.66 (m, 2H), 2.76–3.34 (m, 7H), 3.61–3.95 (m, 3.9H), 3.96–4.13 

(m, 0.7H), 4.17–4.54 (m, 0.7H), 4.59–4.72 (m, 0.7H), 4.74–4.88 (m, 0.3H), 4.88–5.04 (m, 0.7H), 

6.41–6.53 (m, 1.4H), 6.55–6.91 (m, 2.6H), 7.36–7.67 (m, 3H).; 13C NMR (100 MHz, CDCl3) δ = 

7.5, 7.8, 11.8, 21.2, 22.8, 28.3, 28.8, 29.1, 29.3, 29.7, 30.6, 31.0, 31.3, 32.2, 35.6, 39.4, 47.5, 

47.6, 54.4, 56.7, 57.2, 58.1, 59.1, 70.8, 71.0, 88.8, 89.4, 107.4, 107.6, 115.2, 115.5, 115.6, 117.9, 

118.1, 119.2, 119.8, 123.1, 123.3, 124.5, 124.7, 131.2, 132.1, 132.6, 143.0, 143.6, 143.8, 144.0, 

144.3, 166.8, 167.6, 174.1, 174.2, 174.4.; HRMS–ESI (m/z): [M + Na]+ calcd for C29H32N2O6Na, 

527.2158; found, 527.2138. The purity was >99% as assessed by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-[(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-(4-methylbenzoyl)-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-N-

methylacrylamide (30) 

To a stirred solution of compound 27 (30 mg, 0.0687 mmol) in CH2Cl2 (0.7 mL) were added 

Et3N (30 µL, 0.215 mmol) and p-toluoyl chloride (11 µL, 0.0832 mmol) at 0 °C under an argon 

atmosphere. The mixture was stirred for 2 h at room temperature and then additional toluoyl 

chloride (11 µL, 0.0832 mmol) was added. After stirring for 3 h, the reaction mixture was diluted 

with CH2Cl2 (5 mL) and washed with saturated aqueous NaHCO3 solution (5 mL). The organic 

layer was washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The 
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crude residue was purified by PLC (MeOH : CHCl3 = 1 : 20) to afford compound 30 (32.2 mg, 

85%) as a colorless amorphous. 

IR (film) 3374, 1651 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.23–1.75 (m, 4H), 1.86–2.12 (brs, 

1H), 2.17–2.75 (m, 2H), 2.38 (s, 3H), 2.84–3.37 (m, 3H), 2.98 (s, 2.1H), 3.13 (m, 0.9H), 3.42–

3.68 (m, 1H), 3.68–3.91 (m, 0.7H), 3.81 (s, 2.1H), 3.85 (s, 0.9H), 3.93–4.19 (m, 0.3H), 4.24–

4.83 (m, 1.4H), 4.97–5.12 (m, 0.6H), 6.37–6.90 (m, 4H), 7.15–7.26 (m, 2H), 7.29–7.66 (m, 5H).; 

13C NMR (100 MHz, CDCl3) δ = 21.2, 21.4, 22.7, 28.8, 29.2, 29.4, 30.4, 31.0, 31.3, 32.3, 35.5, 

41.9, 42.0, 47.5, 54.5, 56.7, 57.2, 58.1, 60.7, 70.9, 71.2, 71.4, 88.9, 89.4, 107.4, 107.6, 115.3, 

115.7, 117.9, 118.2, 119.2, 119.8, 123.1, 123.3, 124.3, 124.6, 127.2, 129.1, 131.0, 131.3, 132.1, 

132.7, 132.8, 133.1, 140.2, 143.0, 143.6, 143.8, 144.0, 144.1, 144.3, 166.8, 167.6, 172.6, 172.8.; 

HRMS–ESI (m/z): [M + Na]+ calcd for C33H34N2O6Na, 577.2315; found, 577.2303.; The purity 

was >99% as assessed by HPLC (254 nm). 

(E)-N-[(4R,4aS,7R,7aR,12bS)-3-Cinnamoyl-4a-hydroxy-9-methoxy-2,3,4,4a,5,6,7,7a-

octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-3-(furan-3-yl)-N-

methylacrylamide (31) 

To a stirred solution of compound 27 (30 mg, 0.0687 mmol) in CH2Cl2 (0.7 mL) were added 

Et3N (30 µL, 0.215 mmol) and cinnamoyl chloride (14 mg, 0.0840 mmol) at 0 °C under an argon 

atmosphere. After stirring for 2 h at room temperature, the reaction mixture was diluted with 

CH2Cl2 (5 mL) and washed with saturated aqueous NaHCO3 solution (5 mL). The organic layer 

was washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The crude 

residue was purified by PLC (MeOH : CHCl3 = 1 : 20) to afford compound 31 (30.1 mg, 77%) as 

a colorless amorphous. 
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IR (film) 3366, 1646 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.39–1.88 (m, 4H), 2.18–2.57 (m, 

1.8H), 2.58–2.74 (m, 0.2H), 2.87–3.25 (m, 6H), 3.52 (brs, 1H), 3.73–3.95 (m, 4.7H), 4.15–4.40 

(m, 0.3H), 4.43–4.70 (m, 0.3H), 4.66 (d, J = 7.6 Hz, 0.7H), 4.80 (d, J = 7.6 Hz, 0.3H), 5.03–5.14 

(m, 0.7H), 6.39–7.07 (m, 5H), 7.31–7.70 (m, 9H).; 13C NMR (100 MHz, CDCl3) δ = 21.3, 22.8, 

28.4, 28.8, 29.1, 29.3, 30.8, 31.1, 31.3, 31.5, 32.5, 35.8, 39.9, 47.5, 54.5, 56.7, 57.1, 57.2, 58.1, 

59.6, 70.7, 71.0, 88.8, 89.4, 107.4, 107.7, 115.3, 115.5, 115.7, 117.8, 117.9, 118.1, 119.2, 119.9, 

123.1, 123.3, 123.9, 124.4, 124.6, 127.7, 128.8, 129.7, 129.8, 130.9, 131.1, 132.1, 132.6, 135.0, 

135.1, 142.9, 143.06, 143.12, 143.3, 143.6, 143.9, 144.1, 144.3, 166.8, 167.6, 167.7, 167.9.; 

HRMS–ESI (m/z): [M + Na]+ calcd for C34H34N2O6Na, 589.2315; found, 589.2314.; The purity 

was >99% as assessed by HPLC (254 nm). 

(E)-N-[(4R,4aS,7R,7aR,12bS)-3-(Cyclopropylsulfonyl)-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-3-(furan-3-

yl)-N-methylacrylamide (32) 

To a stirred solution of compound 27 (30 mg, 0.0687 mmol) in CH2Cl2 (0.7 mL) were added 

Et3N (30 µL, 0.215 mmol) and cyclopropanesulfonyl chloride (8.5 µL, 0.0834 mmol) at 0 °C 

under an argon atmosphere. The reaction mixture was stirred for 2 h at room temperature and 

then additional Et3N (30 µL, 0.215 mmol) and cyclopropanesulfonyl chloride (8.5 µL, 0.0834 

mmol) were added. After stirring for 22 h, the reaction mixture was diluted with CH2Cl2 (5 mL) 

and washed with saturated aqueous NaHCO3 solution (5 mL). The organic layer was washed 

with brine, dried over Na2SO4, and concentrated under reduced pressure. The crude residue was 

purified by PLC (MeOH : CHCl3 = 1 : 20) to afford compound 32 (24.4 mg, 66%) as a colorless 

solid. 
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IR (KBr) 3393, 1650, 1325, 1154 cm-1; 1H NMR (400 MHz, CDCl3) δ = 0.98–1.13 (m, 2H), 

1.16–1.30 (m, 2H), 1.39–1.78 (m, 4H), 2.15–2.54 (m, 3H), 2.87–2.98 (m, 1H), 3.01 (s, 2.1H), 

3.09–3.27 (m, 3H), 3.16 (s, 0.9H), 3.58–3.69 (m, 1H), 3.72–3.91 (m, 0.7H), 3.82 (s, 2.1H), 3.86 

(s, 0.9H), 4.03–4.15 (m, 1H), 4.19–4.35 (m, 0.3H), 4.63 (d, J = 8.4 Hz, 0.7H), 4.78 (d, J = 8.4 

Hz, 0.3H), 6.43 (d, J = 15.6 Hz, 0.7H), 6.43–6.50 (m, 0.7H), 6.55–6.70 (m, 0.6H), 6.67 (d, J = 

8.4 Hz, 0.3H), 6.74 (d, J = 8.4 Hz, 0.7H), 6.77 (d, J = 8.4 Hz, 0.3H), 6.86 (d, J = 8.4 Hz, 0.7H), 

7.34–7.67 (m, 3H).; 13C NMR (100 MHz, CDCl3) δ = 5.4, 5.7, 21.3, 22.9, 28.9, 29.2, 29.3, 29.7, 

30.2, 30.5, 31.2, 31.4, 32.8, 39.1, 39.2, 47.2, 47.2, 56.8, 57.1, 58.0, 59.1, 70.0, 70.2, 89.0, 89.5, 

107.4, 107.6, 115.5, 115.7, 117.8, 118.0, 19.2, 119.8, 123.0, 123.2, 123.8, 124.0, 130.5, 130.8, 

132.2, 132.7, 143.1, 143.6, 143.9, 144.0, 144.1, 144.2, 144.4, 166.8, 167.6.; HRMS–ESI (m/z): 

[M + Na]+ calcd for C28H32N2O7SNa, 563.1828; found, 563.1804.; The purity was >99% as 

assessed by HPLC (254 nm). 

General procedure for sulfonamidation 

To a stirred solution of compound 27 (30 mg, 0.0687 mmol) in CH2Cl2 (0.7 mL) were added 

Et3N (30 µL, 0.215 mmol) and alkyl- or arylsulfonyl chloride (1.2 equiv) at 0 °C under an argon 

atmosphere. After stirring for 2 h at room temperature, the reaction mixture was diluted with 

CH2Cl2 (5 mL) and washed with saturated aqueous NaHCO3 solution (5 mL). The organic layer 

was washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The crude 

residue was purified by PLC (MeOH : CHCl3 = 1 : 20) to afford the desired 17-sulfonamide 

derivative. 

(E)-N-[(4R,4aS,7R,7aR,12bS)-3-(Butylsulfonyl)-4a-hydroxy-9-methoxy-2,3,4,4a,5,6,7,7a-

octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-3-(furan-3-yl)-N-

methylacrylamide (33) 
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The title compound was synthesized in 75% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3357, 1651, 1320, 1154 cm-1; 1H NMR (400 MHz, CDCl3) δ = 0.96 (t, J = 7.6 Hz, 3H), 

1.37–1.92 (m, 8H), 2.18–2.45 (m, 2H), 2.84–3.28 (m, 6H), 3.00 (s, 2.1H), 3.17 (s, 0.9H), 3.52–

3.69 (m, 1H), 3.70–3.91 (m, 0.7H), 3.82 (s, 2.1H), 3.86 (s, 0.9H), 3.99–4.17 (m, 1.3H), 4.64 (d, J 

= 7.6 Hz, 0.7H), 4.83 (d, J = 7.6 Hz, 0.3H), 6.42–6.91 (m, 0.7H), 6.43 (d, J = 15.2 Hz, 0.7H), 

6.54–6.62 (m, 0.3H), 6.58 (d, J = 15.2 Hz, 0.3H), 6.67 (d, J = 8.4 Hz, 0.3H), 6.74 (d, J = 8.4 Hz, 

0.7H), 6.77 (d, J = 8.4 Hz, 0.3H), 6.86 (d, J = 8.4 Hz, 0.7H), 7.32–7.67 (m, 3H).; 13C NMR (100 

MHz, CDCl3) δ = 13.6, 21.8, 21.6, 22.9, 25.5, 29.0, 29.1, 30.3, 30.8, 31.9, 32.2, 37.2, 47.2, 52.6, 

56.8, 57.0, 58.0, 58.6, 58.7, 70.0, 70.2, 89.3, 89.4, 107.4, 107.6, 115.5, 117.7, 118.0, 119.2, 

119.9, 123.0, 123.2, 124.0, 130.4, 130.7, 132.3, 132.8, 143.1, 143.7, 143.8, 144.07, 144.14, 

144.2, 144.3, 166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for C29H36N2O7SNa, 579.2141; 

found, 579.2148.; The purity was >99% as assessed by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-[(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-(phenylsulfonyl)-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-N-

methylacrylamide (34) 

The title compound was synthesized in 89% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3377, 1651, 1323, 1160 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.37–1.77 (m, 4H), 

2.13–2.40 (m, 2H), 2.56 (d, J = 18.4 Hz, 0.3H), 2.58 (d, J = 18.4 Hz, 0.7H), 2.73 (ddd, J = 12.4, 

12.4, 3.6 Hz, 1H), 2.86 (dd, J = 18.4, 5.2 Hz, 1H), 2.99 (s, 2.1H), 3.05 (s, 1H), 3.13 (s, 0.9H), 

3.64–3.87 (m, 1.7H), 3.78 (s, 2.1H), 3.82 (s, 0.9H), 4.11–4.23 (m, 1H), 4.24–4.38 (m, 0.3H), 

4.60 (d, J = 8.0 Hz, 0.7H), 4.74 (d, J = 8.0 Hz, 0.3H), 6.40 (d, J = 14.8 Hz, 0.7H), 6.40–6.49 (m, 
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1H), 6.52 (d, J = 8.4 Hz, 0.7H), 6.54–6.62 (m, 0.6H), 6.70 (d, J = 8.4 Hz, 0.3H), 6.77 (d, J = 8.4 

Hz, 0.7H), 7.34–7.70 (m, 6H), 7.79–7.90 (m, 2H).; 13C NMR (100 MHz, CDCl3) δ = 21.3, 22.9, 

28.8, 29.2, 29.3, 29.4, 29.5, 30.2, 30.4, 32.3, 38.9, 47.1, 47.2, 53.4, 56.3, 56.8, 57.2, 58.0, 59.0, 

59.1, 88.8, 89.4, 107.4, 107.6, 115.5, 115.7, 117.8, 118.0, 119.0, 119.7, 123.0, 123.2, 123.6, 

123.9, 127.1, 129.35, 129.43, 130.3, 130.6, 132.2, 132.7, 132.9, 133.1, 139.6, 139.7, 143.0, 

143.6, 143.8, 143.9, 144.1, 144.4, 166.8, 167.5.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C31H32N2O7SNa, 599.1828; found, 599.1824.; The purity was >99% as assessed by HPLC (254 

nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(2-Fluorophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (35) 

The title compound was synthesized in 85% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3364, 1651, 1325, 1159 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.39–1.78 (m, 4H), 

2.13–2.39 (m, 1H), 2.32 (ddd, J = 12.8, 12.8, 5.6 Hz, 1H), 2.80–2.96 (m, 3H), 2.97–2.38 (m, 

1H), 2.99 (s, 2.1H), 3.13 (s, 0.9H), 3.67–3.86 (m, 1.7H), 3.81 (s, 2.1H), 3.84 (s, 0.9H), 4.12 (d, J 

= 5.2 Hz, 0.3H), 4.16 (d, J = 5.2 Hz, 0.7H), 4.22–4.36 (m, 0.3H), 4.61 (d, J = 8.0 Hz, 0.7H), 4.76 

(d, J = 8.0 Hz, 0.3H), 6.42 (d, J = 15.6 Hz, 0.7H), 6.42–6.49 (m, 0.7H), 6.53–6.62 (m, 0.9H), 

6.65 (d, J = 8.4 Hz, 0.7H), 6.74 (d, J = 8.4 Hz, 0.3H), 6.82 (d, J = 8.4 Hz, 0.7H), 7.19–7.69 (m, 

6H), 7.89–7.98 (m, 1H).; 13C NMR (100 MHz, CDCl3) δ = 21.3, 22.8, 28.8, 29.1, 29.2, 30.4, 

30.6, 30.7, 32.5, 39.1, 47.2, 56.8, 57.2, 57.9, 59.0, 59.1, 70.1, 70.2, 88.8, 89.4, 107.4, 107.6, 

115.5, 115.7, 117.2, 117.4, 118.1, 119.2, 119.8, 123.0, 123.2, 123.7, 123.9, 124.7, 127.6, 127.7, 

130.3, 130.6, 130.9, 132.2, 132.7, 135.2, 135.4, 135.5, 143.0, 143.6, 143.8, 143.9, 144.1, 144.2, 
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144.4, 157.4, 159.9, 166.7, 167.5.; HRMS–ESI (m/z): [M + Na]+ calcd for C31H31N2O7SFNa, 

617.1734; found, 617.1717.; The purity was >99% as assessed by HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(3-Fluorophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (36) 

The title compound was synthesized in 80% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3349, 1651, 1323, 1158 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.40–1.78 (m, 4H), 

2.15–2.38 (m, 2H), 2.57–2.65 (m, 0.3H), 2.61 (d, J = 18.4 Hz, 0.7H), 2.71–2.84 (m, 1H), 2.84–

2.98 (m, 2H), 2.99 (s, 2.1H), 3.14 (s, 0.9H), 3.64–3.86 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 0.9H), 

4.17 (d, J = 5.2 Hz, 1H), 4.14–4.31 (m, 0.3H), 4.61 (d, J = 7.6 Hz, 0.7H), 4.76 (d, J = 7.6 Hz, 

0.3H), 6.40 (d, J = 15.6 Hz, 0.7H), 6.41–6.46 (m, 0.7H), 6.50 (d, J = 8.4 Hz, 0.3H), 6.53–6.61 

(m, 0.6H), 6.55 (d, J = 8.4 Hz, 0.7H), 6.71 (d, J = 8.4 Hz, 0.3H), 6.79 (d, J = 8.4 Hz, 0.7H), 

7.29–7.68 (m, 7H).; 13C NMR (100 MHz, CDCl3) δ = 21.2, 22.8, 28.8, 29.0, 29.1, 29.8, 30.0, 

30.2, 30.5, 32.6, 39.1, 47.1, 56.8, 57.1, 57.9, 59.2, 70.1, 70.3, 88.8, 89.4, 107.4, 107.6, 114.4, 

114.6, 115.5, 115.7, 117.8, 118.0, 119.1, 119.7, 120.0, 120.1, 120.3, 122.8, 123.0, 123.2, 123.4, 

123.7, 130.2, 130.5, 131.2, 131.3, 132.2, 132.7, 141.7, 141.8, 141.9, 143.0, 143.6, 143.8, 144.0, 

144.2, 144.4.; HRMS–ESI (m/z): [M + Na]+ calcd for C31H31N2O7SFNa, 617.1734; found, 

617.1713.; The purity was > 99% as assessed by HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(4-Fluorophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (37) 
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The title compound was synthesized in 74% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3365, 1651, 1324, 1157 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.40–1.78 (m, 4H), 

2.15–2.37 (m, 2H), 2.61 (d, J = 18.4 Hz, 0.7H), 2.62 (d, J = 18.4 Hz, 0.3H), 2.68–2.83 (m, 1H), 

2.86–3.04 (m, 2H), 2.99 (s, 2.1H), 3.14 (s, 0.9H), 3.60–3.86 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 

0.9H), 4.16 (d, J = 4.8 Hz, 1H), 4.13–4.32 (m, 0.3H), 4.60 (d, J = 8.0 Hz, 0.7H), 4.76 (d, J = 8.0 

Hz, 0.3H), 6.40 (d, J = 15.2 Hz, 0.7H), 6.40–6.46 (m, 0.7H), 6.50 (d, J = 8.0 Hz, 0.3H), 6.53–

6.61 (m, 0.6H), 6.56 (d, J = 8.4 Hz, 0.7H), 6.71 (d, J = 8.0 Hz, 0.3H), 6.79 (d, J = 8.0 Hz, 0.7H), 

7.18–7.29 (m, 2H), 7.33–7.63 (m, 3H), 7.82–7.91 (m, 2H).; 13C NMR (100 MHz, CDCl3) δ = 

21.3, 22.9, 28.8, 29.1, 29.2, 29.6, 29.9, 30.2, 30.5, 38.9, 47.1, 56.8, 57.1, 58.0, 59.1, 70.1, 70.2, 

88.9, 89.4, 107.4, 107.6, 115.5, 115.7, 116.4, 116.6, 116.7, 116.8, 117.8, 118.0, 119.1, 119.7, 

123.0, 123.2, 123.5, 123.7, 129.8, 129.9, 130.3, 130.5, 132.2, 132.7, 135.7, 135.9, 143.0, 143.6, 

143.8, 144.0, 144.1, 144.2, 144.4, 163.9, 166.5, 166.8, 167.5.; HRMS–ESI (m/z): [M + Na]+ 

calcd for C31H31N2O7SFNa, 617.1734; found, 617.1721.; The purity was >98% as assessed by 

HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(2-Chlorophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (38) 

The title compound was synthesized in 87% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3365, 1651, 1323, 1160 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.37–1.76 (m, 4H), 

2.10–2.35 (m, 1H), 2.33 (ddd, J = 12.8, 12.8, 5.6 Hz, 1H), 2.89–3.24 (m, 7H), 3.69–3.80 (m, 

0.7H), 3.73 (dd, J = 13.6, 4.8 Hz, 1H), 3.81 (s, 2.1H), 3.85 (s, 0.9H), 3.90 (d, J = 4.8 Hz, 0.3H), 

Page 42 of 90

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

3.94 (d, J = 4.8 Hz, 0.7H), 4.25–4.41 (m, 0.3H), 4.61 (d, J = 8.0 Hz, 0.7H), 4.75 (d, J = 8.0 Hz, 

0.3H), 6.42 (d, J = 15.2 Hz, 0.7H), 6.45–6.48 (m, 0.7H), 6.54–6.61 (m, 0.6H), 6.64 (d, J = 8.0 

Hz, 0.3H), 6.71 (d, J = 8.0 Hz, 0.7H), 6.76 (d, J = 8.0 Hz, 0.3H), 6.84 (d, J = 8.0 Hz, 0.7H), 

7.35–7.62 (m, 6H), 8.13–8.19 (m, 1H).; 13C NMR (100 MHz, CDCl3) δ = 21.3, 22.8, 28.8, 29.0, 

29.2, 30.3, 30.5, 31.0, 32.2, 39.4, 39.5, 47.3, 47.3, 56.2, 56.8, 57.2, 57.9, 58.8, 59.0, 70.3, 70.5, 

88.7, 89.4, 107.4, 107.6, 115.5, 115.8, 117.9, 118.1, 119.3, 119.9, 123.1, 123.2, 123.8, 124.1, 

127.26, 127.33, 130.3, 130.5, 132.16, 132.19, 132.4, 134.1, 134.3, 143.0, 143.6, 143.8, 143.9, 

144.08, 144.12, 144.4, 166.8, 167.5.; HRMS–ESI (m/z): [M + Na]+ calcd for C31H31N2O7SClNa, 

633.1438; found, 633.1421.; The purity was >99% as assessed by HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(3-Chlorophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (39) 

The title compound was synthesized in 83% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3356, 1651, 1324, 1160 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.40–1.83 (m, 4H), 

2.15–2.38 (m, 2H), 2.63 (d, J = 18.4 Hz, 1H), 2.71–2.83 (m, 1H), 2.89–3.02 (m, 2H), 2.99 (s, 

2.1H), 3.14 (s, 0.9H), 3.62–3.81 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 0.9H), 4.14–4.28 (m, 1.3H), 

4.61 (d, J = 8.0 Hz, 0.7H), 4.77 (d, J = 8.0 Hz, 0.3H), 6.40 (d, J = 14.8 Hz, 0.7H), 6.41–6.47 (m, 

0.7H), 6.52 (d, J = 8.4 Hz, 0.3H), 6.57 (d, J = 8.4 Hz, 0.7H), 6.57–6.62 (m, 0.6H), 6.72 (d, J = 

8.4 Hz, 0.3H), 6.79 (d, J = 8.4 Hz, 0.7H), 7.34–7.63 (m, 5H), 7.68–7.76 (m, 1H), 7.82–7.87 (m, 

1H).; 13C NMR (100 MHz, CDCl3) δ = 21.3, 22.8, 28.9, 29.0, 29.1, 29.8, 30.1, 30.2, 30.5, 39.1, 

47.1, 47.1, 56.8, 57.1, 57.9, 59.2, 70.1, 70.3, 88.9, 89.4, 107.4, 107.6, 115.5, 115.7, 117.8, 118.0, 

119.1, 119.8, 123.0, 123.2, 123.4, 123.6, 125.1, 127.1, 130.2, 130.5, 130.6, 130.7, 132.2, 132.7, 
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133.0, 133.1, 135.4, 135.6, 141.5, 141.7, 143.0, 143.6, 143.8, 144.0, 144.1, 144.2, 144.4, 166.8, 

167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for C31H31N2O7SClNa, 633.1438; found, 633.1423.; 

The purity was >99% as assessed by HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(4-Chlorophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (40) 

The title compound was synthesized in 86% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3357, 1651, 1324, 1160 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.40–1.77 (m, 4H), 

2.15–2.37 (m, 2H), 2.63 (d, J = 18.4 Hz, 0.7H), 2.64 (d, J = 18.4 Hz, 0.3H), 2.69–2.82 (m, 1H), 

2.88–3.04 (m, 2H), 2.99 (s, 2.1H), 3.14 (s, 0.9H), 3.60–3.87 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 

0.9H), 4.12–4.28 (m, 1.3H), 4.60 (d, J = 8.0 Hz, 0.7H), 4.76 (d, J = 8.0 Hz, 0.3H), 6.40 (d, J = 

15.6 Hz, 0.7H), 6.40–6.47 (m, 0.7H), 6.52 (d, J = 8.0 Hz, 0.3H), 6.54–6.61 (m, 0.6H), 6.57 (d, J 

= 8.0 Hz, 0.7H), 6.72 (d, J = 8.0 Hz, 0.3H), 6.79 (d, J = 8.0 Hz, 0.7H), 7.34–7.63 (m, 5H), 7.75–

7.83 (m, 2H).; 13C NMR (100 MHz, CDCl3) δ = 21.3, 22.8, 28.8, 29.0, 29.1, 29.8, 30.1, 30.2, 

30.5, 39.0, 47.1, 47.1, 56.8, 57.1, 58.0, 59.1, 70.1, 70.3, 88.9, 89.4, 107.4, 107.6, 115.5, 115.6, 

117.8, 118.0, 119.1, 119.8, 123.0, 123.2, 123.5, 123.7, 128.5, 129.6, 129.7, 130.3, 130.5, 132.2, 

132.8, 138.3, 138.5, 139.3, 139.5, 143.0, 143.6, 143.8, 144.0, 144.1, 144.2, 144.4, 166.8, 167.6.; 

HRMS–ESI (m/z): [M + Na]+ calcd for C31H31N2O7SClNa, 633.1438; found, 633.1420.; The 

purity was >99% as assessed by HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(2-Bromophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (41) 
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The title compound was synthesized in 90% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3365, 1651, 1323, 1160 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.37–1.68 (m, 4H), 

2.08–2.40 (m, 1H), 2.35 (ddd, J = 12.8, 12.8, 4.8 Hz, 1H), 2.92–3.32 (m, 4.9H), 2.99 (s, 2.1H), 

3.66–3.97 (m, 2.7H), 3.82 (s, 2.1H), 3.85 (s, 0.9H), 4.26–4.44 (m, 0.3H), 4.61 (d, J = 8.0 Hz, 

0.7H), 4.75 (d, J = 8.0 Hz, 0.3H), 6.42 (d, J = 15.6 Hz, 0.7H), 6.42–6.50 (m, 0.7H), 6.53–6.61 

(m, 0.6H), 6.65 (d, J = 8.4 Hz, 0.3H), 6.72 (d, J = 8.4 Hz, 0.7H), 6.76 (d, J = 8.4 Hz, 0.3H), 6.84 

(d, J = 8.4 Hz, 0.7H), 7.33–7.63 (m, 5H), 7.75–7.86 (m, 1H), 8.21 (dd, J = 7.6, 1.6 Hz, 1H).; 13C 

NMR (100 MHz, CDCl3) δ = 21.2, 22.8, 28.8, 29.0, 29.2, 30.3, 30.5, 31.0, 32.1, 39.4, 39.6, 47.2, 

56.1, 56.8, 57.2, 57.9, 58.8, 59.0, 70.4, 70.6, 88.7, 89.4, 107.4, 107.6, 115.5, 115.8, 117.9, 118.1, 

119.3, 119.9, 120.1, 123.0, 123.2, 123.8, 124.2, 127.9, 130.3, 130.5, 132.1, 132.8, 132.8, 134.1, 

134.3, 135.7, 137.8, 138.0, 143.0, 143.6, 143.8, 143.9, 144.1, 144.4, 166.7, 167.5.; HRMS–ESI 

(m/z): [M + Na]+ calcd for C31H31N2O7SBrNa, 677.0933; found, 677.0920.; The purity was 

>99% as assessed by HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(3-Bromophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (42) 

The title compound was synthesized in 86% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3357, 1651, 1324, 1160 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.41–1.76 (m, 4H), 

2.14–2.38 (m, 2H), 2.63 (d, J = 18.4 Hz, 0.7H), 2.64 (d, J = 18.4 Hz, 0.3H), 2.71–2.83 (m, 1H), 

2.86–3.02 (m, 2H), 2.99 (s, 2.1H), 3.14 (s, 0.9H), 3.60–3.86 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 

0.9H), 4.12–4.29 (m, 1.3H), 4.61 (d, J = 7.6 Hz, 0.7H), 4.77 (d, J = 7.6 Hz, 0.3H), 6.40 (d, J = 
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14.8 Hz, 0.7H), 6.41–6.48 (m, 0.7H), 6.52 (d, J = 8.4 Hz, 0.3H), 6.54–6.62 (m, 0.6H), 6.57 (d, J 

= 8.4 Hz, 0.7H), 6.72 (d, J = 8.4 Hz, 0.3H), 6.79 (d, J = 8.4 Hz, 0.7H), 7.34–7.63 (m, 4H), 7.71–

7.81 (m, 2H), 7.97–8.02 (m, 1H).; 13C NMR (100 MHz, CDCl3) δ = 21.3, 22.8, 28.7, 28.8, 29.0, 

29.1, 29.9, 30.1, 30.2, 30.5, 32.7, 39.1, 47.1, 47.1, 56.8, 57.1, 57.9, 59.2, 70.1, 70.3, 88.8, 89.4, 

107.4, 107.6, 115.5, 115.7, 117.8, 118.0, 119.1, 119.8, 123.0, 123.2, 123.3, 123.4, 123.7, 125.5, 

130.0, 130.3, 130.5, 130.8, 130.9, 132.2, 132.7, 135.8, 136.0, 141.7, 141.8, 143.0, 143.6, 143.8, 

144.0, 144.1, 144.2, 144.4, 166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C31H31N2O7SBrNa, 677.0933; found, 677.0920.; The purity was >99% as assessed by HPLC 

(254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(4-Bromophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (43) 

The title compound was synthesized in 79% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3364, 1651, 1324, 1159 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.40–1.80 (m, 4H), 

2.15–2.37 (m, 2H), 2.64 (d, J = 18.4 Hz, 0.7H), 2.65 (d, J = 18.4 Hz, 0.3H), 2.69–2.84 (m, 1H), 

2.88–3.05 (m, 2H), 2.99 (s, 2.1H), 3.14 (s, 0.9H), 3.60–3.86 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 

0.9H), 4.11–4.27 (m, 1.3H), 4.60 (d, J = 8.0 Hz, 0.7H), 4.76 (d, J = 8.0 Hz, 0.3H), 6.40 (d, J = 

15.6 Hz, 0.7H), 6.41–6.46 (m, 0.7H), 6.50–6.62 (m, 1.6H), 6.72 (d, J = 8.4 Hz, 0.3H), 6.79 (d, J 

= 8.4 Hz, 0.7H), 7.34–7.64 (m, 3H), 7.65–7.75 (m, 4H).; 13C NMR (100 MHz, CDCl3) δ = 21.3, 

22.8, 28.8, 29.0, 29.1, 29.8, 30.1, 30.2, 30.5, 32.7, 39.0, 47.1, 47.1, 56.8, 57.1, 57.9, 59.1, 70.1, 

70.3, 88.9, 89.4, 107.4, 107.6, 115.5, 115.6, 117.7, 118.0, 119.2, 119.8, 123.0, 123.2, 123.4, 

123.7, 127.8, 128.0, 128.6, 130.2, 130.5, 132.2, 132.5, 132.7, 132.8, 138.8, 139.0, 143.0, 143.6, 
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143.8, 144.0, 144.1, 144.2, 144.4, 166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C31H31N2O7SBrNa, 677.0933; found, 677.0915.; The purity was >99% as assessed by HPLC 

(254 nm). 

(E)-3-(Furan-3-yl)-N-((4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-{[2-

(trifluoromethyl)phenyl]sulfonyl}-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-

methanobenzofuro[3,2-e]isoquinolin-7-yl)-N-methylacrylamide (44) 

The title compound was synthesized in 86% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3349, 1651, 1338, 1161 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.37–1.72 (m, 4H), 

2.12–2.40 (m, 2H), 2.83–3.08 (m, 4H), 2.98 (s, 2.1H), 3.14 (s, 0.9H), 3.62–3.88 (m, 1.7H), 3.80 

(s, 2.1H), 3.84 (s, 0.9H), 4.01–4.12 (m, 1H), 4.17–4.35 (m, 0.3H), 4.61 (d, J = 8.0 Hz, 0.7H), 

4.77 (d, J = 8.0 Hz, 0.3H), 6.41 (d, J = 15.2 Hz, 0.7H), 6.42–6.50 (m, 0.7H), 6.53–6.63 (m, 

0.9H), 6.66 (d, J = 8.0 Hz, 0.7H), 6.74 (d, J = 8.0 Hz, 0.3H), 6.82 (d, J = 8.0 Hz, 0.7H), 7.34–

7.63 (m, 3H), 7.69–7.80 (m, 2H), 7.88–7.99 (m, 1H), 8.22–8.32 (m, 1H).; 13C NMR (100 MHz, 

CDCl3) δ = 21.2, 22.8, 28.9, 29.0, 30.4, 30.7, 30.9, 31.0, 39.3, 39.4, 47.1, 56.6, 56.8, 57.1, 57.9, 

58.9, 59.0, 70.2, 70.4, 88.8, 89.4, 107.4, 107.6, 115.5, 115.7, 117.8, 118.0, 119.2, 119.9, 121.2, 

123.0, 123.2, 123.7, 123.9, 124.0, 126.9, 127.3, 127.6, 127.9, 128.77, 128.8, 130.3, 130.5, 132.2, 

132.3, 132.5, 132.7, 132.9, 133.1, 138.3, 138.6, 143.0, 143.6, 143.8, 144.0, 144.1, 144.2, 144.4, 

166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for C32H31N2O7SF3Na, 667.1702; found, 

667.1697.; The purity was >99% as assessed by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-((4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-{[3-

(trifluoromethyl)phenyl]sulfonyl}-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-

methanobenzofuro[3,2-e]isoquinolin-7-yl)-N-methylacrylamide (45) 
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The title compound was synthesized in 82% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3357, 1651, 1327, 1160 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.40–1.80 (m, 4H), 

2.17–2.38 (m, 2H), 2.62 (d, J = 18.0 Hz, 0.7H), 2.66 (d, J = 18.0 Hz, 0.3H), 2.71–2.91 (m, 1.7H), 

2.92–3.03 (m, 1.3H), 2.99 (s, 2.1H), 3.15 (s, 0.9H), 3.61–3.86 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 

0.9H), 4.09–4.24 (m, 0.3H), 4.21 (d, J = 5.6 Hz, 1H), 4.61 (d, J = 8.0 Hz, 0.7H), 4.79 (d, J = 8.0 

Hz, 0.3H), 6.40 (d, J = 15.2 Hz, 0.7H), 6.40–6.47 (m, 0.7H), 6.49–6.61 (m, 1.6H), 6.72 (d, J = 

8.0 Hz, 0.3H), 6.79 (d, J = 8.0 Hz, 0.7H), 7.34–7.43 (m, 1H), 7.47 (d, J = 15.2 Hz, 0.7H), 7.52 

(d, J = 15.2 Hz, 0.3H), 7.54–7.63 (m, 1H), 7.66–7.75 (m, 1H), 7.84–7.92 (m, 1H), 8.01–8.09 (m, 

1H), 8.10–8.17(m,1H).; 13C NMR (100 MHz, CDCl3) δ = 21.2, 22.8, 28.9, 28.9, 30.1, 30.3, 30.5, 

30.6, 39.1, 47.1, 47.1, 53.4, 56.8, 57.1, 57.9, 59.2, 70.1, 70.3, 89.0, 89.3, 89.5, 107.4, 107.6, 

115.5, 117.7, 118.0, 119.2, 119.8, 121.7, 123.0, 123.2, 123.4, 123.5, 124.2, 124.4, 127.2, 129.5, 

130.0, 130.2, 130.3, 130.5, 131.5, 131.7, 131.8, 132.0, 132.2, 132.3, 132.8, 141.2, 141.4, 143.1, 

143.7, 143.8, 144.0, 144.1, 144.2, 144.4, 166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C32H31N2O7SF3Na, 667.1702; found, 667.1677.; The purity was >99% as assessed by HPLC 

(254 nm). 

(E)-3-(Furan-3-yl)-N-((4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-{[4-

(trifluoromethyl)phenyl]sulfonyl}-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-

methanobenzofuro[3,2-e]isoquinolin-7-yl)-N-methylacrylamide (46) 

The title compound was synthesized in 79% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3357, 1651, 1324, 1162 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.39–1.85 (m, 4H), 

2.15–2.40 (m, 2H), 2.63 (d, J = 18.4 Hz, 0.7H), 2.67 (d, J = 18.4 Hz, 0.3H), 2.80 (dddd, J = 13.2, 
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13.2, 13.2, 3.6 Hz, 1H), 2.88–3.10 (m, 2H), 2.99 (s, 2.1H), 3.15 (s, 0.9H), 3.61–3.81 (m, 1.7H), 

3.79 (s, 2.1H), 3.83 (s, 0.9H), 4.07–4.24 (m, 0.3H), 4.22 (d, J = 4.8 Hz, 1H), 4.61 (d, J = 8.0 Hz, 

0.7H), 4.78 (d, J = 8.0 Hz, 0.3H), 6.40 (d, J = 15.2 Hz, 0.7H), 6.40–6.47 (m, 0.7H), 6.49–6.63 

(m, 1.6H), 6.72 (d, J = 8.4 Hz, 0.3H), 6.79 (d, J = 8.4 Hz, 0.7H), 7.34–7.44 (m, 1H), 7.47 (d, J = 

15.2 Hz, 0.7H), 7.52 (d, J = 15.2 Hz, 0.3H), 7.54–7.63 (m, 1H), 7.76–7.87 (m, 2H), 7.94–8.05 

(m, 2H).; 13C NMR (100 MHz, CDCl3) δ = 21.2, 22.8, 28.9, 29.0, 30.2, 30.6, 39.1, 47.0, 56.8, 

57.1, 57.9, 59.2, 70.1, 70.3, 89.0, 89.3, 107.4, 107.5, 115.5, 117.6, 117.9, 119.2, 119.8, 121.8, 

123, 123.2, 123.4, 123.5, 124.5, 126.4, 126.5, 127.6, 127.7, 130.2, 130.5, 132.3, 132.8, 134.2, 

134.4, 134.5, 134.7, 143.0, 143.5, 143.7, 144.06, 144.1, 144.3, 144.4, 166.8, 167.6.; HRMS–ESI 

(m/z): [M + Na]+ calcd for C32H31N2O7SF3Na, 667.1702; found, 667.1674.; The purity was >99% 

as assessed by HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(2-Cyanophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (47) 

The title compound was synthesized in 85% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3357, 2231, 1651, 1324, 1162 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.38–1.83 (m, 

4H), 2.14–2.37 (m, 1H), 2.41 (ddd, J = 12.8, 12.8, 5.6 Hz, 1H), 2.72–2.87 (m, 1H), 2.88–3.03 

(m, 1H), 2.98 (s, 2.1H), 3.04–3.20 (m, 2.9H), 3.62 (dd, J = 13.6, 4.8Hz, 0.7H), 3.65–3.90 (m, 

0.7H), 3.69 (dd, J = 13.6, 4.8 Hz, 0.3H), 3.80 (s, 2.1H), 3.85 (s, 0.9H), 4.12–4.30 (m, 1.3H), 4.62 

(d, J = 8.0 Hz, 0.7H), 4.79 (d, J = 8.0 Hz, 0.3H), 6.11 (d, J = 15.2 Hz, 0.7H), 6.42–6.48 (m, 

0.7H), 6.53–6.61 (m, 0.6H), 6.63 (d, J = 8.0 Hz, 0.3H), 6.69 (d, J = 8.0 Hz, 0.7H), 6.75 (d, J = 

8.0 Hz, 0.3H), 6.83 (d, J = 8.0 Hz, 0.7H), 7.35–7.43 (m, 1H), 7.46 (d, J = 15.2 Hz, 0.7H), 7.51 
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(d, J = 15.2 Hz, 0.3H), 7.54–7.64 (m, 1H), 7.67–7.83 (m, 2H), 7.86–7.96 (m, 1H), 8.12–8.20 (m, 

1H).; 13C NMR (100 MHz, CDCl3) δ = 21.1, 22.7, 28.5, 28.7, 30.6, 31.0, 31.5, 33.0, 39.6, 47.0, 

47.1, 56.8, 57.1, 57.9, 59.2, 70.5, 70.6, 88.9, 89.3, 107.4, 107.6, 110.1, 110.2, 115.5, 115.6, 

116.7, 117.8, 118.0, 119.3, 120.0, 123.0, 123.2, 123.7, 123.9, 130.3, 130.5, 132.2, 132.7, 132.9, 

132.9, 133.1, 135.46, 135.5, 142.5, 142.8, 143.0, 143.6, 143.8, 144.0, 144.1, 144.2, 144.4, 166.8, 

167.5.; HRMS–ESI (m/z): [M + Na]+ calcd for C32H31N3O7SNa, 624.1780; found, 624.1768.; 

The purity was >99% as assessed by HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(3-Cyanophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (48) 

The title compound was synthesized in 75% yield according to the general procedure for 

sulfonamidation. 

IR (KBr) 3375, 2232, 1655, 1323, 1157 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.39–1.87 (m, 

4H), 2.17–2.40 (m, 2H), 2.67 (d, J = 18.4 Hz, 0.7H), 2.73 (d, J = 18.4 Hz, 0.3H), 2.74–2.91 (m, 

1H), 2.93–3.21 (m, 2H), 2.98 (s, 2.1H), 3.16 (s, 0.9H), 3.58–3.90 (m, 1.7H), 3.79 (s, 2.1H), 3.84 

(s, 0.9H), 3.95–4.13 (m, 0.3H), 4.22 (d, J = 5.2 Hz, 1H), 4.61 (d, J = 7.6 Hz, 0.7H), 4.81 (d, J = 

7.6 Hz, 0.3H), 6.39 (d, J = 15.2 Hz, 0.7H), 6.40–6.45 (m, 0.7H), 6.52–6.64 (m, 1.6H), 6.73 (d, J 

= 8.4 Hz, 0.3H), 6.81 (d, J = 8.4 Hz, 0.7H), 7.35–7.45 (m, 1H), 7.46 (d, J = 14.8 Hz, 0.7H), 7.52 

(d, J = 14.8 Hz, 0.3H), 7.54–7.64 (m, 1H), 7.65–7.73 (m, 1H), 7.84–7.93 (m, 1H), 8.05–8.14 (m, 

1H), 8.16–8.22 (m, 1H).; 13C NMR (100 MHz, CDCl3) δ = 21.1, 22.8, 28.6, 28.7, 30.2, 30.6, 

31.1, 39.3, 39.4, 47.0, 56.8, 57.0, 57.9, 58.1, 59.2, 59.3, 70.2, 70.3, 89.1, 89.3, 107.3, 107.5, 

113.6, 113.8, 115.5, 117.1, 117.2, 117.6, 117.9, 119.3, 119.9, 123.0, 123.2, 123.5, 130.2, 130.3, 

130.7, 130.8, 131.0, 131.1, 132.3, 132.9, 135.7, 135.9, 141.9, 142.1, 143.0, 143.7, 144.1, 144.3, 
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144.4, 166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for C32H31N3O7SNa, 624.1780; found, 

624.1762.; The purity was >99% as assessed by HPLC (254 nm). 

(E)-N-{(4R,4aS,7R,7aR,12bS)-3-[(4-Cyanophenyl)sulfonyl]-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl}-3-(furan-3-

yl)-N-methylacrylamide (49) 

The title compound was synthesized in 77% yield according to the general procedure for 

sulfonamidation. 

IR (KBr) 3391, 2233, 1655, 1331, 1153 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.40–1.85 (m, 

4H), 2.17–2.40 (m, 2H), 2.64 (d, J = 18.0 Hz, 0.7H), 2.71 (d, J = 18.0 Hz, 0.3H), 2.75–3.05 (m, 

3H), 2.98 (s, 2.1H), 3.16 (s, 0.9H), 3.59–3.89 (m, 1.7H), 3.79 (s, 2.1H), 3.84 (s, 0.9H), 3.93–4.10 

(m, 0.3H), 4.20 (d, J = 5.6 Hz, 1H), 4.61 (d, J = 8.0 Hz, 0.7H), 4.80 (d, J = 8.0 Hz, 0.3H), 6.39 

(d, J = 15.6 Hz, 0.7H), 6.39–6.46 (m, 0.7H), 6.53–6.62 (m, 1.6H), 6.73 (d, J = 8.0 Hz, 0.3H), 

6.80 (d, J = 8.0 Hz, 0.7H), 7.35–7.65 (m, 3H), 7.80–7.88 (m, 2H), 7.93–8.03 (m, 2H).; 13C NMR 

(100 MHz, pyridine-d5) δ = 21.8, 23.3, 28.4, 28.7, 31.0, 31.6, 32.2, 39.9, 47.6, 56.1, 56.6, 57.6, 

58.3, 60.2, 60.3, 70.1, 70.3, 89.3, 90.0, 108.3, 115.5, 115.8, 117.1, 118.2, 119.5, 119.9, 120.4, 

124.1, 125.0, 128.2, 131.6, 131.7, 132.2, 132.6, 133.3, 143.8, 144.3, 144.5, 144.6, 144.7, 144.8, 

144.9, 145.9, 166.7, 167.3.; HRMS–ESI (m/z): [M + Na]+ calcd for C32H31N3O7SNa, 624.1780; 

found, 624.1758.; The purity was >96% as assessed by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-{(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-[(2-

nitrophenyl)sulfonyl]-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl}-N-methylacrylamide (50) 

The title compound was synthesized in 93% yield according to the general procedure for 

sulfonamidation. 
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IR (KBr) 3422, 1654, 1543, 1373, 1162 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.34–1.71 (m, 

4H), 2.07–2.31 (m, 1H), 2.40 (ddd, J = 12.8, 12.8, 5.6 Hz, 1H), 2.91–3.05 (m, 1H), 2.96 (s, 

2.1H), 3.06–3.26 (m, 3.9H), 3.70–3.80 (m, 1.7H), 3.81 (s, 2.1H), 3.85 (s, 0.9H), 3.95–4.01 (m, 

1H), 4.19–4.36 (m, 0.3H), 4.60 (d, J = 7.6 Hz, 0.7H), 4.76 (d, J = 7.6 Hz, 0.3H), 6.41 (d, J = 15.2 

Hz, 0.7H), 6.42–6.48 (m, 0.7H), 6.53–6.61 (m, 0.6H), 6.65 (d, J = 8.4 Hz, 0.3H), 6.71 (d, J = 8.4 

Hz, 0.7H), 6.78 (d, J = 8.4 Hz, 0.3H), 6.85 (d, J = 8.4 Hz, 0.7H), 7.35–7.62 (m, 3H), 7.66–7.81 

(m, 3H), 8.11–8.17 (m, 1H).; 13C NMR (100 MHz, CDCl3) δ = 21.2, 22.8, 28.7, 28.9, 30.4, 30.6, 

31.5, 39.3, 47.0, 56.8, 57.2, 57.9, 59.3, 59.5, 70.4, 70.6, 88.7, 89.3, 107.4, 107.6, 115.6, 115.8, 

117.8, 118.0, 119.3, 120.0, 123.2, 124.0, 124.5, 130.4, 131.5, 132.1, 132.2, 132.9, 133.8, 134.0, 

143.0, 143.6, 144.1, 144.2, 147.5, 166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C31H31N3O9SNa, 644.1679; found, 644.1661.; The purity was >99% as assessed by HPLC (254 

nm). 

(E)-3-(Furan-3-yl)-N-{(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-[(3-

nitrophenyl)sulfonyl]-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl}-N-methylacrylamide (51) 

The title compound was synthesized in 97% yield according to the general procedure for 

sulfonamidation. 

IR (KBr) 3372, 1654, 1531, 1350, 1324, 1161 cm-1; 1H NMR (400 MHz, pyridine-d5) δ = 1.31–

1.55 (m, 3H), 1.69–1.78 (m, 1H), 2.43–2.57 (m, 1H), 2.64–2.76 (m, 1H), 3.01 (s, 0.9H), 3.05–

3.17 (m, 3H), 3.07 (s, 2.1H), 3.80 (s, 2.1H), 3.90–3.98 (m, 1.3H), 3.92 (s, 0.9H), 4.04–4.18 (m, 

0.7H), 4.59–4.66 (m, 1H), 4.89–4.97 (m, 0.7H), 5.02–5.12 (m, 0.3H), 6.67–6.96 (m, 3H), 7.00–

7.08 (m, 1H), 7.61–7.68 (m, 2H), 7.83–7.91 (m, 1.3H), 7.96 (d, J = 14.8 Hz, 0.7H), 8.30 (d, J = 

8.4, 1.6 Hz, 1H), 8.49–8.53 (m, 1H), 9.04–9.07 (m, 1H). One proton (OH) was not observed.; 13C 
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NMR (100 MHz, pyridine-d5) δ = 21.8, 23.3, 28.3, 28.8, 31.0, 31.5, 32.6, 39.9, 47.6, 56.0, 56.6, 

57.6, 58.3, 60.3, 60.4, 70.2, 70.3, 79.7, 89.3, 89.9, 108.3, 115.5, 117.1, 119.1, 119.4, 119.9, 

120.4, 122.6, 124.2, 124.96, 125.0, 126.9, 130.8, 131.5, 131.6, 132.1, 132.6, 133.3, 143.76, 

143.8, 144.3, 144.5, 144.6, 144.7, 144.8, 144.9, 148.4, 166.6, 167.3.; HRMS–ESI (m/z): [M + 

Na]+ calcd for C31H31N3O9SNa, 644.1679; found, 644.1666.; The purity was >96% as assessed 

by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-{(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-[(4-

nitrophenyl)sulfonyl]-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl}-N-methylacrylamide (52) 

The title compound was synthesized in 95% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3356, 1651, 1529, 1349, 1325, 1161 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.38–1.78 

(m, 4H), 2.17–2.40 (m, 2H), 2.69 (d, J = 18.4 Hz, 0.7H), 2.76 (d, J = 18.4 Hz, 0.3H), 2.76–3.28 

(m, 3H), 2.97 (s, 2.1H), 3.16 (s, 0.9H), 3.61–3.89 (m, 1.7H), 3.78 (s, 2.1H), 3.84 (s, 0.9H), 3.90–

4.09 (m, 0.3H), 4.20–4.28 (m, 1H), 4.61 (d, J = 7.6 Hz, 0.7H), 4.82 (d, J = 7.6 Hz, 0.3H), 6.38 

(d, J = 15.6 Hz, 0.7H), 6.33–6.47 (m, 0.7H), 6.52–6.64 (m, 1.6H), 6.73 (d, J = 8.4 Hz, 0.3H), 

6.80 (d, J = 8.4 Hz, 0.7H), 7.34–7.45 (m, 1H), 7.46 (d, J = 15.2 Hz, 0.7H), 7.51 (d, J = 15.2 Hz, 

0.3H), 7.54–7.65 (m, 1H), 8.02–8.12 (m, 2H), 8.32–8.42 (m, 2H).; 13C NMR (100 MHz, CDCl3) 

δ = 21.1, 22.7, 28.6, 28.7, 28.8, 30.2, 30.6, 30.8, 31.3, 39.3, 47.0, 47.0, 56.7, 56.9, 57.9, 59.2, 

59.4, 70.2, 70.3, 89.2, 107.3, 107.5, 115.4, 117.5, 117.8, 119.3, 119.9, 122.9, 123.1, 123.4, 124.3, 

124.5, 128.3, 128.4, 130.1, 130.3, 132.4, 133.0, 143.0, 143.67, 143.7, 144.3, 144.4, 145.9, 146.2, 

149.9, 150.0, 166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for C31H31N3O9SNa, 644.1679; 

found, 644.1678.; The purity was >99% as assessed by HPLC (254 nm). 
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(E)-3-(Furan-3-yl)-N-{(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-[(3-

methoxyphenyl)sulfonyl]-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl}-N-methylacrylamide (53) 

The title compound was synthesized in 84% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3365, 1651, 1314, 1158 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.39–1.82 (m, 4H), 

2.13–2.37 (m, 2H), 2.61 (d, J = 18.4 Hz, 0.3H), 2.63 (d, J = 18.4 Hz, 0.7H), 2.75 (ddd, J = 13.2, 

13.2, 3.2 Hz, 1H), 2.89 (dd, J = 18.4, 5.6 Hz, 1H), 2.96–3.04 (m, 1H), 2.99 (s, 2.1H), 3.12 (s, 

0.9H), 3.63–3.93 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 0.9H), 3.87 (s, 3H), 4.12–4.19 (m, 1H), 4.24–

4.37 (m, 0.3H), 4.60 (d, J = 7.6 Hz, 0.7H), 4.74 (d, J = 7.6 Hz, 0.3H), 6.41 (d, J = 15.2 Hz, 

0.7H), 6.41–6.51 (m, 1H), 6.52–6.61 (m, 1.3H), 6.70 (d, J = 8.0 Hz, 0.3H), 6.78 (d, J = 8.0 Hz, 

0.7H), 7.11–7.18 (m, 1H), 7.32–7.62 (m, 6H).; 13C NMR (100 MHz, CDCl3) δ = 21.4, 22.9, 28.9, 

29.2, 29.3, 29.4, 29.6, 30.2, 30.4, 32.3, 38.9, 39.0, 47.1, 47.2, 55.7, 56.8, 57.2, 58.0, 59.0, 59.1, 

70.1, 70.2, 88.8, 89.4, 107.4, 107.6, 112.0, 115.5, 115.7, 117.8, 118.0, 119.1, 119.7, 123.1, 123.2, 

123.6, 123.9, 130.3, 130.45, 130.5, 130.6, 132.2, 132.7, 140.7, 140.9, 143.0, 143.6, 143.8, 143.9, 

144.1, 144.4, 160.1, 166.8, 167.5.; HRMS–ESI (m/z): [M + Na]+ calcd for C32H34N2O8SNa, 

629.1934; found, 629.1957.; The purity was >99% as assessed by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-{(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-[(4-

methoxyphenyl)sulfonyl]-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl}-N-methylacrylamide (54) 

The title compound was synthesized in 84% yield according to the general procedure for 

sulfonamidation. 
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IR (film) 3371, 1651, 1323, 1157 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.39–1.77 (m, 4H), 

2.13–2.37 (m, 2H), 2.63 (d, J = 18.4 Hz, 0.3H), 2.66 (d, J = 18.4 Hz, 0.7H), 2.66–2.76 (m, 1H), 

2.88 (dd, J = 18.4, 5.2 Hz, 1H), 2.99 (s, 2.1H), 3.12 (brs, 1H), 3.13 (s, 0.9H), 3.59–3.84 (m, 

1.7H), 3.79 (s, 2.1H), 3.83 (s, 0.9H), 3.90 (s, 3H), 4.10–4.17 (m, 1H), 4.26–4.38 (m, 0.3H), 4.60 

(d, J = 7.6 Hz, 0.7H), 4.74 (d, J = 7.6 Hz, 0.3H), 6.41 (d, J = 14.8 Hz, 0.7H), 6.41–6.46 (m, 

0.7H), 6.49 (d, J = 8.4 Hz, 0.3H), 6.55 (d, J = 8.4 Hz, 0.7H), 6.53–6.61 (m, 0.6H), 6.70 (d, J = 

8.4 Hz, 0.3H), 6.78 (d, J = 8.4 Hz, 0.7H), 6.98–7.04 (m, 2H), 7.35–7.62 (m, 3H), 7.77–7.80 (m, 

2H).; 13C NMR (100 MHz, CDCl3) δ = 21.4, 22.9, 28.8, 29.2, 29.3, 30.2, 30.4, 32.2, 38.7, 38.8, 

47.1, 47.2, 55.6, 56.2, 56.8, 57.2, 58.0, 58.9, 59.0, 70.0, 70.2, 88.8, 89.4, 107.4, 107.6, 114.5, 

115.4, 115.7, 117.8, 118.0, 119.0, 119.7, 123.0, 123.2, 123.7, 124.0, 129.3, 130.4, 130.7, 130.9, 

131.1, 132.1, 132.7, 143.0, 143.6, 143.8, 143.9, 144.1, 144.3, 163.0, 163.1, 166.8, 167.5.; 

HRMS–ESI (m/z): [M + Na]+ calcd for C32H34N2O8SNa, 629.1934; found, 629.1938.; The purity 

was >99% as assessed by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-[(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-(o-tolylsulfonyl)-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-N-

methylacrylamide (55) 

The title compound was synthesized in 86% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3375, 1651, 1313, 1158 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.38–1.82 (m, 4H), 

2.13–2.37 (m, 1H), 2.32 (ddd, J = 12.8, 12.8, 5.6 Hz, 1H), 2.64 (s, 3H), 2.84–3.17 (m, 4H), 2.99 

(s, 2.1H), 3.14 (s, 0.9H), 3.60–3.89 (m, 1.7H), 3.80 (s, 2.1H), 3.84 (s, 0.9H), 3.94–4.04 (m, 1H), 

4.19–4.37 (m, 0.3H), 4.60 (d, J = 8.0 Hz, 0.7H), 4.76 (d, J = 8.0 Hz, 0.3H), 6.37–6.49 (m, 1.4H), 

6.53–6.63 (m, 0.9H), 6.66 (d, J = 8.4 Hz, 0.7H), 6.74 (d, J = 8.4 Hz, 0.3H), 6.82 (d, J = 8.4 Hz, 
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0.7H), 7.30–7.65 (m, 6H), 7.97–8.03 (m, 1H).; 13C NMR (100 MHz, CDCl3) δ = 20.5, 21.2, 22.8, 

28.8, 29.1, 29.2, 30.4, 30.6, 30.7, 32.5, 38.98, 39.0, 47.3, 56.6, 56.8, 57.2, 58.0, 58.4, 58.5, 70.1, 

70.3, 88.9, 89.4, 107.4, 107.6, 115.5, 115.7, 117.8, 118.1, 119.2, 119.8, 123.0, 123.2, 123.8, 

124.1, 126.3, 126.4, 130.3, 130.6, 132.1, 132.87, 132.9, 133.2, 137.0, 137.2, 137.3, 137.4, 143.0, 

143.6, 143.8, 143.9, 144.08, 144.1, 144.4, 166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C32H34N2O7SNa, 613.1984; found, 613.1989.; The purity was >99% as assessed by HPLC (254 

nm). 

(E)-3-(Furan-3-yl)-N-[(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-(m-tolylsulfonyl)-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-N-

methylacrylamide (56) 

The title compound was synthesized in 92% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3366, 1651, 1323, 1158 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.38–1.81 (m, 4H), 

2.13–2.38 (m, 2H), 2.45 (s, 3H), 2.59 (d, J = 18.4 Hz, 0.3H), 2.62 (d, J = 18.4 Hz, 0.7H), 2.73 

(ddd, J = 12.8, 12.8, 3.6 Hz, 1H), 2.88 (dd, J = 18.4, 5.2 Hz, 1H), 2.96–3.07 (m, 1H), 3.01 (brs, 

2.1H), 3.14 (brs, 0.9H), 3.63–3.88 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 0.9H), 4.11–4.20 (m, 1H), 

4.25–4.43 (m, 0.3H), 4.60 (d, J = 7.6 Hz, 0.7H), 4.73 (d, J = 7.6 Hz, 0.3H), 6.35–6.65 (m, 3H), 

6.70 (d, J = 8.4 Hz, 0.3H), 6.77 (d, J = 8.4 Hz, 0.7H), 7.34–7.69 (m, 7H).; 13C NMR (100 MHz, 

CDCl3) δ = 21.4, 22.9, 28.8, 29.2, 29.4, 29.6, 30.2, 30.4, 32.2, 38.9, 39.0, 47.1, 47.2, 56.2, 56.8, 

57.2, 57.7, 58.0, 58.9, 59.1, 70.0, 70.2, 88.8, 89.5, 107.4, 107.6, 115.4, 115.7, 117.9, 118.1, 119.0 

119.7, 123.0, 123.2, 123.6, 123.9, 124.2, 127.4, 129.3, 130.4, 130.6, 132.1, 132.6, 133.7, 133.9, 

139.4, 139.5, 139.6, 139.7, 143.0, 143.6, 143.8, 143.9, 144.1, 144.4, 166.7, 167.6.; HRMS–ESI 
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(m/z): [M + Na]+ calcd for C32H34N2O7SNa, 613.1984; found, 613.1993.; The purity was >99% 

as assessed by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-[(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-(p-tolylsulfonyl)-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-N-

methylacrylamide (57) 

The title compound was synthesized in 90% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3365, 1651, 1323, 1159 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.37–1.77 (m, 4H), 

2.13–2.37 (m, 2H), 2.46 (s, 3H), 2.61 (d, J = 18.4 Hz, 0.3H), 2.64 (d, J = 18.4 Hz, 0.7H), 2.72 

(ddd, J = 12.8, 12.8, 3.6 Hz, 1H), 2.88 (dd, J = 18.4, 5.2 Hz, 1H), 2.97 (s, 2.1H), 3.04 (s, 0.9H), 

3.14 (s, 1H), 3.62–3.85 (m, 1.7H), 3.78 (s, 2.1H), 3.82 (s, 0.9H), 4.11–4.20 (m, 1H), 4.24–4.39 

(m, 0.3H), 4.60 (d, J = 8.0 Hz, 0.7H), 4.73 (d, J = 8.0 Hz, 0.3H), 6.41 (d, J = 15.2 Hz, 0.7H), 

6.41–6.63 (m, 2.3H), 6.69 (d, J = 8.0 Hz, 0.3H), 6.77 (d, J = 8.0 Hz, 0.7H), 7.30–7.62 (m, 5H), 

7.68–7.76 (m, 2H).; 13C NMR (100 MHz, CDCl3) δ = 21.4, 21.6, 22.9, 28.8, 29.2, 29.4, 29.5, 

30.2, 30.4, 32.3, 38.8, 47.1, 56.8, 57.2, 58.0, 58.9, 59.0, 70.0, 70.2, 88.8, 89.4, 107.4, 107.6, 

115.5, 115.8, 117.9, 119.0, 119.7, 123.1, 123.2, 123.7, 124.0, 127.1, 130.0, 130.4, 130.7, 132.1, 

132.6, 136.6, 136.7, 143.0, 143.6, 143.9, 144.1, 144.4, 166.7, 167.5.; HRMS–ESI (m/z): [M + 

Na]+ calcd for C32H34N2O7SNa, 613.1984; found, 613.1986.; The purity was >98% as assessed 

by HPLC (254 nm). 

(E)-3-(Furan-3-yl)-N-[(4R,4aS,7R,7aR,12bS)-4a-hydroxy-3-(mesitylsulfonyl)-9-methoxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-N-

methylacrylamide (58) 
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The title compound was synthesized in 99% yield according to the general procedure for 

sulfonamidation. 

IR (film) 3374, 1651, 1312, 1156 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.38–1.77 (m, 4H), 

2.12–2.35 (m, 2H), 2.33 (s, 3H), 2.63 (s, 6H), 2.91 (ddd, J = 12.8, 12.8, 3.6 Hz, 1H), 2.87–3.06 

(m, 1H), 2.98 (s, 2.1H), 3.07–3.34 (m, 2.9H), 3.47–3.58 (m, 1H), 3.71–3.90 (m, 1.7H), 3.81 (s, 

2.1H), 3.85 (s, 0.9H), 4.22–4.37 (m, 0.3H), 4.59 (d, J = 7.6 Hz, 0.7H), 4.75 (d, J = 7.6 Hz, 0.3H), 

6.43 (d, J = 15.2 Hz, 0.7H), 6.43–6.49 (m, 0.7H), 6.53–6.61 (m, 0.6H), 6.64 (d, J = 8.0 Hz, 

0.3H), 6.70 (d, J = 8.0 Hz, 0.7H), 6.76 (d, J = 8.0 Hz, 0.3H), 6.83 (d, J = 8.0 Hz, 0.7H), 6.96–

7.02 (m, 2H), 7.34–7.62 (m, 3H).; 13C NMR (100 MHz, CDCl3) δ = 21.0, 21.3, 22.8, 23.0, 28.8, 

29.0, 29.2, 30.4, 30.6, 30.6, 32.4, 38.5, 47.4, 56.8, 57.2, 58.0, 58.2, 58.3, 70.2, 70.4, 88.8, 89.5, 

107.4, 107.6, 115.5, 115.7, 117.9, 118.1, 119.3, 119.9, 123.1, 123.3, 124.1, 124.4, 130.4, 130.7, 

132.0, 132.1, 132.2, 132.3132.6, 140.0, 143.0, 143.1, 143.6, 143.8, 143.9, 144.1, 144.3, 166.7, 

167.5.; HRMS–ESI (m/z): [M + Na]+ calcd for C34H38N2O7SNa, 641.2297; found, 641.2281.; 

The purity was >99% as assessed by HPLC (254 nm). 

(E)-N-((4R,4aS,7R,7aR,12bS)-3-{[2-(Dimethylamino)phenyl]sulfonyl}-4a-hydroxy-9-

methoxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)-3-

(furan-3-yl)-N-methylacrylamide (59) 

To a mixture of compound 50 (107 mg, 0.172 mmol), SnCl2 (326 mg, 1.72 mmol) and conc. HCl 

(57 µL) in CH2Cl2 (1.75 mL) and EtOH (1.75 mL) was heated to 40 °C with stirring under an 

argon atmosphere. After 4 h, the reaction mixture was basified with 1 M aqueous NaOH solution 

(10 mL) and extracted with CH2Cl2 (15, 12, 9, 6, 3 mL). The combined organic layer was 

washed with H2O (30 mL) and then brine (30 mL), dried over Na2SO4 and concentrated under 

reduced pressure. The crude residue was dissolved in acetic acid (2.9 mL), and 
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paraformaldehyde (110 mg, 3.68 mmol) and NaBH3CN (92 mg, 1.46 mmol) were added. After 

stirring for 1.5 h at 40 °C under an argon atmosphere, the reaction mixture was concentrated 

under reduced pressure, basified with saturated aqueous NaHCO3 solution and extracted with 

CHCl3 (10, 8, 6 mL). The organic layer was washed with brine, and concentrated under reduced 

pressure. The crude residue was purified by PLC (28% NH3 aq. : MeOH : CHCl3 = 1 : 9: 200) to 

afford compound 59 (96.2 mg, 90% in 2 steps) as an off-white amorphous. The product (64.6 

mg) was dissolved in a mixture of MeOH (0.5 mL) and CHCl3 (1.0 mL), and 10% hydrogen 

chloride in MeOH (200 µL) was added. The mixture was concentrated under reduced pressure 

and azeotropically dried with MeOH four times. The residue was dissolved in MeOH (several 

drops) and Et2O (3 mL) was added. The precipitate was collected by filtration to afford 

hydrochloride (48.6 mg) as a brown solid. 

IR (film) 3323, 1652, 1316, 1154 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.38–1.59 (m, 3H), 

1.60–1.75 (m, 1H), 2.12 (ddd, J = 12.8, 12.8, 5.6 Hz, 1H), 2.19–2.38 (m, 1H), 2.83 (s, 1.8H), 

2.84 (s, 4.2H), 2.91 (ddd, J = 12.8, 12.8, 3.6 Hz, 1H), 3.00 (s, 2.1H), 2.97–3.24 (m, 3H), 3.13 (s, 

0.9H), 3.71–3.86 (m, 0.7H), 3.80 (s, 2.1H), 3.84 (s, 0.9H), 4.10–4.16 (m, 0.3H), 4.19 (d, J = 4.4 

Hz, 0.7H), 4.25–4.40 (m, 0.3H), 4.58 (d, J = 8.4 Hz, 0.7H), 4.69–4.78 (m, 0.6H), 4.92–4.97 (m, 

0.7H), 6.37–6.50 (m, 1.7H), 6.53–6.62 (m, 0.3H), 6.62 (d, J = 8.4 Hz, 0.3H), 6.70 (d, J = 8.4 Hz, 

0.7H), 6.74 (d, J = 8.4 Hz, 0.3H), 6.82 (d, J = 8.4 Hz, 0.7H), 7.21–7.29 (m, 1H), 7.35–7.65 (m, 

5H), 8.07–8.19 (m, 1H).; 13C NMR (100 MHz, CDCl3) δ = 14.1, 21.4, 22.6, 22.9, 28.9, 29.1, 

29.2, 29.7, 30.6, 30.8, 31.1, 31.2, 31.5, 32.3, 39.2, 39.4, 46.5, 47.5, 47.6, 56.6, 57.1, 58.0, 58.1, 

58.3, 69.9, 70.1, 88.8, 89.5, 107.4, 107.6, 115.1, 115.5, 118.0, 118.2, 119.2, 119.9, 122.4, 123.1, 

123.3, 124.2, 124.4, 124.5, 125.2, 128.2, 129.0, 130.5, 130.8, 132.1, 132.5, 132.7, 132.9, 133.0, 
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134.4, 134.6, 142.9, 143.6, 143.8, 143.86, 143.9, 144.0, 144.2, 152.9, 153.0, 166.8, 167.6.; 

HRMS–ESI (m/z): [M + H]+ calcd for C33H38N3O7S, 620.2430; found, 620.2407. 

Hydrochloride 

mp (dec.): 124–126 °C; Anal. Calcd for C33H37N3O7S·HCl·1.5H2O·0.5Et2O: C, 58.30; H, 6.36; 

N, 5.89. Found: C, 58.28; H, 6.65; N, 5.66. 

(E)-N-((4R,4aS,7R,7aR,12bS)-3-{[3-(Dimethylamino)phenyl]sulfonyl}-4a-hydroxy-9-

methoxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)-3-

(furan-3-yl)-N-methylacrylamide (60) 

The title compound was synthesized from compound 51 in 73% yield according to the procedure 

described for compound 59. The product was converted to the hydrochloride. 

IR (film) 3375, 1651, 1311, 1157cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.37–1.77 (m, 4H), 

2.12–2.37 (m, 2H), 2.61–2.80 (m, 2H), 2.81–2.94 (m, 1H), 2.94–3.15 (m, 4H), 2.99 (s, 1.8H), 

3.02 (s, 4.2H), 3.63–3.85 (m, 1.7H), 3.79 (s, 2.1H), 3.83 (s, 0.9H), 4.08–4.21 (m, 1H), 4.26–4.45 

(m, 0.3H), 4.60 (d, J = 7.6 Hz, 0.7H), 4.72 (d, J = 7.6 Hz, 0.3H), 6.41(d, J = 15.6 Hz, 0.7H), 

6.42–6.48 (m, 0.7H), 6.48 (d, J = 8.4 Hz, 0.3H), 6.50–6.62 (m, 0.6H), 6.55 (d, J = 8.4 Hz, 0.7H), 

6.70 (d, J = 8.4 Hz, 0.3H), 6.78 (d, J = 8.4 Hz, 0.7H), 6.89 (dd, J = 8.4, 2.0 Hz, 1H), 7.05–7.12 

(m, 2H), 7.32–7.65 (m, 4H).; 13C NMR (100 MHz, CDCl3) δ = 14.2, 21.1, 21.4, 2.9, 28.9, 29.3, 

29.4, 30.2, 30.4, 38.9, 39.0, 40.5, 47.2, 17.2, 56.8, 57.2, 58.1, 59.0, 59.1, 60.4, 70.1, 70.3, 88.8, 

89.5, 107.4, 107.6, 110.0, 114.2, 114.3, 115.4, 115.7, 116.2, 117.9, 118.1, 119.1, 119.7, 123.1, 

123.3, 123.8, 124.2, 130.1, 130.4, 130.7, 132.2, 132.7, 140.1, 143.0, 143.6, 143.8, 144.0, 144.1, 

144.3, 150.5, 166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for C33H37N3O7SNa, 642.2250; 

found, 642.2248. 

Hydrochloride 
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mp (dec.): 127–129 °C; Anal. Calcd for C33H37N3O7S·HCl·1.4H2O·0.3Et2O: C, 58.38; H, 6.27; 

N, 5.97. Found: C, 58.47; H, 6.57; N, 5.85. 

(E)-N-((4R,4aS,7R,7aR,12bS)-3-{[4-(Dimethylamino)phenyl]sulfonyl}-4a-hydroxy-9-

methoxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)-3-

(furan-3-yl)-N-methylacrylamide (61) 

The title compound was synthesized from compound 52 in 76% yield according to the procedure 

described for compound 59. The product was converted to the hydrochloride. 

IR (film) 3407, 1651, 1312, 1153 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.38–1.61 (m, 3H), 

1.62–1.77 (m, 1H), 2.14–2.36 (m, 2H), 2.64–2.92 (m, 3H), 2.96–3.17 (m, 3H), 2.99 (s, 1.8H), 

3.08 (s, 4.2H), 3.19–3.27 (m, 1H), 3.57–3.67 (m, 1H), 3.68–3.85 (m, 0.7H), 3.79 (s, 2.1H), 3.82 

(s, 0.9H), 4.06–4.17 (m, 1H), 4.25–4.46 (m, 0.3H), 4.59 (d, J = 8.0 Hz, 0.7H), 4.71 (d, J = 8.0 

Hz, 0.3H), 6.42 (d, J = 15.2 Hz, 0.7H), 6.43–6.61 (m, 2.3H), 6.65–6.72 (m, 2.3H), 6.75–6.80 (m, 

0.7H), 7.32–7.69 (m, 5H).; 13C NMR (100 MHz, CDCl3) δ = 21.5, 23.0, 28.9, 29.1, 29.4, 29.6, 

30.1, 30.3, 32.0, 38.5, 38.6, 40.1, 47.2, 47.3, 56.0. 56.8, 57.3, 58.2, 58.7, 58.9, 70.0, 70.2, 88.7, 

89.5, 107.4, 107.6, 111.0, 115.4, 115.7, 117.9, 118.1, 119.0, 119.7, 123.1, 123.3, 124.0, 124.2, 

124.4, 129.0, 130.5, 130.8, 132.1 132.6, 143.0, 143.6, 143.8, 143.9, 144.0, 144.1, 144.3, 153.0, 

166.8, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for C33H37N3O7SNa, 642.2250; found, 

642.2246. 

Hydrochloride 

mp (dec.): 142–144 °C; Anal. Calcd for C33H37N3O7S·HCl·0.2H2O·0.5Et2O: C, 60.32; H, 6.28; 

N, 6.03. Found: C, 60.58; H, 6.56; N, 5.96. 

(4R,4aS,7R,7aR,12bS)-7-[Benzyl(methyl)amino]-9-methoxy-1,2,3,4,5,6,7,7a-octahydro-4aH-

4,12-methanobenzofuro[3,2-e]isoquinolin-4a-ol (62) 
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A mixture of compound 24 (1.92g, 3.79 mmol) in 10% hydrogen chloride methanol solution (10 

mL) was stirred for 37 h at room temperature and then 7 h at 50 °C under an argon atmosphere. 

The reaction mixture was concentrated under reduced pressure. The residue was basified with 

saturated aqueous NaHCO3 solution (20 mL) and extracted with a mixed solution, i-PrOH : 

CHCl3 = 1 : 3 (20, 15, 10 mL). The organic layer was washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. The crude residue was purified by column chromatography 

on silica gel (5–15% (28% NH3 aq. : MeOH = 1 : 9) in CHCl3) to afford compound 62 (1.53 g, 

99%) as a colorless amorphous. 

IR (film) 3289 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.36 (ddd, J = 13.6, 11.6, 3.6 Hz, 1H), 

1.46–1.57 (m, 2H), 1.68 (ddd, J = 13.6, 4.0, 4.0 Hz, 1H), 1.91–2.04 (m, 1H), 2.26–2.39 (m, 1H), 

2.32 (s, 3H), 2.60 (ddd, J = 11.6, 6.8, 4.4 Hz, 1H), 2.74 (ddd, J = 12.8, 12.8, 4.0 Hz, 1H), 2.90 

(dd, J = 12.8, 4.8 Hz, 1H), 3.08 (dd, J = 18.4, 5.6 Hz, 1H), 3.14 (d, J = 18.4 Hz, 1H), 3.37 (d, J = 

4.0 Hz, 1H), 3.70 (d, J = 14.0 Hz, 1H), 3.77 (d, J = 14.0 Hz, 1H), 3.88 (s, 3H), 4.76 (d, J = 6.8 

Hz, 1H), 6.61 (d, J = 8.4 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 7.17–7.23 (m, 1H), 7.24–7.31 (m, 

2H), 7.33–7.39 (m, 2H). Two protons (OH and NH) was not observed.; 13C NMR (100 MHz, 

CDCl3) δ = 19.3, 29.9, 30.3, 31.5, 37.5, 37.9, 47.2, 56.7, 57.5, 59.1, 63.2, 70.0, 90.0, 114.4, 

118.5, 124.9, 126.7, 128.1 (two carbons), 128.7 (two carbons), 131.5, 139.6, 143.6, 144.3.; 

HRMS–ESI (m/z): [M + H]+ calcd for C25H31N2O3, 407.2335; found, 407.2319. 

(4R,4aS,7R,7aR,12bS)-7-[Benzyl(methyl)amino]-3-[(5-bromo-2-methoxyphenyl)sulfonyl]-9-

methoxy-1,2,3,4,5,6,7,7a-octahydro-4aH-4,12-methanobenzofuro[3,2-e]isoquinolin-4a-ol 

(63) 

To a stirred solution of compound 62 (50 mg, 0.123 mmol) in CH2Cl2 (1.2 mL) were added Et3N 

(52 µL, 0.373 mmol) and 5-bromo-2-methoxysulfonyl chloride (42 mg, 0.147 mmol) at 0 °C 
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under an argon atmosphere. After stirring for 1.5 h at room temperature, the reaction mixture was 

diluted with CH2Cl2 (5 mL) and washed with saturated aqueous NaHCO3 solution (5 mL). The 

organic layer was washed with brine, dried over Na2SO4, and concentrated under reduced 

pressure. The crude residue was purified by PLC (MeOH : CHCl3 = 1 : 20) to afford compound 

63 (68 mg, 84%) as a colorless amorphous. 

IR (film) 3499, 1335, 1322, 1159 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.33 (ddd, J = 12.8, 

12.8, 2.4 Hz, 1H), 1.50–1.64 (m, 3H), 1.94 (dddd, J = 12.8, 12.8, 12.8, 2.4 Hz, 1H), 2.14 (ddd, J 

= 12.8, 12.8, 5.2 Hz, 1H), 2.32 (s, 3H), 2.58 (ddd, J = 12.8, 7.6, 4.8 Hz, 1H), 2.94 (ddd, J = 12.8, 

12.8, 3.6 Hz, 1H), 3.02 (dd, J = 18.4, 4.8 Hz, 1H), 3.09 (d, J = 18.4 Hz, 1H), 3.41 (brs, 1H), 3.50 

(dd, J = 12.8, 5.2 Hz, 1H), 3.67 (d, J = 13.6 Hz, 1H), 3.78 (d, J = 13.6 Hz, 1H), 3.88 (s, 3H), 3.98 

(s, 3H), 4.00 (d, J = 4.8 Hz, 1H), 4.70 (d, J = 7.6 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 6.72 (d, J = 

8.4 Hz, 1H), 6.95 (d, J = 8.8 Hz, 1H), 7.16–7.23 (m, 1H), 7.23–7.30 (m, 2H), 7.33–7.38 (m, 2H), 

7.66 (dd, J = 8.8, 2.8 Hz, 1H), 8.09 (d, J = 2.8 Hz, 1H).; 13C NMR (100 MHz, CDCl3) δ = 19.5, 

29.4, 30.3, 31.4, 37.8, 39.2, 47.2, 56.7, 56.9, 58.9, 59.1, 63.1, 70.5, 89.8, 113.0, 114.5, 114.6, 

118.8, 124.0, 126.6, 128.1 (two carbons), 128.6 (two carbons), 129.0, 130.8, 134.1, 137.6, 139.9, 

144.0, 155.4. One quaternary carbon was not observed.; HRMS–ESI (m/z): [M + H]+ calcd for 

C32H36N2O6SBr, 655.1477; found, 655.1483. 

(E)-3-(Furan-3-yl)-N-{(4R,4aS,7R,7aR,12bS)-4a-hydroxy-9-methoxy-3-[(2-

methoxyphenyl)sulfonyl]-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl}-N-methylacrylamide (64) 

To a solution of compound 63 (50 mg, 0.0763 mmol) in MeOH (5 mL) was added 5% Pd/C, 

degussa type (100 mg) and the mixture was stirred for 6 h at room temperature under a hydrogen 

atmosphere. The reaction mixture was filtered through a pad of Celite and the filtrate was 
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concentrated under reduced pressure to afford a crude residue as a colorless solid. To a solution 

of the residue in CH2Cl2 (7.6 mL) were added Et3N (106 µL, 0.761 mmol) and (E)-3-(furan-3-yl) 

acryloyl chloride (36 mg, 0.230 mmol) at 0 °C. After stirring for 1.5 h at room temperature, the 

reaction mixture was washed with saturated aqueous NaHCO3 solution (10 mL) and brine, dried 

over Na2SO4, and concentrated under reduced pressure. The crude residue was purified by PLC 

(MeOH : CHCl3 = 1 : 20) to afford compound 64 (35.4 mg, 77% in 2 steps) as a colorless 

amorphous. 

IR (film) 3483, 1652, 1320, 1158 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.39–1.73 (m, 4H), 2.18 

(ddd, J = 12.8, 12.8, 5.6 Hz, 1H), 2.26 (dddd, J = 12.8, 12.8, 12.8, 5.6 Hz, 1H), 2.94 (ddd, J = 

12.8, 12.8, 3.6 Hz, 1H), 2.99 (s, 2.4H), 3.04–3.20 (m, 1.2H), 3.13 (s, 0.6H), 3.20 (d, J = 18.4 Hz, 

0.8H), 3.40–3.51 (m, 0.2H), 3.44 (dd, J = 12.8, 4.4 Hz, 0.8H), 3.58 (brs, 0.2H), 3.64–3.90 (m, 

1H), 3.70 (brs, 0.8H), 3.81 (s, 2.4H), 3.85 (s, 0.6H), 3.97–4.14 (m, 0.8H), 4.00 (s, 0.6H), 4.02 (s, 

2.4H) 4.24–4.38 (m, 0.2H), 4.58 (d, J = 8.0 Hz, 0.8H), 4.75 (d, J = 8.0 Hz, 0.2H), 6.39–6.51 (m, 

1.6H), 6.51–6.61 (m, 0.4H), 6.64 (d, J = 8.0 Hz, 0.2H), 6.71 (d, J = 8.0 Hz, 0.8H), 6.76 (d, J = 

8.0 Hz, 0.2H), 6.84 (d, J = 8.0 Hz, 0.8H), 7.06–7.65 (m, 2H), 7.36–7.65 (m, 4H), 7.98 (d, J = 7.6 

Hz, 1H); 13C NMR (100 MHz, CDCl3) δ = 21.4, 22.9, 28.8, 29.1, 29.3, 30.4, 30.6, 31.3, 32.4, 

38.8, 39.0, 47.4, 47.5, 56 5, 56.6, 56.7, 57.2, 58.0, 58.3, 58.6, 70.1, 70.3, 88.7, 89.4, 107.4, 107.6, 

112.8, 112.9, 115.3, 115.7, 118.0, 118.1, 119.2, 119.9, 120.9, 121.0, 123.1, 123.3, 124.2, 124.5, 

126.7, 126.9, 130.4, 130.7, 131.86, 131.9, 132.1, 132.6, 135.2, 135.3, 143.0, 143.59, 143.6, 

143.8, 143.9, 144.0, 144.3, 156.3, 166.7, 167.6.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C32H34N2O8SNa, 629.1934; found, 629.1910.; The purity was >97% as assessed by HPLC (254 

nm). 
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(E)-N-((4R,4aS,7R,7aR,12bS)-3-{[4-(Dimethylamino)phenyl]sulfonyl}-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)-3-(furan-3-

yl)-N-methylacrylamide (65) 

To a stirred solution of compound 61 (160 mg, 0.258 mmol) in CH2Cl2 (5.2 mL) was added 1.0 

M BBr3 in CH2Cl2 solution (1.3 mL, 1.30 mmol) at –78 °C under an argon atmosphere. The 

mixture was gradually warmed to room temperature over 20 min and stirred for 1 h. The reaction 

mixture was quenched with 25% aqueous ammonia solution (15 mL) at 0 °C and vigorously 

stirred for 3 h at room temperature, and extracted with CH2Cl2 (15, 10, 5 mL). The organic layer 

was washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The crude 

residue was purified by column chromatography on silica gel (0–5% (28% NH3 aq. : MeOH = 1 : 

9) in CHCl3) and then PLC (MeOH : CHCl3 = 1: 20) to afford compound 65 (80.1 mg, 51%) as a 

colorless solid. To a stirred solution of compound 65 (47.4 mg, 0.0783 mmol) in absolute EtOAc 

(2 mL) was added 1.0 M MeSO3H in EtOAc solution (78 µL, 0.0780 mmol). The mixture was 

stirred for 5 min at room temperature and then for 5 min at 0 °C. The precipitate was collected by 

filtration to give methanesulfonate (32.8 mg) as a colorless solid. 

IR (KBr) 1650, 1314, 1153 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.10–1.50 (m, 2H), 1.53–1.71 

(m, 2H), 2.16–2.34 (m, 2H), 2.55 (d, J = 18.4 Hz, 0.8H), 2.60–2.82 (m, 2.2H), 2.99–3.12 (m, 

3H), 3.01 (s, 1.2H), 3.09 (s, 4.8H), 3.38 (brs, 1H), 3.60–3.72 (m, 2H), 4.04–4.11 (m, 0.2H), 4.07 

(d, J = 5.2 Hz, 0.8H), 4.53–4.65 (m, 0.2H), 4.61 (d, J = 7.6 Hz, 0.8H), 6.30 (d, J = 15.2 Hz, 

0.8H), 6.41 (d, J = 8.4 Hz, 0.2H), 6.45 (d, J = 8.4 Hz, 0.8H), 6.57 (d, J = 15.2 Hz, 0.2H), 6.65–

6.74 (m, 3H), 6.81 (d, J = 8.0 Hz, 0.8H), 7.22–7.31 (m, 3.2H), 7.58–7.65 (m, 2H), 9.33 (brs, 

1H).; 13C NMR (100 MHz, CDCl3) δ = 21.6, 22.9, 28.4, 28.7, 29.0, 29.3, 30.1, 31.1, 37.5, 38.7, 

40.1, 47.3, 47.4, 54.9, 58.1, 58.8, 70.2, 70.4, 89.2, 89.7, 107.4, 108.0, 111.1, 117.1, 117.5, 118.7, 
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118.9, 119.4, 120.0, 122.6, 123.0, 123.1, 124.0, 128.9, 130.2, 133.4, 133.6, 140.9, 141.9, 143.1, 

143.5, 143.9, 144.2, 144.3, 153.0, 167.6, 168.9.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C32H35N3O7SNa, 628.2093; found, 628.2113. 

Methanesulfonate 

mp (dec.): 140–144 °C; Anal. Calcd for C32H35N3O7S·CH3SO3H·3.5H2O: C, 51.82; H, 6.06; N, 

5.49. Found: C, 51.75; H, 5.91; N, 5.40. 

(4'R,4a'S,7a'R,12b'S)-9'-Methoxy-3'-[(2-nitrophenyl)sulfonyl]-1',2',3',4',5',6'-hexahydro-

4a'H,7a'H-spiro[[1,3]dioxolane-2,7'-[4,12]methanobenzofuro[3,2-e]isoquinolin]-4a'-ol (66) 

To a stirred solution of compound 22 (5.94 g, 17.2 mmol) in CH2Cl2 (100 mL) were added Et3N 

(6.0 mL, 43.0 mmol) and 2-nitrobenzenesulfonyl chloride (4.57 g, 20.6 mmol) at 0 °C, and the 

reaction mixture was stirred for 1 h at room temperature under an argon atmosphere. The 

reaction was quenched with saturated aqueous NaHCO3 solution (80 mL) and the mixture was 

extracted with CHCl3 (30, 70 mL). The organic layer was washed with brine, dried over Na2SO4 

and concentrated under reduced pressure. The crude residue was purified by column 

chromatography on silica gel (0–5% MeOH in CHCl3) to afford compound 66 (9.06 g, 99%) as a 

yellow amorphous. 

IR (film) 3538, 1543, 1372, 1341, 1162 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.47 (ddd, J = 

13.6, 3.6, 3.6 Hz, 1H), 1.52–1.63 (m, 3H), 2.11 (ddd, J = 13.2, 9.2, 6.8 Hz, 1H), 2.40 (ddd, J = 

12.8, 12.8, 5.6 Hz, 1H), 3.03 (ddd, J = 13.2, 13.2, 4.0 Hz, 1H), 3.06–3.15 (m, 2H), 3.19 (d, J = 

18.4 Hz, 1H), 3.74 (dd, J = 13.2, 5.6 Hz, 1H), 3.79 (dd, J = 12.8, 6.8 Hz, 1H), 3.87 (s, 3H), 3.89 

(dd, J = 13.2, 6.8 Hz, 1H), 3.96 (d, J = 4.8 Hz, 1H), 4.01 (dd, J = 13.2, 6.8 Hz, 1H), 4.17 (dd, J = 

12.8, 6.8 Hz, 1H), 4.51 (s, 1H), 6.64 (d, J = 8.4 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 7.66–7.78 (m, 

3H), 8.14 (dd, J = 6.8, 2.4 Hz, 1H).; 13C NMR (100 MHz, CDCl3) δ = 28.5, 28.9, 29.6, 31.5, 
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39.3, 47.6, 56.5, 59.5, 65.0, 66.4, 70.3, 92.9, 108.2, 114.2, 118.8, 123.4, 124.5, 129.3, 131.5, 

132.1, 133.1, 133.9, 142.7, 146.2, 147.6.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C25H26N2O9SNa, 553.1257; found, 553.1253. 

(4'R,4a'S,7a'R,12b'S)-3'-{[2-(Dimethylamino)phenyl]sulfonyl}-9'-methoxy-1',2',3',4',5',6'-

hexahydro-4a'H,7a'H-spiro[[1,3]dioxolane-2,7'-[4,12]methanobenzofuro[3,2-e]isoquinolin]-

4a'-ol (67) 

To a suspension of compound 66 (9.06 g, 17.1 mmol) in EtOH (180 mL) were added H2O (36 

mL), saturated aqueous NH4Cl solution (25 mL) and iron powder (9.6 g, 172 mmol), and the 

mixture was stirred for 1 h at 90 °C under an argon atmosphere. After cooling to room 

temperature, the reaction mixture was filtered through a pad of Celite and the filtrate was 

concentrated reduced pressure. To the residue was added saturated aqueous NaHCO3 solution 

(50 mL) and the mixture was extracted with CHCl3 (150 mL, 100 mL × 2). The organic layer 

was washed with brine, dried over Na2SO4, and concentrated under reduced pressure. To a 

stirred solution of the crude product in acetic acid (200 mL) were added paraformaldehyde (12.8 

g, 426 mmol) and NaBH3CN (10.7 g, 170 mmol). After stirring for 3 h at 40 °C under an argon 

atmosphere, the reaction mixture was filtered through a pad of Celite and the filtrate was 

concentrated under reduced pressure. The residue was basified with saturated aqueous NaHCO3 

solution (300 mL) and extracted with CHCl3 (400, 200, 100 mL). The organic layer was washed 

with brine, dried over Na2SO4, and concentrated under reduced pressure. The crude residue was 

purified by column chromatography on silica gel (0–10% MeOH in CHCl3) to afford compound 

67 (9.33 g, 97% in 2 steps) as a colorless amorphous. 

IR (film) 3305, 1317, 1152 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.42–1.63 (m, 4H), 2.10 (ddd, 

J = 12.8, 12.8, 5.6 Hz, 1H), 2.24 (ddd, J = 13.6, 13.6, 3.6 Hz, 1H), 2.83 (s, 6H), 2.93 (ddd, J = 
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12.8, 12.8, 3.6 Hz, 1H), 3.02 (dd, J = 18.4, 4.8 Hz, 1H), 3.07–3.14 (m, 1H), 3.14 (d, J = 18.4 Hz, 

1H), 3.78 (dd, J = 12.8, 6.8 Hz, 1H), 3.87 (s, 3H), 3.89 (dd, J = 13.6, 6.8Hz, 1H), 4.01 (dd, J = 

13.6, 6.8 Hz, 1H), 4.12–4.22 (m, 2H), 4.53 (s, 1H), 4.92 (brs, 1H), 6.62 (d, J = 8.4 Hz, 1H), 6.76 

(d, J = 8.4 Hz, 1H), 7.21–7.28 (m, 1H), 7.37 (dd, J = 8.0, 0.8 Hz, 1H), 7.58 (ddd, J = 8.0, 8.0, 1.6 

Hz, 1H), 8.13 (dd, J = 8.0, 1.6 Hz, 1H).; 13C NMR (100 MHz, CDCl3) δ = 28.9, 29.0, 29.8, 31.4, 

39.3, 46.6 (two carbons), 48.1, 56.5, 58.5, 65.1, 66.6, 70.0, 93.7, 108.8, 114.0, 118.9, 122.5, 

124.0, 124.4, 129.8, 133.0, 133.2, 134.6, 142.7, 146.3, 153.0.; HRMS–ESI (m/z): [M + Na]+ 

calcd for C27H32N2O7SNa, 551.1828; found, 551.1832. 

(4R,4aS,7aR,12bS)-3-{[2-(Dimethylamino)phenyl]sulfonyl}-4a-hydroxy-9-methoxy-

2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one (68) 

To a solution of compound 67 (6.56 g, 12.4 mmol) in THF (100 mL) was added 2 M HCl (100 

mL) and the mixture was stirred for 9 h at 90 °C under an argon atmosphere. After cooling to 

room temperature, the reaction mixture was concentrated under reduced pressure. The residue 

was basified with saturated aqueous NaHCO3 solution (120 mL) and extracted with CHCl3 (200 

mL, 100 mL × 2). The organic layer was washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. The crude residue was purified by column chromatography 

on DIOL-silica gel (EtOAc : n-hexane = 1 : 5 to 1 : 2) to afford compound 68 (5.41 g, 90%) as a 

colorless amorphous. 

IR (film) 3289, 1728, 1316, 1152 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.53–1.69 (m, 2H), 1.92 

(ddd, J = 13.2, 4.8, 3.2 Hz, 1H), 2.26 (ddd, J = 12.8, 12.8, 5.2 Hz, 1H), 2.30 (ddd, J = 14.0, 2.8, 

2.8 Hz, 1H), 2.86 (s, 6H), 2.92 (ddd, J = 12.8, 12.8, 3.6 Hz, 1H), 2.99–3.17 (m, 3H), 3.17 (d, 

18.8 Hz, 1H), 3.87 (s, 3H), 4.29 (d, J = 5.2 Hz, 1H), 4.64 (s, 1H), 5.38 (s, 1H), 6.65 (d, J = 8.4 

Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 7.23–7.30 (m, 1H), 7.41 (dd, J = 8.0, 0.8 Hz, 1H), 7.62 (ddd, J 
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= 8.0, 8.0, 1.6 Hz, 1H), 8.15 (dd, J = 8.0, 1.6 Hz, 1H).; 13C NMR (100 MHz, CDCl3) δ = 29.2, 

31.3, 31.5, 35.9, 38.9, 46.6, 46.6, 50.7, 56.6, 57.7, 70.2, 90.0, 115.0, 120.0, 122.4, 123.8, 124.5, 

128.3, 132.5, 133.2, 134.7, 143.2, 145.0, 152.8, 207.9.; HRMS–ESI (m/z): [M + Na]+ calcd for 

C25H28N2O6SNa, 507.1566; found, 507.1566. 

(4R,4aS,7R,7aR,12bS)-7-[Benzyl(methyl)amino]-3-{[2-(dimethylamino)phenyl]sulfonyl}-9-

methoxy-1,2,3,4,5,6,7,7a-octahydro-4aH-4,12-methanobenzofuro[3,2-e]isoquinolin-4a-ol 

(69) 

To a solution of compound 68 (1.07 g, 2.20 mmol) in benzene (30 mL) were added PhCO2H 

(273 mg, 2.24 mmol) and N-benzylmethylamine (0.57 mL, 4.42 mmol), and the mixture was 

refluxed with a Dean-Stark apparatus for 21 h under an argon atmosphere. After cooling to room 

temperature, the reaction mixture was concentrated under reduced pressure. To a solution of the 

residue in absolute MeOH (13 mL) and absolute THF (20 mL) was added NaBH3CN (167 mg, 

2.65 mmol) at 0 °C under an argon atmosphere. The reaction mixture was stirred for 45 min and 

saturated aqueous NaHCO3 solution (20 mL) and brine (20 mL) were added. The mixture was 

extracted with CHCl3 (30 mL × 2). The organic layer was dried over Na2SO4, and concentrated 

under reduced pressure. The residue was purified by column chromatography on NH-silica gel 

(EtOAc : n-hexane = 1 : 3) to give compound 69 (1.04 g, 80%) as a colorless amorphous. 

IR (KBr) 3313, 1317, 1152 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.27–1.38 (m, 1H), 1.47 (dd, J 

= 12.8, 2.4 Hz, 1H), 1.52–1.66 (m, 2H), 1.92–2.11 (m, 2H), 2.32 (s, 3H), 2.57 (ddd, J = 12.4, 7.6, 

4.8 Hz, 1H), 2.83 (s, 6H), 2.89 (ddd, J = 12.8, 12.8, 3.6 Hz, 1H), 2.99 (dd, J = 18.4, 5.2 Hz, 1H), 

3.09 (d, J = 18.4 Hz, 1H), 3.09–3.17 (m, 1H), 3.67 (d, J = 13.6 Hz, 1H), 3.79 (d, J = 13.6 Hz, 

1H), 3.87 (s, 3H), 4.11 (d, J = 4.8 Hz, 1H), 4.68 (d, J = 8.0 Hz, 1H), 4.73 (s, 1H), 6.58 (d, J = 8.4 

Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 7.16–7.32 (m, 4H), 7.31–7.40 (m, 3H), 7.55–7.61 (m, 1H), 
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8.12 (dd, J = 7.6, 1.2 Hz, 1H).; 13C NMR (100 MHz, CDCl3) δ = 19.6, 29.4, 30.6, 31.2, 37.9, 

39.4, 46.5, 47.5, 56.7, 58.4, 59.0, 63.5, 70.3, 90.2, 114.5, 118.7, 122.3, 124.2, 124.3, 126.6, 128.1 

(two carbons), 128.6 (two carbons), 131.1, 133.0, 134.4, 140.0, 143.9, 153.0.; HRMS–ESI (m/z): 

[M + H]+ calcd for C33H40N3O5S, 590.2689; found, 590.2660. 

(4R,4aS,7R,7aR,12bS)-3-{[2-(Dimethylamino)phenyl]sulfonyl}-9-methoxy-7-(methylamino)-

1,2,3,4,5,6,7,7a-octahydro-4aH-4,12-methanobenzofuro[3,2-e]isoquinolin-4a-ol (70) 

To a solution of compound 69 (698 mg, 1.18 mmol) in MeOH (20 mL) and THF (10 mL) was 

added 5% Pd/C, degussa type (678 mg), and the mixture was stirred at room temperature under a 

hydrogen atmosphere. After stirring for 7.5 h, the reaction mixture was filtered through a pad of 

Celite and the filtrate was concentrated under reduced pressure. The residue was purified by 

column chromatography on silica gel (2–20% (28% NH3 aq. : MeOH = 1 : 9) in CHCl3) to give 

compound 70 (570 mg, 96%) as a colorless amorphous. 

IR (KBr) 3318, 1318, 1153 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.34 (ddd, J = 12.8, 12.8, 3.2 

Hz, 1H), 1.45 (dd, J = 12.8, 1.6 Hz, 1H), 1.58–1.67 (m, 1H), 1.68–1.89 (m, 2H), 2.08 (ddd, J = 

12.8, 12.8, 5.6 Hz, 1H), 2.45–2.53 (m, 1H), 2.51 (s, 3H), 2.82 (s, 6H), 2.89 (ddd, J = 12.8, 12.8, 

3.2 Hz, 1H), 3.04 (dd, J = 18.4, 5.2, 1H), 3.06–3.14 (m, 1H), 3.15 (d, J = 18.4 Hz, 1H), 3.86 (s, 

3H), 4.15 (d, J = 5.2 Hz, 1H), 4.46 (d, J = 6.8 Hz, 1H), 6.64 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 8.4 

Hz, 1H), 7.20–7.26 (m, 1H), 7.34–7.39 (m, 1H), 7.55–7.61 (m, 1H), 8.10–8.14 (m, 1H). Two 

protons (OH and NH) were not observed.; 13C NMR (100 MHz, CDCl3) δ = 22.4, 29.2, 29.8, 

33.5, 39.2, 46.4, 47.1, 56.4, 58.1, 60.6, 70.1, 93.4, 114.1, 119.1, 122.3, 124.2, 124.3, 130.8, 

132.8, 132.9, 134.4, 143.69, 143.7, 152.8; HRMS–ESI (m/z): [M + H]+ calcd for C26H34N3O5S, 

500.2219; found, 500.2198. 
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(E)-N-((4R,4aS,7R,7aR,12bS)-3-{[2-(Dimethylamino)phenyl]sulfonyl}-4a-hydroxy-9-

methoxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)-N-

methyl-3-(pyridin-2-yl)acrylamide (71) 

To a solution of compound 70 (230 mg, 0.461 mmol) in DMF (8.0 mL) were added 3-(2-

pyridyl)acrylic acid (75.7 mg, 0.508 mmol), HATU (437 mg, 1.15 mmol) and (i-Pr)2NEt (0.25 

mL, 1.46 mmol), and the mixture was stirred for 2 h at room temperature under an argon 

atmosphere. The reaction mixture was poured to EtOAc (70 mL) and washed with water (100 

mL × 4). The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The 

residue was purified by column chromatography on silica gel (1–2% (28% NH3 aq. : MeOH = 1 : 

9) in CHCl3) to give compound 71 (277 mg, 95%) as a colorless amorphous. To a stirred solution 

of compound 71 (180 mg, 0.284 mmol) in MeOH (4 mL) was added 1.0 M H2SO4 in MeOH 

solution (568 µL, 0.568 mmol) and then Et2O (4 mL). The mixture was stirred for for 30 min at 0 

°C under an argon atmosphere. The precipitate was collected by filtration to give dihydrosulfate 

(180 mg) as a light yellow solid. 

IR (film) 3418, 1650, 1317, 1153cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.41–1.59 (m, 3H), 

1.62–1.75 (m, 1H), 2.04–2.37 (m, 2H), 2.75–2.97 (m, 1H), 2.83 (s, 2.4H), 2.84 (s, 3.6H), 2.98–

3.24 (m, 3H), 3.04 (s, 1.8H), 3.20 (s, 1.2H), 3.50 (s, 1.8H), 3.81–3.92 (m, 0.6H), 3.85 (s, 1.2H), 

4.14 (d, J = 4.0 Hz, 0.4H), 4.18 (d, J = 4.0 Hz, 0.6H), 4.30–4.33 (m, 0.4H), 4.57 (d, J = 7.6 Hz, 

0.6H), 4.71–4.80 (m, 0.8H), 4.93 (s, 0.6H), 6.60–6.71 (m, 1.6H), 6.75 (d, J = 8.4 Hz, 0.4H), 7.15 

(d, J = 15.2 Hz, 0.6H), 7.16–7.28 (m, 2H), 7.31–7.41 (m, 2H), 7.48 (d, J = 15.2 Hz, 0.4H), 7.55–

7.72 (m, 3H), 8.13 (d, J = 7.6 Hz, 1H), 8.52 (d, J = 4.4 Hz, 0.6H), 8.62 (d, J = 4.4 Hz, 0.4H).; 13C 

NMR (100 MHz, CDCl3) δ = 21.4, 22.9, 28.9, 29.1, 29.3, 30.7, 30.8, 31.2, 31.2, 32.4, 39.2, 39.4, 

46.5, 47.5, 47.6, 55.9, 57.3, 58.1, 58.3, 70.0, 70.1, 88.8, 89.2, 114.3, 115.8, 119.3, 119.7, 122.4, 
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122.5, 122.6, 123.3, 123.8, 124.1, 124.27, 124.3, 124.4, 124.8, 130.4, 130.6, 132.7, 133.0, 133.1, 

134.5, 134.6, 136.4, 136.8, 140.7, 140.9, 142.9, 143.8, 144.2, 144.3, 149.5, 149.9, 152.9, 153.0, 

153.5, 154.2, 166.6, 167.3.; HRMS–ESI (m/z): [M + H]+ calcd for C34H39N4O6S, 631.2590; 

found, 631.2578.; The purity was >99% as assessed by HPLC (254 nm). 

Dihydrosulfate 

mp (dec.): 217–220 °C; Anal. Calcd for C34H38N4O6S·2H2SO4·4H2O: C, 45.43; H, 5.61; N, 6.23. 

Found: C, 45.49; H, 5.52; N, 6.10. 

(E)-N-((4R,4aS,7R,7aR,12bS)-3-{[2-(Dimethylamino)phenyl]sulfonyl}-4a-hydroxy-9-

methoxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)-N-

methyl-3-(pyridin-3-yl)acrylamide (72) 

To a solution of compound 70 (32 mg, 0.0640 mmol) in DMF (1.5 mL) were added 3-(3-

pyridyl)acrylic acid (10.5 mg, 0.0704 mmol), HATU (61 mg, 0.160 mmol) and (i-Pr)2NEt (35 

µL, 0.204 mmol), and the mixture was stirred for 0.5 h at room temperature under an argon 

atmosphere. The reaction mixture was poured to EtOAc (20 mL) and washed with water (20 mL 

× 4). The organic layer was dried over Na2SO4, and concentrated under reduced pressure. The 

residue was purified by column chromatography on silica gel (1–2% (28% NH3 aq. : MeOH = 1 : 

9) in CHCl3) to give compound 72 (39.6 mg, 97%) as a colorless amorphous. 

IR (KBr) 3399, 1649, 1317, 1154 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.42–1.77 (m, 4H), 2.13 

(ddd, J = 12.8, 12.8, 5.2 Hz, 1H), 2.21–2.40 (m, 1H), 2.80–2.97 (m, 1H), 2.83 (s, 1.2H), 2.84 (s, 

4.8H), 3.03 (s, 2.4H), 3.05–3.23 (m, 3.6H), 3.70–3.82 (m, 0.8H), 3.75 (s, 2.4H), 3.85 (s, 0.6H), 

4.11–4.17 (m, 0.2H), 4.19 (d, J = 4.4 Hz, 0.8H), 4.26–4.38 (m, 0.2H), 4.60 (d, J = 7.6 Hz, 0.8H), 

4.72–4.81 (m, 0.4H), 4.97 (brs, 0.8H), 6.64 (d, J = 8.4 Hz, 0.2H), 6.71 (d, J = 8.4 Hz, 0.8H), 6.76 

(d, J = 8.4 Hz, 0.2H), 6.80 (d, J = 16.0 Hz, 0.8H), 6.84 (d, J = 8.4 Hz, 0.8 H), 6.94 (d, J = 16.0 
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Hz, 0.2H), 7.20–7.34 (m, 2H), 7.36–7.43 (m, 1H), 7.52 (d, J = 15.6 Hz, 0.8H), 7.56–7.70 (m, 

2H), 7.78–7.85 (m, 0.2H), 8.13 (dd, J = 8.0, 1.6 Hz, 1H), 8.53 (dd, J = 4.8, 1.6 Hz, 0.8H), 8.55–

8.63 (m, 1H), 8.73–8.77 (m, 0.2H).; 13C NMR (100 MHz, CDCl3) δ = 21.1, 22.9, 28.9, 29.0, 

29.2, 29.6, 30.6, 30.8, 31.2, 32.4, 39.2, 39.4, 46.5, 47.6, 56.3, 57.0, 58.0, 58.3, 59.9, 70.1, 88.7, 

89.5, 114.3, 115.3, 119.3, 120.0, 120.7, 121.0, 122.4, 123.3, 123.6, 124.2, 124.38, 124.4, 130.5, 

130.6, 131.1, 131.3, 132.7, 132.9, 133.0, 134.2, 134.5, 134.6, 138.2, 138.8, 142.8, 143.7, 144.0, 

144.3, 148.9, 149.2, 149.7, 149.8, 150.2, 152.9, 153.0, 166.1, 167.1.; HRMS–ESI (m/z): [M + 

H]+ calcd for C34H39N4O6S, 631.2590; found, 631.2573.; The purity was >95% as assessed by 

HPLC (254 nm). 

(E)-N-((4R,4aS,7R,7aR,12bS)-3-{[2-(Dimethylamino)phenyl]sulfonyl}-4a-hydroxy-9-

methoxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)-N-

methyl-3-(pyridin-4-yl)acrylamide (73) 

To a solution of compound 70 (31 mg, 0.0620 mmol) in DMF (1.5 mL) were added 3-(4-

pyridyl)acrylic acid (10.3 mg, 0.0691 mmol), HATU (59.3 mg, 0.156 mmol), and (i-Pr)2NEt (40 

µL, 0.234 mmol), and the mixture was stirred for 0.5 h at room temperature under an argon 

atmosphere. The reaction mixture was poured to EtOAc (20 mL), and washed with water (20 mL 

× 4). The organic layer was dried over Na2SO4, and concentrated under reduced pressure. The 

residue was purified by column chromatography on silica gel (1–2% (28% NH3 aq. : MeOH = 1 : 

9) in CHCl3) to give compound 73 (37.7 mg, 96%) as a colorless amorphous. 

IR (film) 3410, 1651, 1316, 1154 cm-1; 1H NMR (400 MHz, CDCl3) δ = 1.41–1.84 (m, 4H), 

2.06–2.40 (m, 2H), 2.78–2.97 (m, 1H), 2.83 (s, 1.2H), 2.84 (s, 4.8H), 2.98–3.23 (m, 3.6H), 3.03 

(s, 2.4H), 3.66–3.79 (m, 0.8H), 3.41 (s, 2.4H), 3.85 (s, 0.6H), 4.14 (d, J = 3.2 Hz, 0.2H), 4.20 (d, 

J = 4.8 Hz, 0.8H), 4.26–4.39 (m, 0.2H), 4.59 (d, J = 7.6 Hz, 0.8H), 4.71–4.80 (m, 0.4H), 4.95–
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4.51 (brs, 0.8H), 6.64 (d, J = 8.4 Hz, 0.2H), 6.72 (d, J = 8.4 Hz, 0.8H), 6.76 (d, J = 8.4 Hz, 0.2H), 

6.81 (d, J = 8.4 Hz, 0.8H), 6.89 (d, J = 15.6 Hz, 0.8H), 7.03 (d, J = 15.6 Hz, 0.2H), 7.18–7.30 (m, 

2.8H), 7.33–7.43 (m, 1.2H), 7.44 (d, J = 15.6 Hz, 0.8H), 7.53 (d, J = 15.6 Hz, 0.2H), 7.56–7.64 

(m, 1H), 8.10–8.16 (m, 1H), 8.54–8.65 (m, 2H).; 13C NMR (100 MHz, CDCl3) δ = 14.1, 21.4, 

22.6, 22.9, 28.9, 29.1, 29.2, 29.7, 30.7, 30.8, 31.1, 31.0, 31.5, 31.9, 32.4, 39.1, 39.4, 46.5, 47.6, 

56.3, 57.0, 58.0, 58.3, 58.5, 59.9, 70.1, 88.6, 89.46, 114.3, 115.3, 119.3, 120.0, 121.7, 122.4, 

123.1, 123.6, 124.2, 124.4, 124.6, 130.4, 130.6, 132.7, 132.9, 133.1, 134.5, 134.6, 138.9, 139.6, 

142.6, 142.8, 142.9, 143.7, 143.9, 144.3, 150.1, 150.4, 152.9, 160.0, 165.9, 166.7.; HRMS–ESI 

(m/z): [M + H]+ calcd for C34H39N4O6S, 631.2590; found, 631.2561.; The purity was >95% as 

assessed by HPLC (254 nm). 

Biology. 

Calcium imaging. Chinese hamster ovary (CHO)-K1 cells stably expressing human OX1R 

(CHOOX1R)14a or OX2R (CHOOX2R)14a were seeded in a 96-well-plate (10,000 cells per well) 

and then were incubated with 5% fetal bovine serum (FBS)/Dulbecco’s modified eagle medium 

(DMEM) at 37 °C for 48 h. After the incubation, cells were loaded with 4 µM fluorescent 

calcium indicator Fura 2-AM (Cayman Chemical) in Hanks balanced salt solution (HBSS: 

GIBCO) including 20 mM HEPES (Sigma-Aldrich), 2.5 mM Probenecid (WAKO), 5% 

CremophorEL (Fluka), and 0.1% Bovine Serum Albumin (BSA) (Sigma-Aldrich) at 37 °C for 1 

h. The cells were washed once and added with 50 µL of HBSS buffer. Cells were pre-treated 

with 25 µL of various concentrations of test compounds for 15 min. After that, submaximal 

concentration of human orexin-A (OXA, 0.3 nM, Peptide institute, Inc.) at 25 µL was added to 

the cells. The increase of the intracellular Ca2+ concentration was measured from the ratio of 

emission fluorescence of 510 nm by excitation at 340 or 380 nm using the Functional Drug 
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Screening System 7000 system (Hamamatsu Photonics). The IC50 values and pA2 of compound 

to orexin A were calculated using Graph Pad Prism5J (MDF). Ki values were calculated by using 

the Cheng-Prusoff formula: Ki = IC50/[1 + (L/EC50)], where IC50 is IC50 value of each test 

compound, L is orexin A concentration at IC50 experiments, EC50 is the half-maximal effective 

concentration of orexin A. 

Solutions and materials. Orexin A was made and purified by Peptide institute, Inc. Orexin A 

was dissolved 0.1% BSA/Phosphate buffered saline. Compounds were dissolved in dimethyl 

sulfoxide (DMSO, Nacalai tesque) solution and re-adjusted by adding these solution into each 

experimental solution (final concentration of DMSO is 1%). 

Opioid receptor binding. CHO cells stably expressing human µ, δ or κ opioid receptor were 

purchased from ChanTest Co., these cell membranes were used for opioid receptor binding 

assay. Binding affinity for µ, δ or κ opioid receptor in test compounds was measured by 

displacement of [3H]-DAMGO, [3H]-DPDPE, or [3H]-U69,593 (each 2 nM), respectively. 

Nonspecific binding was measured in the presence of 10 µM unlabeled DAMGO, DPDPE or U-

69,593. Radioactivity in the test samples was determined by a MicroBeta scintillation counter 

with 96-well micro plate (PerkinElmer). The value of each test sample was calculated as: (T1 - 

T0)/(T2 - T0) × 100, where T0 is the non-specific binding, T1 is the [3H]-labeled ligand binding in 

the presence of various concentrations of test compounds (10-5-10-11 M) and T2 is the [3H]-

labeled ligand binding in the absence of respective test compounds. Sigmoidal concentration-

response curve and Ki values were calculated by Prism software (version 6.05). 

Behavioral assay. 

Animals. Male ICR mice (25-30 g) were housed in a room maintained at 23 ± 1 °C with a 12 hr 

light-dark cycle (lights on 8:00 to 20:00). Food and water were available ad libitum. Animal 
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experiments were carried out in a humane manner after receiving approval from the Institutional 

Animal Care and Use Committee of the University of Tsukuba, and in accordance with the 

Regulation for Animal Experiments in our university and Fundamental Guideline for Proper 

Conduct of Animal Experiments and Related Activities in Academic Research Institutions under 

the jurisdiction of the Ministry of Education, Culture, Sports, Science, and Technology. 

Chronic treatment with morphine. Mice were given subcutaneously (s.c.) morphine 

hydrochloride (Daiichi-Sankyo Co., Tokyo Japan) every 12 hr according to the schedule as 

described previously.50 The morphine dose was increased progressively from 8 to 45 mg/kg over 

a period of 5 days. The doses of morphine (mg/kg) injected in the morning and evening were: 1st 

day (8, 15), 2nd day (20, 25), 3rd day (30, 35), 4th day (40, 45), 5th day (45 in the morning 

only). Newly synthesized selective OX1R antagonist 71·2H2SO4 (10 mg/kg, dissolved in saline) 

was intraperitoneally (i.p.) injected 30 min before the first morphine injection of each day. 

Morphine withdrawal signs. Morphine withdrawal signs were precipitated by injecting 

naloxone (3 mg/kg, s.c.) 2 hr after the final injection of morphine. After the naloxone injection, 

mice were immediately placed on a circular platform (30 cm in diameter × 70 cm in height). 

Naloxone-precipitated morphine withdrawal signs, which are jumping, body shakes, ptosis, 

forepaw tremor, rearing, diarrhea, and body weight loss, were observed for 60 min, as described 

previously.48 Diarrhea was evaluated by scoring as follows: Normal, normal stool; Slightly, soft 

stool; Severe, watery stool. Body weight was measured at 15, 30, 45, and 60 min after naloxone 

injection. 

Statistical analysis. All statistical analyses were performed using Prism software (version 6.05, 

GraphPad Software). For body weight loss, the statistical significance of differences between 
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groups was assessed by two-way ANOVA. For other withdrawal signs, the incidence of 

withdrawal signs was statistically analyzed by Chi-square test. 

 

Supporting Information. General information and detailed experimental procedures, synthetic 

protocols, and chemical data. The Supporting Information is available free of charge via the 

Internet at http://pubs.acs.org.” 
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