

Dinitrogen Complexes Hot Paper

International Edition: DOI: 10.1002/anie.201603970 German Edition: DOI: 10.1002/ange.201603970

A Dinitrogen Dicopper(I) Complex via a Mixed-Valence Dicopper Hydride

Shiyu Zhang, Hengameh Fallah, Evan J. Gardner, Subrata Kundu, Jeffery A. Bertke, Thomas R. Cundari,* and Timothy H. Warren*

Abstract: Low-temperature reaction of the tris(pyrazolyl)borate copper(II) hydroxide $[^{iPr2}TpCu]_2(\mu-OH)_2$ with triphenylsilane under a dinitrogen atmosphere gives the bridging dinitrogen complex [^{iPr2}TpCu]₂(µ-1,2-N₂) (3). X-ray crystallography reveals an only slightly activated N_2 ligand (N-N: 1.111(6) Å) that bridges between two monovalent ${}^{iPr2}TpCu$ fragments. While DFT studies of mono- and dinuclear copper dinitrogen complexes suggest weak π -backbonding between the d^{10} Cu¹ centers and the N₂ ligand, they reveal a degree of cooperativity in the dinuclear Cu-N₂-Cu interaction. Addition of MeCN, $CNAr^{2,6-Me}$, or O_2 to **3** releases N_2 with formation of $^{iPr2}TpCu(L)$ (L = NCMe, CNAr^{2,6-Me2}) or $[^{iPr2}TpCu]_2(\mu-\eta^2:\eta^2-\eta^2)$ O_2) (1). Addition of triphenylsilane to $\int_{2}^{\mu} TpCu J_2(\mu - OH)_2$ in pentane allows isolation of a key intermediate $\int_{0}^{\mu} TpCu_{2}(\mu-H)$ (5). Although 5 thermally decays under N_2 to give 3, it reduces unsaturated substrates, such as CO and $HC \equiv CPh$ to HC(O)Hand $H_2C=CHPh$, respectively.

Coordination of N₂ and O₂ to transition metals represents a crucial step that precedes the multi-electron reduction of these ligands involved in ammonia formation and the oxidation of organic substrates.^[1] While binding of O₂ to transition metals has a long history,^[2] coordination of N₂ to transition metals was not observed until 1965, likely due to the weak σ -donating and poor π -accepting nature of N₂.^[3] In particular, backbonding interactions from transition-metal d orbitals to the degenerate dinitrogen π^* antibonding orbitals represents a key interaction that leads to elongation and activation of the N–N bond.^[4]

Dinitrogen complexes for Co,^[5] Ni,^[6] and especially Cu^[7] are less common than for the early to middle transition metals a result of the weaker π -backbonding to N₂ at Co, Ni, and Cu centers. Much more easily reduced, dioxygen often binds at metal fragments capable of stabilizing dinitrogen complexes

[*] S. Zhang, E. J. Gardner, Dr. S. Kundu, Dr. J. A. Bertke, Prof. T. H. Warren Department of Chemistry Georgetown University Box 571227, Washington, DC 20057-1227 (USA) E-mail: thw@georgetown.edu H. Fallah, Prof. T. R. Cundari Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM) University of North Texas Denton, TX 76203 (USA) E-mail: t@unt.edu
Supporting information and the ORCID identification number(s) for

the author(s) of this article can be found under http://dx.doi.org/10. 1002/anie.201603970. despite the specific electronic differences in M–O₂ and M–N₂ bonding.^[2,5e,8,9] For instance, binding of both N₂ (ν_{N2} = 2331 cm⁻¹) and O₂ have been observed at a sterically demanding tris(pyrazolyl)borate Co complex (Figure 1 a).^[5e,10] Using β-diketiminate supporting ligands, both

Figure 1. Selected late-transition-metal O_2 and N_2 complexes.

a bridging dinitrogen complex $[Ni]_2(\mu-1,2-N_2)$ ($\nu_{N2} = 2164 \text{ cm}^{-1}$) and mononuclear superoxo $[Ni](\eta^2-O_2)$ species were isolated by Limberg^[6a] and Driess.^[8] (Figure 1 b,c). Further reduction with KC₈ gives monoanionic and dianionic species K{ $[Ni]_2(\mu-N_2)$ } and K₂{ $[Ni]_2(\mu-N_2)$ } with lower N₂ stretching frequencies ($\nu_{N2} = 1825$ and 1696 cm⁻¹, respectively), mirroring the further reduction of the superoxo complex $[Ni](\eta^2-O_2)$ to form the corresponding side-on peroxo species { $[Ni](\eta^2-O_2)$ }K(18-C-6).^[11]

Despite the prevalence of O₂ binding to copper(I) centers in biology and related coordination complexes,^[12] no molecular mononuclear or dinuclear dinitrogen adducts [Cu]-N₂ or [Cu]₂(μ -N₂) have been reported. For instance, the tris(pyrazolyl)borate complex [^{iPr2}TpCu]₂(μ - η^2 : η^2 -O₂) (**1**; Figure 2a) serves as a model for the reversible binding of O₂ at hemocyanin that occurs at a binuclear His₃Cu^{I...1}CuHis₃ site.^[13] Nonetheless, a related [^{iPr2}TpCu]₂(μ -N₂H₂) (**2**; Figure 2c) complex has been isolated (ν_{NN} = 1358 cm⁻¹), illustrating the ability of this fragment to support reduced species related to dinitrogen.^[14]

Until very recently, no copper coordination compound featuring a bound N₂ ligand had been isolated,^[7a] though [(bpy)Cu-N₂]⁺ had been detected by electrospray mass spectrometry.^[15] Coordination of N₂ to copper in copper-doped zeolites occurs,^[16] with ν_{N2} stretching frequencies only slightly depressed from the free value of 2331 cm⁻¹, such as occurs the in the copper-exchanged mordenite (ν_{N2} =

Angew. Chem. Int. Ed. 2016, 55, 1-6

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

These are not the final page numbers!

Figure 2. Tris(pyrazolyl)borate copper dioxygen (a and b) and diazene (c) adducts along with a tricopper dinitrogen complex (d).

2299 cm⁻¹).^[16c] Copper coordination polymers contain partially reduced N₂ supporting ligands ($\nu_{N2} = 1607 \text{ cm}^{-1}$) have been prepared recently.^[7b] Murray reported a seminal copper coordination complex featuring N₂ as a ligand in 2014 (Figure 2d). It takes advantage of a strongly donating tris(β-diketiminato) ligand which upon incorporation of three Cu^I ions, binds N₂ in an unusual trimetallic manner with a reasonably activated N₂ ligand ($\nu_{N2} = 1952 \text{ cm}^{-1}$) that is kinetically stabilized by the cryptophane binding pocket formed by the linked β-diketiminate ligands.^[7a] Herein, we present the isolation of the first example of an end-on, molecular dicopper dinitrogen complex [Cu]₂(μ-1,2-N₂) and its formation from a mixed valence, dicopper monohydride [Cu]₂(μ-H).

The previously reported, blue $[i^{Pr2}TpCu]_2(\mu-OH)_2$ was prepared by mixing a 1M KOH aqueous solution with $i^{Pr2}TpCu(NO_3)$ in toluene under an inert atmosphere.^[17] Reaction of $[i^{Pr2}TpCu]_2(\mu-OH)_2$ with two equiv Ph₃SiH at -20 °C in dichloromethane led to several color changes, starting from a blue solution that transitioned through purple and green before becoming colorless with precipitation of colorless crystals. X-ray crystallography reveals that this colorless product is $[i^{Pr2}TpCu]_2(\mu-1,2-N_2)$ (**3**; Figure 3), isolated in 38% yield. The asymmetric unit of **3** consists of two crystallographically independent halves in which each

Figure 3. Crystal structure of [^{P/2}TpCu]₂(μ-N₂) (3), selected bond lengths [Å] and angles [⁹] (Molecule A shown). Molecule A: N13-N13' 1.112(5), Cu1-N13 1.829(3), Cu1-N1 2.033(3), Cu1-N3 2.026 (3), Cu1-N5 2.046(3); N13'-N13-Cu1 177.0(4); Molecule B: N14-N14' 1.110(6), Cu2-N14 1.822(3), Cu2-N7 2.050(3), Cu2-N9 2.025(3), Cu2-N11 2.016-(3); N14'-N14-Cu2 174.7(4). Pink B, dark blue N, light blue Cu.

 $[^{iPr2}TpCu]_2(\mu-N_2)$ unit is completed by an inversion center through the center of the N-N bond. A single N₂ molecule is captured in between two Cu^I centers to give an end-on binding mode (Molecule A: Cu-N 1.829(3); Molecule B: 1.822(3) Å) with a just slightly lengthened N–N bond distance (Molecule A: 1.112(5); Molecule B: 1.110(6) Å) compared to free dinitrogen (1.0975 Å). Each unique copper center of 3 adopts a pseudo-tetrahedral environment ($\tau = 0.774$ and 0.770; idealized tetrahedral geometry $\tau = 1$ ^[18] with three very similar Cu-N_{Tp} bond lengths (Molecule A: 2.026(3), 2.033(3), 2.046(3); Molecule B: 2.016(3), 2.025(3), 2.050-(3) Å). This pseudo C_3 coordination environment at Cu renders the highest energy Cu d orbitals essentially degenerate to maximize their interaction with the degenerate N₂ π^* orbitals (Figure 4). This idealized C_3 structure is in marked contrast to many tris(pyrazolyl)borate copper(II) complexes that often feature two short and one long Cu– N_{Tp} bonds.^[19] Although this dicopper dinitrogen complex 3 is stable in the solid state at -40°C for an extended period, it decays in solution (CH₂Cl₂ or toluene) over minutes at room temperature, converting to several untraceable products. Colorless crystals of 3 slowly crack with gas evolution upon standing at room temperature.

To unequivocally establish the identity of the trapped diatomic molecule between the two copper centers in **3**, a solid state sample of **3** was subjected to Raman spectroscopy. The assignment of the bound dinitrogen stretching frequency was confirmed through the preparation of ¹⁵N labelled [^{iPr2}TpCu]₂(μ -¹⁵N₂) (**3**-¹⁵N₂) under an ¹⁵N₂ atmosphere. Raman difference spectra of **3** (Figure S1B in the Supporting Information) clearly identify ν_{N2} at 2130 cm⁻¹ (¹⁴N₂) and 2060 cm⁻¹ (¹⁵N₂), approximately 200 cm⁻¹ lower than free ¹⁴N₂ (2331 cm⁻¹). While the bound N₂ ligand in **3** has a higher ν_{N2} stretching frequency than in Murray's tricopper dinitrogen complex Cu₃N₂L (1952 cm⁻¹),^[7a] it is significantly lower than more weakly bound N₂ ligands in copper-exchanged zeolites such as Cu-ZSM-5 (2295, 2207 cm⁻¹).^[16a,e,f]

Simple MO considerations supported by high-level DFT calculations outline the nature of the [Cu^I]-N₂-[Cu^I] interaction in $[{}^{iPr2}TpCu]_2(\mu-N_2)$ (3). The effective C_3 coordination of the tris(pyrazolyl)borate ligand renders the d_{yz} and d_{xz} orbitals on the d¹⁰ TpCu^I fragment degenerate (Figure S22). This leads to degenerate π -backbonding interactions between the filled Cu d_{yz} and d_{xz} orbitals and the empty π^* levels of the N₂ ligand in the mononuclear TpCu-N₂ complex (Figure 4 and S22). Due to the low energies of the Cu d orbitals, weak π backbonding is expected. Interaction with an additional TpCu^I fragment allows for π -backbonding from two trigonal d¹⁰ Cu^I centers, presumably enhancing the overall copperdinitrogen interaction.^[4c,5a,6a,20] This simple MO analysis, however, illustrates that the set of filled d_{yz}/d_{xz} orbitals brought in by the additional TpCu^I fragment is non-bonding with respect to the N_2 π^* orbitals. Thus, only modest enhancement in the copper-dinitrogen interaction is anticipated.

These are not the final page numbers!

www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 4. π -backbonding and non-bonding orbital interactions in $[TpCu]_2(\mu$ -N₂).

tance marginally increases from ^{iPr2}TpCu-N₂ (4) (N–N: 1.134 Å) to [^{iPr2}TpCu]₂(μ -N₂) (3) (N–N: 1.149 Å) with a modest decrease in v_{N2} (2309 to 2224 cm⁻¹); free N₂ values are 1.117 A and 2349 cm⁻¹ at this level of theory. For each mono- and dicopper dinitrogen adduct 4 and 3, the degenerate sets of LUMOs for both mononuclear and dinuclear dinitrogen complexes are largely N₂ π^* in character, with only minor contributions from the corresponding Cu d orbitals (Figures 4, S21, and S22).

Suggested by its modest thermal stability, the solution behavior of $[{}^{iPr2}TpCu^{I}]_{2}(\mu-N_{2})$ (3) as monitored by ¹H and ¹⁵N NMR spectroscopy indicated that the bound N_2 is quite labile. For instance, addition of ${}^{15}N_2$ to $[{}^{iPr2}TpCu^I]_2(\mu {-}^{14}N_2)$ in $[D_2]$ dichloromethane at -20 °C gives a broad ¹⁵N NMR signal ($\delta = 309.0$ ppm vs. NH₃), suggesting dynamic exchange between free ${}^{15}N_2$ ($\delta\!=\!309.7\,ppm$ vs. $NH_3)$ and $3\!\cdot\!{}^{15}N_2.$ Addition of either excess MeCN or CNAr^{2,6-Me} to a solution of **3** in dichloromethane releases N_2 with clean formation of the corresponding Cu^{I} adducts $i^{Pr2}TpCu(L)$ (L = MeCN or CNAr^{2,6-Me}) complexes in essentially quantitative yield (Scheme 1). In addition, **3** reacts readily with O_2 at low temperature to form $[^{iPr2}TpCu]_2(\mu-\eta^2:\eta^2-O_2)$ (1; 98% UV/Vis yield; Scheme 1, X-ray structure in Figure S15). In the absence of such added ligands, loss of N2 from 3 in dichloromethane leads to a mixture of products. [TpCu]₂ dimers with bridging pyrazole arms have been crystallographically identified for other Tp ligands.^[21]

Given the lability of N_2 under experimental conditions, we employed DFT calculations to outline the strength of N_2

Scheme 1. Synthesis and reactivity of $[^{iPr2}TpCu^{l}]_{2}(\mu N_{2})$ (3).

Angew. Chem. Int. Ed. 2016, 55, 1-6

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.angewandte.org

These are not the final page numbers!

binding at the ^{iPr2}TpCu fragment. At equal concentrations, binding of N_2 is comparable to that of MeCN, a commonly employed ligand that often provides labile copper(I) complexes. For instance, exchange of N2 at ^{iPr2}TpCu-NCMe to form $^{iPr2}TpCu-N_2$ (4) with release of MeCN is predicted to be essentially thermoneutral ($\Delta H = 0.3 \text{ kcal mol}^{-1}$; $\Delta G =$ 0.6 kcal mol⁻¹). DFT calculations reveal modest cooperativity that exists in the binding of a second ^{iPr2}TpCu fragment to ${}^{\mathrm{i}Pr2}\text{TpCu-N}_{2^{\text{.}}}$ While binding of N_2 to the naked, tripodal ^{iPr2}TpCu fragment is quite favorable ($\Delta H = -22.2 \text{ kcal mol}^{-1}$, $\Delta G = -11.6 \text{ kcal mol}^{-1}$), addition of a second ^{iPr2}TpCu fragment to ^{iPr2}TpCu-N₂ is even more favorable ($\Delta H =$ $-29.8 \text{ kcal mol}^{-1}$, $\Delta G = -15.3 \text{ kcal mol}^{-1}$). This positive cooperativity is reflected in the reaction of ^{iPr2}TpCu-NCMe with ^{iPr2}TpCu-N₂ predicted to give [^{iPr2}TpCu]₂(µ-N₂) and MeCN with $\Delta H = -7.3 \text{ kcal mol}^{-1}$ and $\Delta G = -3.1 \text{ kcal mol}^{-1}$. Under experimental conditions, however, we do not see the displacement of MeCN by N₂, perhaps due to the low solubility of N₂ in CH₂Cl₂ solution.^[22] On the other hand, binding of O₂ in the experimentally observed $[{}^{iPr2}TpCu]_2(\mu-\eta^2:\eta^2-O_2)$ (1) is predicted to be considerably more favorable than N₂ binding in **3** $(\Delta H = -43.2 \text{ kcal mol}^{-1})$ and $\Delta G = -38.9 \text{ kcal mol}^{-1};$ Scheme 1 and Scheme 2). Thus, such dicopper sites are highly selective for O_2 over N_2 .

theory	[Cu] =	^{iPr2} TpCu	ΔH	∆G
[Cu ^I]-NCMe + N ₂	->	[Cu ^l]-N ₂ + NCMe	+0.3	+0.6
[Cu ^l]-N ₂ + [Cu ^l]-NCMe		[Cu ^l]-N ₂ -[Cu ^l] + NCI	Me -7.3	-3.1
[Cu ^l] + N ₂	→	[Cu ^I]-N ₂ (4)	-22.2	-11.6
[Cu ^l]-N ₂ + [Cu ^l]	→	[Cu ^l]-N ₂ -[Cu ^l]	-29.8	-15.3
$[Cu^{l}]-N_{2}-[Cu^{l}] + O_{2}$	->	[Cu ^{ll}] < [Cu ^{ll}] + N	₂ -43.2	-38.9

Scheme 2. Calculated thermodynamic parameters for the formation of $l^{iPr2}TpCu]_2(\mu\text{-}N_2)$ (3) and $l^{iPr2}TpCu]_2(\mu\text{-}\eta^2:\eta^2\text{-}O_2)$ (1). Values in kcal mol $^{-1}$ at 298 K.

Intrigued by the numerous color changes observed upon mixing of Ph₃SiH and [^{iPr2}TpCu]₂(µ-OH)₂ that ultimately leads to $[{}^{iPr2}TpCu]_2(\mu-N_2)$ (3), we set out to investigate possible intermediates en route to N2 capture. Reaction between $[^{iPr2}TpCu]_2(\mu$ -OH)₂ and two equiv HSiPh₃ in dichloromethane at -20°C affords a purple complex over an hour. Although the purple intermediate is reasonably stable at -20°C at low concentrations (e.g. 1 mM), crystallization attempts are often frustrated by the formation of colorless crystals of the dicopper dinitrogen species 3. Fortunately, reaction between $[^{iPr2}TpCu]_2(\mu-OH)_2$ and HSiPh₃ in 1 mM pentane solution at -20 °C, followed by crystallization at -40 °C affords purple crystals suitable for Xray crystallographic analysis. X-ray diffraction reveals that the purple intermediate is the dicopper hydride $[^{iPr2}TpCu]_2(\mu-H)$ (5; Figure 5). Two Cu centers with nearly identical coordination environments are bridged by a single hydride ligand found in the Fourier difference map (Cu1-H1 1.78(3), Cu2-H1 1.79(3) Å) to give a short Cu–Cu distance (2.5117(4) Å). These Cu-H bonds are somewhat longer than a previously reported triangular copper $\{[Cu_2^IH]\}^+$ core (Cu-Cu=2.5331-(15); Cu-H 1.45(2) Å) supported by N-heterocyclic car-

Figure 5. Crystal structure of [^{iPr2}TpCu]₂(μ-H) (5), selected bond lengths [Å] and angles [°]: Cu1-Cu2 2.5117(4), Cu1-H1 1.78(3), Cu2-H11.79(3), Cu1-N1 2.114(2), Cu1-N3 1.9997(19), Cu1-N5 2.116(2), Cu2-N7 2.024-(2), Cu2-N9 2.061(2), Cu2-N11 2.109(2); Cu1-H-Cu2 89(1).

benes.^[23] To our knowledge, **5** represents the first example of a mixed-valence dicopper hydride.

Hyperfine coupling from two ${}^{63/65}$ Cu nuclei observed in the frozen glass EPR spectra of $[{}^{iPr2}$ TpCu]₂(μ -H) (**5**) at 80 K suggests a single unpaired electron shared equally among the two copper centers. The axial spectrum of **5** ($g_{\parallel} = 2.250, g_{\perp} =$ 2.060) possesses strong, axial hyperfine coupling (A_{\parallel} (2 Cu) = 260 MHz, A_{\perp} (2 Cu) = 35 MHz; Figure 6). IR spectra of **5/5**-D

Figure 6. X-band EPR spectrum of 5 in frozen toluene at 80 K.

show an isotope-sensitive Cu-H-Cu vibration at 1573 cm⁻¹ (**5**) and 1265 cm⁻¹ (**5**-D). Nonetheless, no difference is observed between EPR spectra of **5** and **5**-D. DFT calculations predict little unpaired electron density at the bridging H and indicate that the Cu centers carry an overwhelming majority of the spin density (Figure S29).

Although we have been unable to observe any intermediate in the formation of **5**, we propose that it forms via ^{iPr2}TpCu^I capture of ^{iPr2}TpCu^{II}-H produced by hydride exchange between HSiPh₃ and [^{iPr2}TpCu]₂(μ -OH)₂ (Scheme 3). DFT studies reveal that bimolecular coupling of the putative copper(II) hydride ^{iPr2}TpCu^{II}-H to generate H₂ along with 2 equiv ^{iPr2}TpCu is quite thermodynamically downhill ($\Delta H = -29.0$ kcal mol⁻¹, $\Delta G = -37.5$ kcal mol⁻¹). Similarly, capture of ^{iPr2}TpCu^{II}-H by ^{iPr2}TpCu^I-NCMe to stabilize the copper hydride as [^{iPr2}TpCu]₂(μ -H) (**5**) with formation of MeCN is also favorable ($\Delta H = -30.7$ kcal mol⁻¹, $\Delta G = -23.4$ kcal mol⁻¹).

To provide further support for a reactive hydride intermediate, we examined reactions with small molecule sub-

Scheme 3. Proposed mechanism for the formation of $[^{iPr2}TpCu]_2(\mu$ -H) (5) from $[^{iPr2}TpCu]_2(\mu$ -OH)₂. Free energies in kcal mol⁻¹ at 298 K.

strates. Given the challenges in the isolation of $[^{iPr2}TpCu]_2(\mu-H)$ (5), for reactivity studies we prepared 5 in situ via the reaction of $[^{iPr2}TpCu]_2(\mu-OH)_2$ and two equiv HSiPh₃, monitoring the formation and loss of 5 via its low energy optical signature at $\lambda = 810$ nm ($\varepsilon = 1060 \text{ M}^{-1} \text{ cm}^{-1}$). $[^{iPr2}TpCu]_2(\mu-H)$ (5) reacts readily with both CO and phenylacetylene at -15 °C in CH₂Cl₂ to produce formaldehyde (63 %) and styrene (96 %) within 30 min. Reaction of $[^{iPr2}TpCu]_2(\mu-H)$ (5) with DC=CPh gave a mixture of *cis*- and *trans*-styrene-D₁ in 37% and 56% yield, respectively (Figure S8). Upon standing at -40 °C in dichloromethane, purple solutions of $[^{iPr2}TpCu]_2(\mu-H)$ slowly deposit colorless crystals of $[^{iPr2}TpCu]_2(\mu-N_2)$.

In light of Kitajima's seminal finding that TpCu complexes such as $[^{iPr2}TpCu]_2(\mu - O_2)$ (1) may be used to model O_2 binding and activation in dicopper enzymes hemocyanin and tyrosinase,^[13] it is surprising that the corresponding bridging N_2 species $[^{iPr2}TpCu]_2(\mu-N_2)$ (3) was isolated over 20 years later. DFT studies reveal that N2 binding is competitive with MeCN, a typical weakly bound ligand in isolable copper(I) complexes, but is much weaker than O2 binding. Formation of this dicopper dinitrogen complex involves the intermediacy of $[^{iPr2}TpCu]_2(\mu-H)$ (5), a unique dicopper hydride capable of reducing triply bound substrates such as CO and HC=CPh. This $[Cu]_2(\mu-H)$ bonding mode that "protects" a highly reactive terminal [Cu^{II}]-H species via a coordinatively unsaturated [Cu^I] species is reminiscent of dicopper carbenes $[Cu]_2(\mu$ -CPh₂)^[24] and nitrenes $[Cu]_2(\mu$ -NR)^[25] that dissociate a copper(I) fragment $[Cu^{I}]$ to reveal reactive $[Cu]=CPh_{2}$ and [Cu]=NR species.

Despite the modest backbonding ability exhibited by many Cu^I complexes, alongside Murray's report of a [Cu]₃(μ -N₂) complex,^[7a] our experimental and computational results suggest that there may be a larger family of synthetically accessible Cu-N₂ complexes. This may offer new opportunities for N₂ reduction chemistry, especially since the ^{iPr2}TpCu fragment supports both the N₂ and HN=NH ligands in [^{iPr2}TpCu]₂(μ -N₂) (**3**) and [^{iPr2}TpCu]₂(μ -N₂H₂) (**2**) complexes (Figure 2c).^[14] Moreover, closely related tris(pyrazolyl)borate and tris(pyrazolyl)methane copper complexes support reduced nitrogen species, such as isolable copper(I) hydrazine adducts [Cu^I]-NH₂NH₂ and {[Cu^I]₂(μ -NH₂NH₂)]²⁺, respectively.^[26]

www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

Acknowledgements

T.H.W. is grateful for support from the National Science Foundation (CHE-1459090) and the Georgetown Environment Initiative. T.H.W. also acknowledges NSF for funds to purchase an X-ray diffractometer (CHE-1337975). T.R.C. thanks NSF for support of this research through grant CHE-1464943.

Keywords: copper · dinitrogen · hydride · mixed-valent compounds · reduction

- [1] P. L. Holland, Dalton Trans. 2010, 39, 5415.
- [2] a) L. Vaska, Acc. Chem. Res. 1976, 9, 175; b) J. S. Valentine, Chem. Rev. 1973, 73, 235; c) M. Momenteau, C. A. Reed, Chem. Rev. 1994, 94, 659; d) R. D. Jones, D. A. Summerville, F. Basolo, Chem. Rev. 1979, 79, 139.
- [3] A. D. Allen, C. V. Senoff, Chem. Commun. 1965, 621.
- [4] a) B. A. MacKay, M. D. Fryzuk, *Chem. Rev.* 2004, 104, 385;
 b) M. D. Fryzuk, S. A. Johnson, *Coord. Chem. Rev.* 2000, 200–202, 379;
 c) S. F. McWilliams, P. L. Holland, *Acc. Chem. Res.* 2015, 48, 2059.
- [5] a) K. Ding, A. W. Pierpont, W. W. Brennessel, G. Lukat-Rodgers, K. R. Rodgers, T. R. Cundari, E. Bill, P. L. Holland, J. Am. Chem. Soc. 2009, 131, 9471; b) T. A. Betley, J. C. Peters, J. Am. Chem. Soc. 2003, 125, 10782; c) A. C. Bowman, C. Milsmann, C. C. Hojilla Atienza, E. Lobkovsky, K. Wieghardt, P.J. Chirik, J. Am. Chem. Soc. 2010, 132, 1676; d) A.E. Carpenter, G. W. Margulieux, M. D. Millard, C. E. Moore, N. Weidemann, A. L. Rheingold, J. S. Figueroa, Angew. Chem. Int. Ed. 2012, 51, 9412; Angew. Chem. 2012, 124, 9546; e) J. W. Egan, Jr., B. S. Haggerty, A. L. Rheingold, S. C. Sendlinger, K. H. Theopold, J. Am. Chem. Soc. 1990, 112, 2445; f) A. R. Fout, F. Basuli, H. Fan, J. Tomaszewski, J. C. Huffman, M.-H. Baik, D. J. Mindiola, Angew. Chem. Int. Ed. 2006, 45, 3291; Angew. Chem. 2006, 118, 3369; g) C. C. Hojilla Atienza, C. Milsmann, S. P. Semproni, Z. R. Turner, P. J. Chirik, Inorg. Chem. 2013, 52, 5403; h) S. L. Marquard, M. W. Bezpalko, B. M. Foxman, C. M. Thomas, J. Am. Chem. Soc. 2013, 135, 6018; i) Y. Miura, A. Yamamoto, Chem. Lett. 1978, 937; j) D. L. M. Suess, C. Tsay, J. C. Peters, J. Am. Chem. Soc. 2012, 134, 14158; k) A. Yamamoto, Y. Miura, T. Ito, H. L. Chen, K. Iri, F. Ozawa, K. Miki, T. Sei, N. Tanaka, N. Kasai, Organometallics 1983, 2, 1429; l) D. Zhu, P. H. M. Budzelaar, Organometallics 2010, 29, 5759.
- [6] a) S. Pfirrmann, C. Limberg, C. Herwig, R. Stoesser, B. Ziemer, Angew. Chem. Int. Ed. 2009, 48, 3357; Angew. Chem. 2009, 121, 3407; b) R. Beck, M. Shoshani, J. Krasinkiewicz, J. A. Hatnean, S. A. Johnson, Dalton Trans. 2013, 42, 1461; c) S. J. Connelly, A. C. Zimmerman, W. Kaminsky, D. M. Heinekey, Chem. Eur. J. 2012, 18, 15932; d) Y.-E. Kim, J. Kim, Y. Lee, Chem. Commun. 2014, 50, 11458; e) C. Tsay, J. C. Peters, Chem. Sci. 2012, 3, 1313; f) R. Waterman, G. L. Hillhouse, Can. J. Chem. 2005, 83, 328.
- [7] a) L. J. Murray, W. W. Weare, J. Shearer, A. D. Mitchell, K. A. Abboud, J. Am. Chem. Soc. 2014, 136, 13502; b) W. Hsu, K. B. Thapa, X.-K. Yang, K.-T. Chen, H.-Y. Chang, J.-D. Chen, CrystEngComm 2016, 18, 390.
- [8] S. Yao, E. Bill, C. Milsmann, K. Wieghardt, M. Driess, Angew. Chem. Int. Ed. 2008, 47, 7110; Angew. Chem. 2008, 120, 7218.
- [9] W. H. Monillas, G. P. A. Yap, L. A. MacAdams, K. H. Theopold, J. Am. Chem. Soc. 2007, 129, 8090.
- [10] D. C. Cummins, G. P. A. Yap, K. H. Theopold, *Eur. J. Inorg. Chem.* 2016, DOI: 10.1002/ejic.201501326.

[11] S. Yao, Y. Xiong, M. Vogt, H. Grützmacher, C. Herwig, C. Limberg, M. Driess, *Angew. Chem. Int. Ed.* 2009, 48, 8107; *Angew. Chem.* 2009, 121, 8251.

- [12] a) E. A. Lewis, W. B. Tolman, *Chem. Rev.* 2004, 104, 1047;
 b) E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, *Chem. Rev.* 2014, 114, 3659;
 c) L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, *Chem. Rev.* 2004, 104, 1013;
 d) E. E. Chufan, S. C. Puiu, K. D. Karlin, *Acc. Chem. Res.* 2007, 40, 563.
- [13] N. Kitajima, K. Fujisawa, C. Fujimoto, Y. Morooka, S. Hashimoto, T. Kitagawa, K. Toriumi, K. Tatsumi, A. Nakamura, J. Am. Chem. Soc. 1992, 114, 1277.
- [14] K. Fujisawa, N. Lehnert, Y. Ishikawa, K. Okamoto, Angew. Chem. Int. Ed. 2004, 43, 4944; Angew. Chem. 2012, 124, 5052.
- [15] C. L. Gatlin, F. Tureček, T. Vaisar, J. Mass Spectrom. 1995, 30, 775.
- [16] a) A. Itadani, H. Sugiyama, M. Tanaka, T. Mori, M. Nagao, Y. Kuroda, J. Phys. Chem. C 2007, 111, 16701; b) Y. Kuroda, S. Konno, K. Morimoto, Y. Yoshikawa, J. Chem. Soc. Chem. Commun. 1993, 18; c) Y. Kuroda, Y. Yoshikawa, S.-i. Konno, H. Hamano, H. Maeda, R. Kumashiro, M. Nagao, J. Phys. Chem. 1995, 99, 10621; d) Y. Kuroda, Y. Yoshikawa, S. Emura, R. Kumashiro, M. Nagao, J. Phys. Chem. B 1999, 103, 2155; e) G. Spoto, S. Bordiga, G. Ricchiardi, D. Scarano, A. Zecchina, F. Geobaldo, J. Chem. Soc. Faraday Trans. 1995, 91, 3285; f) A. I. Serykh, M. D. Amiridis, Microporous Mesoporous Mater. 2006, 94, 320.
- [17] K. Fujisawa, T. Kobayashi, K. Fujita, N. Kitajima, Y. Moro-oka, Y. Miyashita, Y. Yamada, K.-i. Okamoto, *Bull. Chem. Soc. Jpn.* 2000, 73, 1797.
- [18] L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955.
- [19] a) J. S. Thompson, T. J. Marks, J. A. Ibers, J. Am. Chem. Soc.
 1979, 101, 4180; b) J. S. Thompson, T. J. Marks, J. A. Ibers, Proc. Natl. Acad. Sci. USA 1977, 74, 3114; c) N. Kitajima, K. Fujisawa, M. Tanaka, Y. Morooka, J. Am. Chem. Soc. 1992, 114, 9232; d) N. Kitajima, K. Fujisawa, Y. Morooka, J. Am. Chem. Soc. 1990, 112, 3210; e) D. Qiu, L. Kilpatrick, N. Kitajima, T. G. Spiro, J. Am. Chem. Soc. 1994, 116, 2585.
- [20] J. M. Smith, A. R. Sadique, T. R. Cundari, K. R. Rodgers, G. Lukat-Rodgers, R. J. Lachicotte, C. J. Flaschenriem, J. Vela, P. L. Holland, J. Am. Chem. Soc. 2006, 128, 756.
- [21] a) C. Mealli, C. S. Arcus, J. L. Wilkinson, T. J. Marks, J. A. Ibers, J. Am. Chem. Soc. 1976, 98, 711; b) S. M. Carter, C. E. Ruggiero, R. P. Houser, W. B. Tolman, Inorg. Chem. 1993, 32, 4889; c) Z. Hu, R. D. Williams, D. Tran, T. G. Spiro, S. M. Gorun, J. Am. Chem. Soc. 2000, 122, 3556; d) T. Augenstein, F. Dorner, K. Reiter, H. E. Wagner, D. Garnier, W. Klopper, F. Breher, Chem. Eur. J. 2016, 22, 7935.
- [22] K. Shirono, T. Morimatsu, F. Takemura, J. Chem. Eng. Data 2008, 53, 1867.
- [23] C. M. Wyss, B. K. Tate, J. Bacsa, T. G. Gray, J. P. Sadighi, Angew. Chem. Int. Ed. 2013, 52, 12920; Angew. Chem. 2013, 125, 13158.
- [24] X. Dai, T. H. Warren, J. Am. Chem. Soc. 2004, 126, 10085.
- [25] a) Y. M. Badiei, A. Krishnaswamy, M. M. Melzer, T. H. Warren, J. Am. Chem. Soc. 2006, 128, 15056; b) Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T. R. Cundari, T. H. Warren, Angew. Chem. Int. Ed. 2008, 47, 9961; Angew. Chem. 2008, 120, 10109; c) M. J. B. Aguila, Y. M. Badiei, T. H. Warren, J. Am. Chem. Soc. 2013, 135, 9399.
- [26] F. Paulat, N. Lehnert, Y. Ishikawa, K.-I. Okamoto, K. Fujisawa, *Inorg. Chim. Acta* 2008, 361, 901.

Received: April 24, 2016 Revised: June 14, 2016 Published online:

Angew. Chem. Int. Ed. 2016, 55, 1-6

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

www.angewandte.org

Communications

Communications

Dinitrogen Complexes

- S. Zhang, H. Fallah, E. J. Gardner, S. Kundu, J. A. Bertke, T. R. Cundari,* T. H. Warren* ______ IIII - IIII
- A Dinitrogen Dicopper(I) Complex via a Mixed-Valence Dicopper Hydride

Caught between two coppers: A tris(pyrazolyl)borate (Tp) dicopper N₂ complex $[Cu^{1}]_{2}(\mu$ -N₂) forms through the intermediacy of a mixed-valence dicopper hydride $[Cu^{1.5}]_{2}(\mu$ -H). Besides allowing a direct comparison between N₂ and O₂ binding

at copper(I), this $[Cu^i]_2(\mu\text{-}N_2)$ complex represents a key member in a family of TpCu complexes $[Cu^i]_2(\mu\text{-}NH=NH)$ and $[Cu^i](NH_2NH_2)$ featuring reduced N_2 ligands.

6 www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!