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Abstract A reaction of epoxy alcohols (anti and/or syn isomers)
derived from (E)-TMS-CH=CHCH(OH)R with TMS-C≡CLi in THF/HMPA
stereoselectively afforded (E)-TMS-C≡C-CH=CHCH(OH)R. The (E) stereo-
chemistry was independent of the anti/syn stereochemistry, but the syn
isomers showed higher reactivity than the anti isomers. The reaction
was applied to the synthesis of (18R)- and (18S)-HEPE.

Key words alkynes, epoxide ring opening, silicon, stereoselective syn-
thesis, Castro–Stephens coupling, eicosapentaenoic acid

The epoxide ring opening of epoxysilane by nucleo-
philes at a carbon bearing a silyl group (known as the
Hudrlik reaction), and the subsequent Peterson olefination,
is a potentially useful combination that affords nucleophile-
containing olefins in a stereoselective manner.1 Alkyl, alke-
nyl, and aryl Grignard reagents/Cu catalysts, and organo-
copper reagents with or without BF3·OEt2, have been inten-
sively studied as reagents for that reaction.2 As regards
alkynyl species, the formation of enynes was reported only
by Negishi, who used epoxysilanes derived from 1-TMS-1-
alkenes (TMS: trimethylsilyl) and alkynyl lithiums.2c It is
particularly noteworthy that this two-step conversion took
place through a one-pot reaction. In contrast, the first step
of the epoxide ring opening was reported using alkynyl-
aluminum reagents.3 Although the above-mentioned epoxy-
silanes were structurally simple substrates,2c we envisaged
the combination of epoxy alcohol 1 with 1-alkynes 2 (R1 =
any alkyl; R2 = TMS, alkyl, aryl, etc.) as delineated in Scheme
1. The resulting enynyl alcohols 3 would be intermediates
for the synthesis of metabolites of unsaturated fatty acids.
Previously, 3 (R1 = TMS, H) and their derivatives have been
synthesized by several methods, including the reduction of
ynenones,4 reduction of diynyl alcohols,5 Sonogashira

coupling,6 Wittig reaction,7 and others.8 Herein, we report a
study of this transformation and its application to the syn-
thesis of 18-hydroxyeicosapentaenoic acid (18-HEPE) (5) in
its R and S forms.9

Scheme 1  Present study

Biochemical oxidation of eicosapentaenoic acid (EPA)
(4) catalyzed by aspirin-treated COX-2 and by cytochrome
P450 produces 18-HEPE (5) in optically active forms (Figure
1).10 Several biological properties, including anti-inflamma-
tory activity, have been reported.9b,10 Soybean lipoxygenase
(sLOX) was used to convert 18-HEPE into RvE3.9c

Figure 1  EPA and 18-HEPE

An anti/syn mixture of 1a in a ratio of 37:68 was
subjected to an anion derived from TMS-acetylene 2a and
n-BuLi in THF at rt for 14 hours. However, the reaction was
incomplete and the anti isomer of 1a was recovered
(Table 1, entry 1). Reactions attempted at higher tempera-
tures of 40–45 °C (entry not shown) or in THF/DMPU (entry
2) resulted in the recovery of 1a (anti), affording a mixture
of 3a and 1a (anti) in ratios of 70:30 and 67:33. These re-
sults indicate that the syn isomer of 1a was more reactive
than the anti isomer; thus, the reaction conditions for con-
version of the less reactive anti isomer were intensively ex-
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plored to find that the use of HMPA as a co-solvent with
THF promoted the reaction. However, the reaction re-
mained incomplete (entry 3). Increasing the quantity of the
acetylide anion was partially effective (entry 4), and adding
more HMPA drove the reaction to near completion, giving
3a in 60% yield (entry 5).11

The difference in reactivity of the anti and syn stereo-
isomers of 1a is understood by assuming transition states A
and B (Scheme 2), in which chelation of a lithium cation
(Li+) to the epoxy oxygen atom fixes the conformation and
partially activates the epoxide C–O bond for the reaction.
Between A and B, the epoxide ring opening of A is probably
prevented by steric hindrance from the C5H11 group, and
addition of HMPA prompted the reaction by increasing the
nucleophilicity of the anion. In accordance with this mech-
anism, the TBS ether of 1a was slightly reactive under simi-
lar conditions, giving the corresponding enyne in 21% yield.

The conditions optimized above were applied to reac-
tions of other epoxy alcohols with acetylenes as shown in
Scheme 3. A stereoisomeric mixture of 1b (anti/syn =
40:60) was converted into 3b in 75% yield, with complete
conversion of the less reactive anti isomer. Similarly, the
pure anti isomers 1c and 1d afforded 3c and 3d in 69 and
64% yield, respectively. The latter result would be useful for
planning a synthesis of metabolites possessing the same
side chain, as described in the following paragraph. An
anti/syn mixture of 1e also afforded 3e in 50% yield. Unlike
TMS-acetylene 2a, 1-heptyne (2b), selected as a represen-
tative 1-alkyne, was less reactive, affording 3f in 75% yield
after 20 hours, whereas phenylacetylene (2c) showed a
similar reactivity to TMS-acetylene (2a).

The above products 3a–d could be converted into meta-
bolites of fatty acids: for example, 3a to 15-HETE, and 8,15-
dihydroxyl-ARA; 3b to resolvins E1, E2, 18-hydroxy-EPA
(18-HEPE), and 20-hydroxy-DHA; 3c to resolvins D4, D5,
and 17-hydroxy-DHA; and 3d to 12-hydroxy-EPA, and 14-
hydroxy-DHA. Among these targets, (18R)- and (18S)-HEPE
[(R)- and (S)-5] were chosen for the present investigation,
and the results are described below.

Epoxy alcohol (R)-1b (anti) with 99% ee and allylic alco-
hol (S)-8 with >99% ee, shown in Scheme 4, were obtained
by Sharpless asymmetric epoxidation of racemic (E)-1-
(trimethylsilyl)pent-1-en-3-ol (see the Supporting Infor-
mation).12 As with the synthesis of racemic 3b (anti/syn)
from 1b (Scheme 3), (R)-1b (anti) was converted into enyne
(R)-3b in 73% yield with >99% ee as determined by the
derived MTPA ester. The enyne was transformed into (R)-7
in 88% yield by protection with TBSCl, followed by proto-
desilylation of the resulting (R)-6 with K2CO3 in MeOH. In
the synthesis of (S)-7, epoxidation of (S)-8 with m-CPBA
afforded epoxy alcohol (S)-1b as a 40:60 mixture of anti/syn
isomers. Without separation, the mixture was converted

Table 1  Exploration of Reaction Conditions

Entry anti/syn 2a (equiv) n-BuLi (equiv) Additive (equiv) Temp. (°C) Time (h) Yield (%) of 3a 3a/1a (anti)a

1 37:63 4.5 4 – rt 14 48 64:36

2 37:63 4.5 4 DMPU (9) rt 4 n.d.b 67:33

3 100:0 4.5 4 HMPA (9) rt 5 n.d.b 40:60

4 100:0 9 8 HMPA (9) rt 4 n.d.b 50:50

5 100:0 9 8 HMPA (18) rt 3 60 91:9

6   0:100 4.5 4 – rt 4 59 100:0

7   0:100 4.5 4 HMPA (9) 0 4 65 100:0
a Determined by 1H NMR.
b Not determined.
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Scheme 2  Plausible transition states A and B for the epoxide opening
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Scheme 3  Further examples of the enyne synthesis
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Scheme 4  Synthesis of enantiomeric enynes (R)- and (S)-8
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into the (S)-enantiomer of enyne (S)-7. Previously, (S)-7 or
its (R)-isomers and derivatives have been synthesized
through asymmetric reduction,4a optical resolution,4b and
biosynthesis8d using a fungus, and the presented methods
will be complementary to these methods.

The Castro–Stephens coupling13 of (R)-7 (1.06 equiv)
with propargylic bromide 914 (1.0 equiv) using CuI (2
equiv), NaI (2 equiv), and Cs2CO3 (1.5 equiv) in DMF at rt for
seven hours gave (R)-10 in 63% yield (Scheme 5).15 Semi-
hydrogenation of (R)-10 under hydrogen by using P-2 nickel
and ethylene diamine (EDA) gave a mixture of (R)-11 and
(R)-12 in a ratio of 4:1. Without separation, the mixture
was treated with freshly prepared Zn(Cu/Ag) to afford (R)-
11 in 55% yield from (S)-10, which gave alcohol (R)-13 in
67% yield upon desilylation. Finally, hydrolysis produced
(18R)-HEPE [(R)-5] in 56% yield. The 1H and 13C NMR spec-
tra were consistent with those reported by Inoue.9c Similar-
ly, the coupling of 9 and (R)-7 afforded (S)-10, which was
converted to (18S)-HEPE [(S)-5].

In summary, the transformation of 1-trimethylsilyl-1,2-
epoxy-3-alkanols with 1-alkynes to the corresponding
enynyl alcohols was studied. The anti and syn stereo-
isomers had different reactivity; less reactive anti isomers
underwent the reaction using excess alkynes in THF/HMPA.
The reaction was applied to the synthesis of (18R)- and
(18S)-HEPE.
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