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Polyfunctionalized 2-(furan-2-yl)pyrroles and 2-(furan-3-yl)-
pyrroles derived from 2-azetidinone-tethered allenes by two
independent cerium(IV)-mediated single-electron oxidations
provided a (4-oxopent-2-enoyl)pyrrole and 3,3�-bis(pyrrol-2-

Introduction

Cerium is a member of the lanthanides, whose electronic
configuration facilitates that it can exist in both tri- and
tetrapositive states. The strong oxidising power of the ce-
rium(IV) ion has been recognised for many years, being of
valuable synthetic utility for organic chemists.[1] We wish to
report herein the use of CAN as an efficient and selective
reagent for generating molecular diversity from furanylpyr-
roles.

Results and Discussion

We have recently reported a novel regiocontrolled prepa-
ration of functionalized N-substituted pyrroles 2 from 2-
azetidinone-tethered allenes 1 (Scheme 1).[2] To strengthen
the synthetic utility of this methodology, procedures for the
effective removal of the N-protecting groups in the pyrrole
core were then surveyed. In an attempt to perform the
CAN-promoted oxidative cleavage of the N-(4-meth-
oxyphenyl) substituent in 2-(5-methylfuran-2-yl)pyrrole
(2a), surprisingly, we found that the pyrrole-based 1,4-di-
carbonyl compound 3 was isolated as the sole product
(Scheme 2).[3]
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yl)-2,2�-bifurans, respectively. Access to the oxidation pre-
cursors was achieved by regiocontrolled cyclization of β-al-
lenamine intermediates derived from selective β-lactam nu-
cleus breakage of 2-azetidinone-tethered allenols.

Scheme 1. Preparation of pyrroles 2 from allenic β-lactams 1. PMP
= 4-MeOC6H4.

Scheme 2. CAN-mediated reaction of (furan-2-yl)pyrrole 2a. Syn-
thesis of α,β-unsaturated 1,4-diketone 3. E = CO2Me; PMP = 4-
MeOC6H4; CAN = ammonium cerium(IV) nitrate.

To our delight, in contrast to the 2-(furan-2-yl)pyrrole
2a, the 2-(furan-3-yl)pyrrole 2b does not undergo oxidative
cleavage of the furan ring under CAN exposure, but the
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product obtained was the C2-symmetrical 3,3�-bis(pyrrol-2-
yl)-2,2�-bifuran 4a (Scheme 3), probably through the forma-
tion of a C–C bond by the coupling of two aromatic
units.[4,5] The structure of biheteroaryl 4a was established by
X-ray crystallography (Figure 1).[6] Similar behaviour was
observed for phenyl derivative 2c, which is readily amenable
for the CAN-promoted conversion to 3,3�-bis(pyrrol-2-yl)-
2,2�-bifuran 4b, as depicted in Scheme 3. Although no pre-
cedent could be found for this reactivity in the literature,
further investigation of its potential scope was of interest.
As a result, N-allyl- and N-benzyl-substituted pyrroles 2d
and 2e were treated with CAN under the same conditions
as N-PMP-substituted pyrroles. Again, the reaction yielded
only one product, namely, the homodimers 4c and 4d
(Scheme 3). Thus, for the first time the controlled dimeriza-
tion reaction of furanylpyrrole derivatives can be achieved,
eliminating the need to prepare halogen or metal derivatives
of the aryl fragments prior to their actual union.

Scheme 3. CAN-mediated reactions of (furan-3-yl)pyrroles 2b–e.
Synthesis of 3,3�-bis(pyrrol-2-yl)-2,2�-bifurans 4a–d. E = CO2Me;
PMP = 4-MeOC6H4; CAN = ammonium cerium(IV) nitrate.

The following mechanism for the formation of pyrrole-
based α,β-unsaturated γ-ketone 3a was considered
(Scheme 4). The reaction begins with the electron transfer
from 2-(5-methylfuran-2-yl)pyrrole 2a to CeIV to generate
the radical cation 5. The cationic center of 5 is trapped by
water to afford species 6, which after proton elimination
gave radical 7. One-electron oxidation of radical 7 followed

Scheme 4. Mechanistic explanation for the CAN-mediated preparation of pyrrole-based α,β-unsaturated 1,4-diketone 3a. E = CO2Me.
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Figure 1. X-ray diffraction analysis of bis(pyrrol-2-yl)-2,2�-bifuran
4a.

by rearrangement of intermediate 8 into 1,4-dicarbonyl
compound 3a complete the proposal. Arguably, formation
of the stable allyl-like carbocation is the major driving force
for this oxidative cleavage.

A possible pathway for the oxidative dimerization of 2-
(furan-3-yl)pyrroles may initially involve the CAN-medi-
ated formation of the radical cation 9. Next, addition of
water followed by proton elimination should afford radical
10, which dimerizes to intermediate 11. Double dehydration
of bis(dihydrofuran) 11 may be the final step for the
achievement of 3,3�-bis(pyrrol-2-yl)-2,2�-bifurans 4
(Scheme 5).[7] The success of the reaction rests on the di-
merization of radical 10 in opposition to abstraction of hy-
drogen, probably due to the higher stability of the radical
because of the proximal oxygen atom. The presence of the
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methoxycarbonyl group is probably necessary; otherwise
the radical cation should have charge and spin mainly local-
ized on the pyrrole ring.

Scheme 5. Mechanistic explanation for the CAN-mediated prepa-
ration of 3,3�-bis(pyrrol-2-yl)-2,2�-bifurans 4. E = CO2Me.

Conclusions

Using a simple reagent we have successfully ac-
complished two mild cerium(IV)-mediated single-electron
oxidations of polyfunctionalized 2-(furan-2-yl)pyrroles and
2-(furan-3-yl)pyrroles to form a pyrrole-based 1,4-dicar-
bonyl compound and a new class of C2-symmetrical bihet-
eroaryls, namely 3,3�-bis(pyrrol-2-yl)-2,2�-bifurans, respec-
tively.

Experimental Section
General Procedure for the CAN-Mediated Homodimerization of
(Furan-3-yl)pyrroles 2b–e. Preparation of 3,3�-Bis(pyrrol-2-yl)-2,2�-
bifurans 4a–d: A solution of CAN (171 mg, 0.313 mmol) in water
(2 mL) was slowly added to a stirred solution of the appropriate
(furan-3-yl)pyrrole 2 (0.136 mmol) in acetonitrile (2 mL) at –20 °C.
The reaction mixture was stirred at –20 °C for 0.5 h. Aqueous
(10%) sodium sulfite (1.0 mL) was added, and the mixture was
extracted with ethyl acetate. The organic extract was washed with
brine, water, dried (MgSO4), and concentrated under reduced pres-
sure. Chromatography of the residue using ethyl acetate/hexanes
mixtures gave analytically pure compounds 4.

Supporting Information (see also the footnote on the first page of
this article): Compound characterization data and experimental
procedures as well as copies of NMR spectra for all new com-
pounds.
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into the furan moiety could be envisaged and would explain
the selectivity observed and the difference of behavior between
2-furan (2a) and 3-furan (2b–e) compounds under such condi-
tions. However, we think that both the presence of the ester
group as well as the relatively low ionization potentials of the
furan ring will undergo electron transfer particularly easily into
the oxygenated heterocycle.
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